

Lecture Notes in Computer Science 3685
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Vladimir Gorodetsky Igor Kotenko
Victor Skormin (Eds.)

Computer
Network Security

Third International Workshop on Mathematical
Methods, Models, and Architectures for
Computer Network Security, MMM-ACNS 2005
St. Petersburg, Russia, September 25-27, 2005
Proceedings

13

Volume Editors

Vladimir Gorodetsky
Igor Kotenko
St. Petersburg Institute for Informatics and Automation
39, 14-th Liniya, St. Petersburg, 199178, Russia
E-mail: {gor, ivkote}@mail.iias.spb.su

Victor Skormin
Binghamton University (SUNY), Watson School of Engineering
Binghamton, NY 13902, USA
E-mail: vskormin@binghamton.edu

Library of Congress Control Number: 2005932314

CR Subject Classification (1998): C.2, D.4.6, E.3, K.6.5, K.4.1, K.4.4, J.1

ISSN 0302-9743
ISBN-10 3-540-29113-X Springer Berlin Heidelberg New York
ISBN-13 978-3-540-29113-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11560326 06/3142 5 4 3 2 1 0

Preface

This volume contains papers presented at the 3rd International Workshop on
Mathematical Methods, Models and Architectures for Computer Network Se-
curity (MMM-ACNS 2005) held in St. Petersburg, Russia, during September
25–27, 2005. The workshop was organized by the St. Petersburg Institute for
Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) in
cooperation with Binghamton University (SUNY, USA).

The 1st and the 2nd International Workshops on Mathematical Methods,
Models and Architectures for Computer Network Security (MMM-ACNS 2001
and MMM-ACNS 2003), hosted by the St. Petersburg Institute for Informatics
and Automation, demonstrated the keen interest of the international research
community in the subject area. It was recognized that conducting a biannual
series of such workshops in St. Petersburg stimulates fruitful exchanges between
the different schools of thought, facilitates the dissemination of new ideas and
promotes the spirit of cooperation between researchers on the international scale.

MMM-ACNS 2005 provided an international forum for sharing original re-
search results and application experiences among specialists in fundamental and
applied problems of computer network security. An important distinction of the
workshop was its focus on mathematical aspects of information and computer
network security addressing the ever-increasing demands for secure computing
and highly dependable computer networks.

A total of 85 papers from 20 countries related to significant aspects of both
theory and applications of computer network and information security were sub-
mitted to MMM-ACNS 2005. Twenty-five papers were selected for regular and
12 for short presentations. Six technical sessions were organized, namely: Math-
ematical Models, Architectures and Protocols for Security; Authentication, Au-
thorization and Access Control; Information Flow Analysis, Covert Channels
and Trust Management; Security Policy and Operating System Security; Threat
Modeling, Vulnerability Assessment and Network Forensics; and Intrusion De-
tection. The panel discussions were devoted to the challenging problems in vul-
nerability assessment, intrusion detection and security policy management. The
MMM-ACNS 2005 program was enriched by five distinguished invited speakers:
Naranker Dulay, Ming-Yuh Huang, Sushil Jajodia, David Nicol, and Douglas
Summerville.

The success of the workshop was assured by team efforts of sponsors, organiz-
ers, reviewers, and participants. We would like to acknowledge the contribution
of the individual Program Committee members and thank the paper reviewers.
Our sincere gratitude goes to the participants of the workshop and all authors
of the submitted papers. We are grateful to our sponsors: European Office of
Aerospace Research and Development (EOARD) of the US Air Force, US Office
of Naval Research Global (ONRGlobal) and US Army Research Laboratory-

VI Preface

European Research Office (AFL-ERO) for their generous support. We wish to
express our gratitude to the Springer LNCS team managed by Alfred Hofmann
for their help and cooperation.

September 2005 Vladimir Gorodetsky
Igor Kotenko

Victor Skormin

Workshop Chairmen

General Chairmen

Rafael M. Yusupov St. Petersburg Institute for Informatics and
Automation of the Russian Academy of Sciences
(SPIIRAS), Russia

Igor G. Plonisch Air Force Research Laboratory (AFRL), USA

Program Committee Co-chairmen

Vladimir Gorodetsky St. Petersburg Institute for Informatics
and Automation of the Russian Academy
of Sciences (SPIIRAS), Russia

Igor Kotenko St. Petersburg Institute for Informatics
and Automation of the Russian Academy
of Sciences (SPIIRAS), Russia

Victor Skormin Binghamton University, State University of New York,
USA

Program Committee

Kurt Bauknecht University of Zurich, Department of Information
Technology, Switzerland

David Bonyuet Delta Search Labs, USA
Shiu-Kai Chin Syracuse University, USA
Marc Dacier Eurecom, France
Dipankar Dasgupta University of Memphis, USA
Dimitris Gritzalis Athens University of Economics and Business, Greece
Alexander Grusho Russian State University for Humanity, Russia
Ming-Yuh Huang The Boeing Company, USA
Sushil Jajodia George Mason University, USA
Victor Korneev Research Institute “Kvant”, Russia
Klaus-Peter Kossakowski Presecure Consulting GmbH, Germany
Antonio Lioy Politecnico di Torino, Italy
Fabio Martinelli CNR/IIT, Italy
Fabio Massacci University of Trento, Italy
Catherine Meadows Naval Research Laboratory, USA
Nasir Memon Polytechnic University Brooklyn, USA
Bret Michael Naval Postgraduate School, USA
Ann Miller University of Missouri-Rolla, USA

VIII Organization

Nikolay Moldovyan Specialized Center of Program Systems “SPECTR”,
Russia

Andrei Sabelfeld Chalmers University of Technology, Sweden
Ravi Sandhu George Mason University and NSD Security, USA
Antonio Gomez Skarmeta University of Murcia, Spain
Anatol Slissenko University of Paris 12, France; St. Petersburg Institute

for Informatics and Automation, Russia
Michael Smirnov Fraunhofer-Gesellschaft Institute FOKUS, Germany
Douglas Summerville Binghamton University, USA
Shambhu Upadhyaya University at Buffalo, USA
Alfonso Valdes SRI International, USA
Vijay Varadharajaran Macquarie University, Australia
Valery Vasenin Moscow State University, Russia
Peter Zegzhda St. Petersburg Polytechnical University, Russia

Reviewers

Venkatesan Balakrishnan Macquarie University, Australia
Daniele Beauquier University of Paris 12, France
Juan Blaya University of Murcia, Spain
Mikhain Bolshakov Moscow State University, Russia
David Bonyuet Delta Search Labs, USA
Madhusudhanan ChandrasekaranUniversity at Buffalo, USA
Shiu-Kai Chin Syracuse University, USA
Ramkumar Chinchani University at Buffalo, USA
Michael Clarkson Cornell University, USA
Marc Dacier Eurecom, France
Dipankar Dasgupta University of Memphis, USA
Catalin Dima University of Paris 12, France
Marie Duflot University of Paris 12, France
Dimitris Gritzalis Athens University of Economics

and Business, Greece
Alexander Grusho Russian State University for Humanity,

Russia
Ming-Yuh Huang The Boeing Company, USA
John Iliadis Athens University of Economics and

Business, Greece
Sushil Jajodia George Mason University, USA
Maxim Kalinin St. Petersburg Polytechnical University,

Russia
Spyros Kokolakis Athens University of Economics

and Business, Greece
Victor Korneev Research Institute “Kvant”, Russia
Klaus-Peter Kossakowski Presecure Consulting GmbH, Germany
Igor Kotenko St. Petersburg Institute for Informatics and

Automation, Russia

Organization IX

Costas Lambrinoudakis University of the Aegean, Greece
Antonio Lioy Politecnico di Torino, Italy
Fabio Martinelli CNR/IIT, Italy
Sunu Mathew University at Buffalo, USA
Catherine Meadows Naval Research Laboratory, USA
Nasir Memon Polytechnic University Brooklyn, USA
Ann Miller University of Missouri-Rolla, USA
Nikolay Moldovyan Specialized Center of Program Systems

“SPECTR”, Russia
Gregorio Martinez Perez University of Murcia, Spain
Fabien Pouget Eurecom, France
Alexandr Rostovtsev St. Petersburg Polytechnical University,

Russia
Chun Ruan Macquarie University, Australia
Pedro Ruiz University of Murcia, Spain
Andrei Sabelfeld Chalmers University of Technology, Sweden
Ravi Sandhu George Mason University and NSD Security,

USA
Vladimir Savkin Moscow State University, Russia
Antonio Gomez Skarmeta University of Murcia, Spain
Anatol Slissenko University of Paris 12, France;

St. Petersburg Institute for Informatics
and Automation, Russia

Michael Smirnov Fraunhofer-Gesellschaft Institute FOKUS,
Germany

Douglas Summerville Binghamton University, USA
Artem Tishkov St. Petersburg Institute for Informatics and

Automation, Russia
Shambhu Upadhyaya University at Buffalo, USA
Alfonso Valdes SRI International, USA
Vijay Varadharajaran Macquarie University, Australia
Valery Vasenin Moscow State University, Russia
Lingyu Wang George Mason University, USA
Chao Yao George Mason University, USA
Weiliang Zhao Macquarie University, Australia
Peter Zegzhda St. Petersburg Polytechnical University,

Russia
Dmitry Zegzhda St. Petersburg Polytechnical University,

Russia
Junqi Zhang Macquarie University, Australia

Table of Contents

Invited Papers

Self-managed Cells for Ubiquitous Systems
Naranker Dulay, Emil Lupu, Morris Sloman, Joe Sventek,
Nagwa Badr, Stephen Heeps . 1

Critical Information Assurance Challenges for Modern Large-Scale
Infrastructures

Ming-Yuh Huang . 7

Rule-Based Topological Vulnerability Analysis
Vipin Swarup, Sushil Jajodia, Joseph Pamula . 23

Models and Analysis of Active Worm Defense
David M. Nicol, Michael Liljenstam . 38

Prevention of Information Attacks by Run-Time Detection of
Self-replication in Computer Codes

Douglas Summerville, Victor Skormin, Alexander Volynkin,
James Moronski . 54

Mathematical Models, Architectures and Protocols
for Computer Network Security

Calibrating Entropy Functions Applied to Computer Networks
Duncan A. Buell . 76

A Passive External Web Surveillance Technique for Private Networks
Constantine Daicos, Scott Knight . 88

A Secure Way to Combine IPsec, NAT & DHCP
Jacques Demerjian, Ibrahim Hajjeh, Mohamad Badra,
Salim Ferraz . 104

A Generic Model for Analyzing Security Protocols
Yonggen Gu, Yuxi Fu, Farong Zhong, Han Zhu . 119

Networks, Markov Lie Monoids, and Generalized Entropy
Joseph E. Johnson . 129

XII Table of Contents

Trust by Workflow in Autonomic Communication
Mikhail I. Smirnov . 136

An Ontology-Based Approach to Information Systems Security
Management

Bill Tsoumas, Stelios Dritsas, Dimitris Gritzalis 151

Authentication, Authorization and Access Control

Safety Problems in Access Control with Temporal Constraints
Philippe Balbiani, Fahima Cheikh . 165

A Modal Logic for Role-Based Access Control
Thumrongsak Kosiyatrakul, Susan Older, Shiu-Kai Chin 179

Unique User-Generated Digital Pseudonyms
Peter Schartner, Martin Schaffer . 194

Information Flow Analysis, Covert Channels and
Trust Management

A Probabilistic Property-Specific Approach to Information Flow
Danièle Beauquier, Marie Duflot, Marius Minea 206

Generalized Abstract Non-interference: Abstract Secure
Information-Flow Analysis for Automata

Roberto Giacobazzi, Isabella Mastroeni . 221

Detection of Illegal Information Flow
Alexander Grusho, Alexander Kniazev, Elena Timonina 235

Towards More Controllable and Practical Delegation
Gang Yin, Huaimin Wang, Dianxi Shi, Haiya Gu 245

Security Policy and Operating System Security

Policy-Driven Routing Management Using CIM
Félix J. Garćıa Clemente, Jesús D. Jiménez Re,
Gregorio Mart́ınez Pérez, Antonio F. Gómez Skarmeta 259

Secure Hybrid Operating System “Linux over Fenix”
Dmitry P. Zegzhda, Alex M. Vovk . 272

Table of Contents XIII

A Formal Description of SECIMOS Operating System
Zhouyi Zhou, Bin Liang, Li Jiang, Wenchang Shi, Yeping He 286

Threat Modeling, Vulnerability Assessment and
Network Forensics

A Theoretical Model for the Average Impact of Attacks on Billing
Infrastructures

Fabrizio Baiardi, Claudio Telmon . 298

Analyzing Vulnerabilities and Measuring Security Level at Design and
Exploitation Stages of Computer Network Life Cycle

Igor Kotenko, Mihail Stepashkin . 311

A Temporal Logic-Based Model for Forensic Investigation in Networked
System Security

Slim Rekhis, Noureddine Boudriga . 325

Vulnerabilities Detection in the Configurations of MS Windows
Operating System

Peter D. Zegzhda, Dmitry P. Zegzhda, Maxim O. Kalinin 339

Intrusion Detection

Hybrid Intrusion Detection Model Based on Ordered Sequences
Abdulrahman Alharby, Hideki Imai . 352

Asynchronous Alert Correlation in Multi-agent Intrusion Detection
Systems

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoilov,
Alexander Ulanov . 366

Behavior-Based Model of Detection and Prevention of Intrusions in
Computer Networks

Victor Serdiouk . 380

A Formal Immune Network and Its Implementation for On-line
Intrusion Detection

Alexander O. Tarakanov, Sergei V. Kvachev,
Alexander V. Sukhorukov . 394

XIV Table of Contents

Short Papers

Foundation for a Time Interval Access Control Model
Francis B. Afinidad, Timothy E. Levin, Cynthia E. Irvine,
Thuy D. Nguyen . 406

Developing an Insider Threat Model Using Functional Decomposition
Jonathan W. Butts, Robert F. Mills, Rusty O. Baldwin 412

An XML-Seamless Policy Based Management Framework
Félix J. Garćıa Clemente, Gregorio Mart́ınez Pérez,
Antonio F. Gómez Skarmeta . 418

Statistical Covert Channels Through PROXY Server
Alexei Galatenko, Alexander Grusho, Alexander Kniazev,
Elena Timonina . 424

Encoding Private Key in Fingerprint
Ernő Jeges, Zoltán Hornák, Csaba Körmöczi . 430

A New Scheme for the Location Information Protection in Mobile
Communication Environments

Soon Seok Kim, Sang Soo Yeo, Hong Jin Park, Sung Kwon Kim 436

Region Protection/Restoration Scheme in Survivable Networks
Wojciech Molisz, Jacek Rak . 442

Massive Data Mining for Polymorphic Code Detection
Udo Payer, Peter Teufl, Stefan Kraxberger, Mario Lamberger 448

Key Escrow with Tree-Based Access Structure
Martin Schaffer, Peter Schartner . 454

Security Checker Architecture for Policy-Based Security Management
Artem Tishkov, Igor Kotenko, Ekaterina Sidelnikova 460

An Efficient Access Control Model Utilized the Attribute Certificate
Structuring

Soomi Yang . 466

Secure Protected Password Change Scheme
Eun-Jun Yoon, Eun-Kyung Ryu, Kee-Young Yoo 472

Author Index . 479

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 1 – 6, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Self-managed Cells for Ubiquitous Systems

Naranker Dulay1, Emil Lupu1, Morris Sloman1,
Joe Sventek2, Nagwa Badr2, and Stephen Heeps2

1 Department of Computing, Imperial College London,
180 Queen’s Gate, London SW7 2AZ, United Kingdom

{n.dulay, e.c.lupu, m.sloman}@imperial.ac.uk
2 Department of Computing Science, University of Glasgow,
17 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom

{joe, nagwa, heeps}@dcs.gla.ac.uk

Abstract. Amongst the challenges of ubiquitous computing is the need to pro-
vide management support for personal wireless devices and sensors. In this ex-
tended abstract we introduce a policy-based architecture that supports manage-
ment at varying levels based on the concept of a self-managed cell. Cells in-
clude policy-driven agents that support context-based and trust-based access
control and system adaptation. Cells can also organize themselves through fed-
eration and nesting.

1 Introduction

Advances in ubiquitous computing infrastructures have the potential to dramatically
broaden the role of computing in the everyday lives of people with a greater prolifera-
tion of personal wireless devices, and more significantly with wireless computing
devices starting to be embedded in the environment: in buildings, in roads, in vehi-
cles, in the landscape, in home appliances, in clothing, on packaging of consumer
goods in shops; even as implants in plants, animals and humans. The challenges of
ubiquitous computing will not only be about building such ubiquitous environments,
they will also be about managing the resources and omnipresent information which
ubiquitous systems will need to discover, capture, process and publish behind the
scenes. This information will be ephemeral, mobile, fragmented and voluminous with
no predictable flows between producers or users of the information.

1.1 Ubiquitous Systems Management

Existing architectures for network and systems management are aimed at large-scale
corporate environments, telecommunications networks and Internet service providers
and do not cater for ubiquitous environments, although specific techniques for moni-
toring, event correlation, service discovery, quality of service and policy-based man-
agement can be used to some degree. For ubiquitous systems, architectures are needed
that can scale down to small devices with local decision-making. The limitations of
small devices, e.g. memory size, CPU speed, battery life, screen size, network range
and changing connectivity; require new techniques for optimizing resource usage and
tailoring information within tight deadlines. Management will also need to be per-

2 N. Dulay et al.

formed according to measures of context and trust and tailored to the individual pref-
erences and circumstances of users. Flexible techniques will be needed to filter infor-
mation and perform access control, as well as defining and enforcing privacy. Users
will expect management functions to be invisible and carried out automatically.

We are developing a policy-based architecture that supports management at vary-
ing levels of granularity, using the concept of a self-managed cell (or simply a cell).
A cell consists of a set of hardware and software components that represent an admin-
istrative domain. Cells are able to function autonomously and thus capable of self-
management. A cell could represent the resources available in a PDA, a body area
network of physiological sensors and controllers. At the enterprise level, a cell could
represent the resources and application components relating to a set of collaborating
partners forming a virtual organisation spanning multiple countries. In each case, cells
include and evolve the required management services, appropriate to the scale and
environment of the cell. These management services interact with each other through
asynchronous events exchanged over an event bus. In essence, a cell is a “closed-
loop” system where changes of state in the managed objects and resources trigger
adaptation that in turn affects the state of the system. In ubiquitous environments, the
cells would also typically include management components that provide service dis-
covery and contextual management.

A cell includes a policy-driven agent that supports context-based and trust-based
access control and system adaptation for one or more ubiquitous devices. Cells can
load additional management functions and organise themselves into larger manage-
ment cells through federation and nesting. Potentially, each ubiquitous device that a
user carries, and each device situated in the environment, is capable of being a self-
managed cell and running a management agent that carries out management functions
and policies. In practice, we envisage that some devices (e.g. sensors) will be too
primitive to run their own management agent, but will be capable of being managed
by an external cell, such as a mobile phone, over a wireless link, such as bluetooth.
This extended abstract introduces the architecture of self-managed cells.

2 Self-managed Cells

Each self-managed cell consists of a number of core management components: the
cell watchdog, the event service, the discovery service, the policy service, and the
domain service. Cells can also load components for context and trust management as
well as monitoring and intrusion detection. Proxies are required to interact with the
various communication interfaces of devices and managed components, for example
to enable cell policies to perform actions on device-specific management interfaces,
and to convert low-level signals to cell events. The following outlines the core ser-
vices of each self-managed cell.

2.1 Cell Watchdog

When a cell is first instantiated, it starts up the cell watchdog. This is a special ser-
vice that is responsible for loading and instantiating the core components of the cell,
typically from local storage (e.g. a memory card), or from a remote cell. The cell

 Self-managed Cells for Ubiquitous Systems 3

watchdog is also responsible for cleanly removing and restarting core components
when a core component fails, or if a core component needs to be updated. Essentially
the cell watchdog has the responsibility to ensure the survivability of the core man-
agement components, and ideally should be in firmware and always alive.

2.2 Event Service

Management systems are essentially event-driven, as changes of states need to be
notified to several, potentially unknown management services. Examples of events
include: the discovery of a new device, a change in context (e.g. battery level low), an
intrusion alert. The event service provides at-most-once, persistent publish/subscribe
delivery and is used for both intra-cell and inter-cell management. The event service
supports event correlation for flexibility.

2.3 Discovery Service

The discovery service is responsible for detecting the presence of devices that come
into wireless range. These may be primitive devices that are managed by the cell,
devices that are managed by others cells, or devices that are not currently managed by
any cell. Once a device is discovered, the discovery service communicates with the
device to get further attributes (e.g. type, profile, services provided) and generates a
“new-device” event for other management components. The discovery service needs
to distinguish between transient failures, which are common in wireless communica-
tions, and when some device is really no longer available (e.g. out of range or
switched off).

2.4 Policy Service

The policy service is responsible for the execution of policies. Policies are rules that
govern the choices in behaviour of the cell. Two kinds of policy are currently sup-
ported. Obligation policies (event-condition-action rules), which define what actions
to carry out when specific events occur, and authorisation policies which define what
actions are permitted or not permitted, for what or for whom, and under what condi-
tions. Policies can be added, removed, enabled or disabled to change the behaviour of
a cell. See cell policy language (section 3).

2.5 Domain Service

The domain service provides a means of hierarchically grouping references to objects
(c.f a filesystem). Objects include devices, services (including core services), poli-
cies, neighbouring cells. For example, when a new device is discovered, a reference
to it, is normally added to the domain /dev as well as to application-specific do-
mains, for example, /music/headset/bluetooth. Domains are also used to
define authorisation policies in the cell policy language, e.g. objects within the subject
domain /players/mp3 are permitted to perform the action play on objects in the
target domain /headsets.

4 N. Dulay et al.

2.6 Context Service and Trust Service

In addition to the core components, cells can also load a context service and a trust
service. These allow context and trust information to be defined, gathered and com-
bined, and used in evaluating policy constraints. Changes in context and trust can
raise events that trigger obligation policies that cause adaptation.

3 Cell Policy Language

Central to the management of cells is the Cell policy language and interpreter. The
language is loosely based on the Ponder policy language developed at Imperial Col-
lege London. All primitive policies are encapsulated into one composite type called
the relationship. There are no roles, groups, or management structures. There are no
domain scope expressions. Subjects can be based on credential verification as well as
domain membership. The language includes explicit support for domain crea-
tion/removal as well as enabling/disabling of policies. Composite event can be de-
fined. There are explicit rules for authorisation conflict resolution based on explicit
relationship ordering rules. The syntax is also cleaner and less cluttered than Ponder
and is suitable for interactive execution.

3.1 Relationships

Relationships encapsulate one or more policies. Currently obligation (event-
condition-action) policies and authorisation policies are supported. Relationships can
also encapsulate other relationships. Relationships are created, enabled, disabled,
removing as a whole, e.g. policies cannot be added to a running relationship, other
than by disabling and removing the relationship, and replacing it with a new relation-
ship with the additional policy. The policies act as an atomic unit, for example, dis-
abling an individual authorisation may lead to unexpected results. The policy service
includes a multi-threaded interpreter for concurrently executing obligation policies.
The following examples illustrate the Cell policy language.

Example 1. Authorisation policy. Members of the family domain are allowed to play games
on the pda but only at home or in the car.

 context home_car: location=home or location=car

 auth+ /family -> home_car ? /pda/games.play

Example 2. Authorisation policy. Doctors who can present a credential issued by the British
Medical Association (BMA) can issue commands to the cell’s medical devices in an emergency
in the UK.

 credential medic:role=Doctor and issuer=BMA and issueyear>2005
 context UK_emergency: location=UK and condition=wounded

 auth+ -> medic and UK_emergency ? /medical/devices.commands

 Self-managed Cells for Ubiquitous Systems 5

Example 3. Obligation policy. On discovering a new bluetooth headset add it to the
sound/output/bluetooth domain.

on HeadsetDetect (X) -> X.type=bluetooth ?
 /sound/output/bluetooth.add(X)

Example 4. Obligation policy. After 20 failures to enter a PIN, disable the Mobile Phone pol-
icy and enable the Stolen mobile phone policy

event Stolen: count (PIN_failure, 20)

on Stolen () -> /policy/mobile/normal.disable (),
 /policy/mobile/stolen.enable ()

4 Inter-cell Interactions and Self-organisation

Although self-managed cells provide the management capability for supporting con-
figuration and adaptation within a device, there is a need to support management
across multiple cells. The cell architecture supports two forms of inter-cell organisa-
tion:

• Federated to support peer-to-peer interactions between cells in order to
collaborate and share resources, for example police, ambulance and fire workers
collaborating and sharing resources at car-accident. Management relationships
between federated cells are often transient, but can be longer-lived.

• Nested, where several cell nest within an enclosing cell and nested cells are not
visible to cells external to the enclosing cell i.e. any management interaction is
via the enclosing cell. Cells can move and out of enclosing cells, for example,
the cell of a patient returning home, may nest in the home cell, and be governed
by the policies of the home cell.

We model cell-cell interactions through relationships. Each cell defines its own re-
lationships with respect to other cells. When a new cell is discovered it is subject to a
similar procedure as devices. However for cells, additional actions and protocols are
supported including exchange of policies, event registrations, and domain member-
ship details. These protocols allow cells to share management information and re-
sources and self-organise through federation and nesting.

5 Current Status and Future Work

We are currently developing Java-based implementations of the cell architecture to
run on Series 60 Nokia phones, HP iPaq PDAs and laptops over bluetooth, wi-fi, and
GPRS. We are also experimenting with body sensor nodes with Zigbee wireless
capability that communicate by low-power radio with the iPaq. A simulator to test
larger cells and more easily simulate repetitive events or devices coming into and out
of range is being developed.

There are many issues still to be resolved, such as making sure the protocols opti-
mise the use of battery power; how to make sure a device is ‘owned’ by the appropri-
ate cell and not taken over; how to present management information and policies to

6 N. Dulay et al.

end-users and elicit policy settings; investigating the best design patterns for inter-cell
management; how to specify and implement privacy policies that allow users to con-
trol access to personal information, and what mechanisms to use to anonymise per-
sonal information and prevent tracking.

Acknowledgments

The authors wish to thank the UK Engineering and Physical Sciences Research Coun-
cil for their support of this research through grants GR/S68040/01 and
GR/S68033/01.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 7 – 22, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Critical Information Assurance Challenges for Modern
Large-Scale Infrastructures

Ming-Yuh Huang

The Boeing Company,
P.O. Box 3707, MC 7L-49,
Seattle, WA 98124-2207

ming-yuh.huang@boeing.com

Abstract. Today’s information assurance (IA) is no longer about keeping
people out. It's about letting people in — the right people, securely, to the right
place. In modern military and commercial systems, partners, suppliers, and
customers are all constantly accessing the infrastructure through the network.
Once there, each needs to be taken directly to the appropriate data and
resources. Secure and efficient access control in this context lays the foundation
of next-generation business paradigm shift. Such new paradigms create new
revenues and increase operation efficiency. Those who fail to make the
transition are bound to face daunting challenges in competition. IA is a business
enabler. It is vital piece that allows the paradigm shift to take place. This is the
new but realistic way to look at security. This paper examines a broad range of
critical issues in today’s closely knitted environment and discusses potential
architectural and technological directions from the perspective of large and
distributed infrastructures. To fully illustrate the significant issues, this paper
also uses a major cyber crime case that went through the US Federal Court in
2001 for analysis purpose.

1 Background

First international connection to the ARPANET was made by University College of
London (England) via NORSAR (Norway) in 1973. In the same year, Bob Metcalfe's
Harvard Ph.D. thesis outlines idea for Ethernet. The concept was tested on Xerox
PARC's Alto computers, and the first Ethernet network was implemented. In 1978,
TCP split into TCP and IP and, in 1980, ARPANET suffered the first significant
network security failure due to an accidentally-propagated status-message virus. The
network was grinded to a complete halt on October 27th.

It was not until later part of 1980’s that a major cut-over to TCP/IP was made and
Internet became truly available. IETF was established and ARPANET creased to exist
in 1990. Nevertheless, prevalent usage of Internet will not come until mid 1990’s
when WWW (World Wide Web) became greatly accessible. Since then, computing
and Internet have fundamentally changed human society.

1.1 Castles and Moats

In process of computing technology evolutionary, information assurance (IA) usually
comes along as after-fact patch-up measures. IA is often treated as the necessary evil

8 M. Huang

that creates inconveniences and performance downgrades. It is there because it’s
mandated.

In the 1980’s and 1990’s, the security concerns brought upon by the network
connectivity forced us to became very good at building castles and moats. DEC
(Digital Equipment Corporation) was a relatively progressive company at that time
and its SERVNET effort at the end of 1980’s served as a good example. The concept
of SERVNET was to connect all of DEC’s customers together so that DEC could
deliver new paradigm of field services such as on-line service delivery (instead of a
man with a van), remote system patches and distributed preventive maintenance
remotely. Such thinking was innovative at that time and clearly had its business
advantages. So new business paradigm led to new IA requirements:

1. Businesses were living within the castles and DEC saw a business opportunity by
connecting them together.

2. Security implication was paramount and DEC was planning to deploy a large
number (multiples of hundreds) of VMS machines as gateways/firewalls for these
connections.

In reality, DEC could not possibly hire enough system administrators to man these
gateway machines 7x24. Nevertheless, the risk was high due to potential intrusions to
DEC as well as liability from possible intrusions amongst the customers.
Consequently, DEC’s Artificial Intelligence Technology Center located in
Marlborough, Massachusetts developed a real-time expert system in Knowledge Craft
to analyze VMS syslog files as security monitoring. The code name was ESSENSE
(Expert System for SERVNET Security). ESSENSE led to one of world’s earliest
host-based intrusion detection system (IDS) product in the early 1990’s —
PLOYCENTER Security ID.

1. New business paradigm led to new IA requirements.
2. New IA requirements led to new IA technology development.

The beginning of IDS technology illustrated that the focus of IA then was to
protect the perimeters. This is often described as the French-bread model — crunchy
crust and soft inside. The focus of the protection is on the boundary. Thus, following
that strategy, we became very good at building tall, thick walls and deep moats for
these medieval castles. On top of that, in order to facilitate connection to the outside,
we also became very proficient in putting in draw-bridges and drilling holes on the
castle wall to accommodate various protocols. The assumption was such that if the
wall was thick and tall enough, the number of the holes was controlled and the
activities around the wall were well monitored, everything would be safe. It was not
until after year 2000, this castles-and-moats model started to fall apart. The evolution
has accelerated into a revolution, and the world is moving rapidly away from the
castles and the moats.

2 Fundamental Changes to the Sociological Computing Game

2.1 The Slippery Definition of “Computing”

21st century computing is that of a revolution, not an evolution.

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 9

“Computers” were first invented to calculate the trajectory of the artillery shells.
However, the very definition of “computing” has been changing even since.

1. While mainframes dominated the landscape in the 60’s and 70’s, computing was
very much limited to the scope of “calculations” such as payroll, accounting,
number crunching or engineering calculations.

2. When mini-computers became available in the 70’s and 80’s, computing took a
broader jump into areas such as graphics, messaging (email/notes), real-time data
acquisition/monitoring, education, software development and business operation,
while the heavy lifting such as weather prediction were still left to the mainframes.

3. In the 1990’s, when PC/workstation and network connectivity became widely
available, the definition of computing took on another meaning. Computing was
about word processing, spread sheet, email, chat, graphics, WWW and e-
commerce. At this point, much of the daily number crunching needed was buried
between the CPU, memory and registers.

4. In the 21st century, coupled with increased CPU & memory power, network
connectivity became the major player and has produced more intrinsic impacts to
the very definition of computing than anything else. At this point, computing is far
from number crunch. Computing is about MP3, VOIP, personal assistance, video
teleconferencing, virtual holiday, online auctions, virtual enterprise, pervasive
information access, e-government and network centric operation. People are just
figuring out what to do with all the increased computing power and connectivity.

5. For the future, one may extrapolate that given the connectivity and the bandwidth,
connectivity becomes storage, connectivity becomes CPU, connectivity becomes
application, connectivity becomes knowledge, and connectivity becomes part of
human daily life. Computing will be much more sociologically oriented — arts,
human interactions and health. Further, upon the rendezvous with bio-technology,
computing will be a much bigger part of human life.

New computing technology encourages new business paradigms. Recursively, new
business paradigms accelerate the development of new computing paradigm. How we
use, or intend to use, computing today is very different from the past. Connectivity
and computing power brought a fundamental change in today’s business model. IA
needs to address the requirements coming from the new paradigms, not the old
paradigms. Protecting 90’s computing/business paradigms adds very little to where
we need to go in the future.

2.2 The Ever-Changing “Value”

Historically, human use rare commodities such as gold or silver for “value”
manifestations. As civilization progresses, so are the manifestations of values —
coins, money, deed, bond, credit, etc. Today’s IA protects the value of the past. It fails
to recognize the new values brought along by the new business paradigm shift.

In the past, protecting the server itself was important because that’s where the
action was. However, in today’s context, protecting the transactions and the data
across multiple distributed servers is even more important. In this new business
paradigms where data and transactions are distributed everywhere and shared by
many international partners, different sets of requirement such as export control or

10

federated authentication and authorization need to be enforced. Protecting just the
server itself becomes insufficient. One can even venture to say that if the transactions
and data are protected, the server itself can be sacrificed. On the networking side,
dutiful IP packets inspection to protect castle walls and moats aides little in detecting
and preventing hackers from executing fake transactions from within to steal millions.
The value is at transaction and data, not castle and moats. We have become the ever-
chasing security Don Quixote — good in protecting the walls, not the values.

2.3 The Concept of “Collaborative Sharing”

The concept of ownership is no longer based on that of owning the data physically.
Instead, it is based on the accessibility to the data. Given the web and the encryption
technology, data can be everywhere — just like encrypted satellite downlink. As such,
the ownership is being defined as the “entitlement” to read, write and make use of the
data. Business transactions go beyond the delivery of business artifacts such as a
piece of singed paper or even its digitally signed electronics copy. It will be based on
direct information access and manipulation owned by the other party. For example, in
a virtual Just-In-Time (JIT) environment, customers ordering parts will not be just
sending digitally signed Purchase Orders to the suppliers. They actually manipulate
the supplier’s computing infrastructure and interact with the ordering system. This
updates the production data corresponding to the parts needed. As a result, the order is
automatically incorporated into the supplier’s production process, as well as
supplier’s partner network for any inventory supply support. Conversely, when the
parts are delivered, there will be no digitally signed paper-equivalence to “document”
the delivery information. The supplier actually modifies the customer’s system to
reflect the delivery. This results in virtual JIT updates of accounting business process
and even the manufacturing inventory system across the entire virtual enterprise with
multiple distributed business partners around the globe. It is a much tighter integration
at the business and computing level.

2.4 “Business Objects” vs. “System Objects”

Business information residing on the computing infrastructure takes two forms of
existence — the data itself (business objects), and their electronic manifestations —
files, databases or electronic communications (system objects). Traditional IA
implementations treat business objects as system objects and protect them as such.
However, the line of distinction between business object and system objects has
always been blurry and the level of implementation has been coarse.

1. Business objects (e.g. an engineering design) do not necessarily map to system
objects (e.g. a file). They are many one-to-many, many-to-one or even many-to-
many mappings. Protecting business objects does not equate to protect system
objects.

2. While business objects tend to have more level of abstraction to faithfully reflect
the business needs, system objects are bounded by the system environment (e.g.
file system). Consequently, not all the level of granularity can be appropriately
implemented in system objects. Since IA has been designed to protect system
objects, this level of protection is coarse.

M. Huang

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 11

3. Modern distributed and collaborative business paradigms add additional
challenges.
• We now have an environment where one computing system grows into many

distributed systems owned by many different partners; and one system object
(e.g. a file) now becomes many distributed system objects. Enforcing IA
operation on remote systems that one does not have ownership becomes an
immediate issue.

• In a collaborative environment, business objects such as designs, intellectual
properties are owned and shared by many. The traditional approach of
protecting the business object that one owns by protecting the system object on
the system that one also owns is breaking down. This is because of the
expansion of shared ownership of business objects as well as the distributed
nature of the system objects.

• The logic of sharing is becoming more complex. These are requirements such as
business contracts, operation procedure and export control. While it’s straight
forward to specify these logics in natural language, system objects are extremely
cumbersome and resource-intensive in terms of management.

3 Crises for the Castles and Moats

Today’s large infrastructure security depends heavily on controlled access across the
external/internal perimeter lines. This is normally achieved by the deployment of
firewall technology that makes use of packet filters and proxy services at major entry
points. Access control is typically coupled with intrusion detection capability on
major firewall machines.

Like the medieval castle, this resulted in a strongly protected perimeter with
limited access through a small number of highly protected gateways. However, there
are two major risks associated with this scenario. First is the insider threat which
grows as the complexity and the size of the infrastructure grows, second is each
opening in the walls presented a potential point of weakness. Like castles that build
complicated structures to protect these sensitive areas such as double portcullis to
create a holding cell where intruders could be safely dispatched, network security
added sacrificial host machines, twin host firewalls and electronics dungeons to trap
intruders. In the world of old days consist of simple network transactions such as
telnet, ftp and email, this architecture served it purpose. Today, the very success of
the Internet as a commercial vehicle has caused its obsolesce. Under the heavy
demands resulted from the proliferation of WWW and e-Commerce, the practice of
gathering all the local resources into protected area and fortifications is facing
collapse. This architecture is doomed from within and without; from the outside by
the invention of longer ranger and more powerful assault technology and from within,
by the need of frequent and tightly coupled interaction of one fortification to another.
In essence, this architecture is facing serious challenges in the next generation virtual
business paradigm where collaboration and integration are the keys.

12

3.1 Volume

A paradigm shift is taking place; the volume of data being exchanged for modern
corporations has grown exponentially in the recent years and shows no sign of
slowing down. Bandwidth has also increased dramatically and is on the verge of
another leap of technology with the next generation of Internet speed.

Fig. 1. High traffic volume coupled with fast networks challenges firewall audit CPU
performance problem

For example, Internet-II and NGI (Next Generation Internet) call for bandwidth
requirements beyond OC-48. Such firewall protection architecture depends heavily on
the technology of examining each packet — header and content, for destination. The
destination table look up determines if the policy allows for delivery. Sometimes,
specific filtering mechanisms are devised to further looking into the content of the
packet to prevent attacks such as email spamming or virus propagation. With this
approach, as the communication volume grows the accounts of processor cycles must
be increased on the perimeter to match up. High speed software and hardware device
solutions are assisting firewalls and routers with traditional means of monitoring but
there will soon come to a limit. Current situation is just that of a delaying tactic. It is
unlikely that this packet examination technology can be scaled to handle the new
broad-band communication. In essence, the volume of transmitted data is increasing
faster then the firewall architecture can handle it.

3.2 Variety

Beyond the traditional email, ftp and remote accesses such as telnet, today’s network
has added a plethora of new channels of communication. Devices like firewalls and
NAT (Network Address Translation) must recognize which protocol is appropriate for
which source or destination address. The protocol information is usually part of one
of the network packet header of to be deduced by the TCP port number. Although
each protocol has its benefits and weaknesses, some protocols present much greater
risks than others do. Recognizing this, firewalls and routers are often designed to
implement limited protocols based on the interpretation of company security policy.
This implementation limitation is largely based on information in the packet header,
port number and destination/source addresses. For example, while the corporation’s
public web server would emit HTTP packets, the presence of similar packets from
machines not designated as corporate web server could cause alarm and could be

 Faster Networks
NGI, ATM, etc.

Huge Traffic Increase
e.g. Corporate WWW servers

M. Huang

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 13

blocked. Increased variety of protocol adds to the complexity of the problem. It is
quite common for products to wrap a risky protocol inside a less risky one to increase
the possibility of passing through a firewall. Since inbound HTTP is so common these
days, this is often the protocol of choice. Furthermore, the information used to
identify the protocol type can also be altered. For example, port 23 is the standard
“well known port” for e-mail. Since it’s usually taken for granted that other machines
use this port for such purpose, if an application uses port 23 without prior
arrangement then firewall machine will risk either blocking a benign convenient
access or allowing a malicious attempt in disguise. An insider could easily configure
an email server to a different port and bypass firewall block as long as the
correspondent knows about the port change. Under the same token, it is also possible
to modify the TCP header and even forge the TCP header checksum. There is no sure
way for the firewall or router to know how the packet is being used without detail
analysis. The previously mentioned volume issue coupled with the protocol variety
makes this an infeasible option.

Fig. 2. Protocol varieties create holes on firewall

3.3 Visibility

Increasing usage of encryption technology also provides another obstacle that
prevents firewall and router machines from examining the packets in detail.
Application level encryption obscures the data while leaving the packet information
alone. When monitoring, the network devices must trust the packet header
information without being able to look inside. It has no way to tell that what looks
like an normal web page being sent out from the company’s public web server is
really an email or a telnet access.

The usage of application level encryption such as PGP and S/MINE encrypted
email is gaining ground. Packet level protection is being provided by protocols such
as SSL, and its successor — TLS. This provides TCP level network connection
protection. For levels above IP, IPSec is coming into play today. IPSec is designed
not only to protect data at the packet level, but also to protect the network
infrastructure itself. Thus, IPSec encrypts and digitally signs all of the header
information in the protocols that it wraps. This includes all TCP headers along with
the associated checksum, packet type and TCP port number.

FTP

SNMP

SecIOP

IIOP

Telnet
HTTP

X Windows

SMTP

SSL

IOS

Java

ActiveX

JavaScript

XVNEW

Socks

14

The only solution is to decrypt the packets at each network access point, read, copy
and analyze header information and then re-encrypt the packets before sending it on.
In addition to the added computation expense, this defeats the purpose of the trusted
relations between the communicating parties and exposes them to immense risks.
Instead of providing security by increasing visibility on the encrypted packets, this
solution actually created new points of failure from the information security’s
perspective.

? ? ? ??? ??? ? ? ??? ??

Fig. 3. Encrypted traffic visibility problem for firewall audit

4 Intrusion Detection Systems (IDS)

Large-scale heterogeneous networks generate tremendous amounts of temporal event
data in very diverse formats. In reality, much of these data has very little to do with
security at all. Most of them are related to system/network faults as a result of wrong
configuration. When doing analysis, only careful analysis can distinguish between
security and non-security data. This is an extremely noisy environment. When IDS
attempts to analyze and correlate these events, correct interpretation of the event
semantics becomes very important to minimize false positives (false alarms).

1. Intrusion detection architecture. Today's IDS products depend heavily on

centralized event processing — a traditional passive and one-way information-
processing architecture. IDS sensors are placed at many locations in the network.
The sensors’ role is to collect data and perform simple analysis. Bulk of analysis,
discovering and correlation are done at the centralized monitoring engine. This
architecture faces considerable challenge when scaling up to meet the demand of
today’s large and complex networks. Too much burden is being placed on the
central machine to perform the analysis. Also, in a centralized event-processing
architecture, by the time huge amount of data arrives at the centralized location the
contextual information needed to properly analyze the event has already been lost.
That information existed only in the original environments where data were
generated. Without the right information for interpretation, it is difficult to perform
adequate correlation. Worse even, the time latency might have made it impossible

M. Huang

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 15

to go back and collect critical environmental information to confirm or exonerate
the suspicions.

2. Host-based and network-based IDS. Host-based IDS works by monitoring system
generated events, correlating them with other information such as user or
application profiles, to detect intrusions. Network based IDS works by examining
network traffic, most often IP packets, to recognized known attack patterns such as
spoofing or flooding. One major problem is the separation of network IDS and
host-based IDS. When today’s attack happens, it cuts across multiple platforms —
network and host devices. There is no limitation as to what the intruder can do. In
fact, many hacking tools available for download from the web actually offer the
combined network and host attacks. When attacks happen across network and
hosts, it is necessary to detect by analyze network and host events together. Failing
to do so implies many missed opportunities. Realizing this, today’s network and
host IDS products are adding each other’s functionality and coming together
slowly. However, at this stage, IDS lack the capability for effective coordinated
protection.

3. Network-based IDS. There is a difficult for network based IDS to scale up dealing
with network traffic volume. The variety of protocols adds to the burden of
performance. Encryption creates opaque tunnels that cannot be analyzed. The
encryption problem is particular serious because when coupled with traffic volume,
it creates large and opaque pipes that are almost impossible to audit. Also, as the
infrastructures move toward switched environment. Visibility in this environment
presents yet another challenge to network based IDS. In a switched environment, if
two machines are connected via a switch at two different ports, their
communication will never go higher than the switch itself. With a hierarchical
switch architecture, local traffic will never be visible for network IDS to monitor.
One solution is to deploy IDS on each switch all the way down to the lowest level.
This is an extremely expensive solution with serious performance consequences.
Switched environment does not implied no attacks, it simply means the
fundamental working principles of network based IDS is facing a real challenge.

4. Static Data collection. Today’s IDS’ static data collection method contributes to
high false positive (false alarm) rate. Traditionally, IDS are setup to monitor a fix
set of events. This fix set is adjust only when the operator change the auditing
parameters. The model works well as long as there is a knowledgeable operator
sitting in front of the console around the clock to respond the attacks in real time
and to adjust the parameters to trace the progression of the attack. Without this, the
traces of the attack can be easily lost and the system ended up with a large set of
irrelevant data — more false alarms. Today’s IDS has very little audit tuning
taking place to ensure right set of data is being collected. The issue of high false
positives will remain and it is a critical real-life operation problem.

5 A Real-Life Awakening

Examining the real-life failures of today’s on-line transaction systems provides useful
insights into how the traditional IA is failing by just protecting the castles and moats.

16

Criminal activities in the “U.S. vs. Gorshkov” case took place during 1999 and 2000.
Several complaints were filed with the F.B.I. in multiple jurisdictions including
computer intrusion, system outage and attempted extortion. The coordinated effort of
several offices and investigating agents ultimately resulted in an undercover operation
that took place during November 2000. Two suspects were arrested in Seattle as a
result of the FBI undercover operation that involved fictitious international job
advertisements and interview offerings. They were subsequently charged with
numerous offences.

The internet-connected computers at the undercover operation were fitted with
keystroke recorders. One of the suspects logged in to their “home system” and the
keystroke recorder obtained the system name, username and login password. FBI
subsequently reconnected to the remote system and downloaded approximately
2.3GB of compressed data. The downloaded data was analyzed in conjunction with
data obtained from victims’ systems. This revealed the true nature and the extent of
the criminal activities that had been conducted. Seized evidence and victim data
revealed that the following types of incidents took place during the 1999–2000
timeframe:

• Numerous computer intrusions including the subversion of systems and networks,
for example ATM connected systems at a school district in Michigan

• Computer outage, for example at an internet service provider in Bellevue,
Washington

• Credit card fraud, for example at online retailers and internet payment systems
• Attempted extortion, for example at a bank in Southern California
• Large-scale identity theft

Compromised systems were frequently used as web relays/proxies. If the
compromised system had “business value” then it was also used for other purposes. In
one instance a system connected to a high-bandwidth ATM network was employed as
a Domain Name Server (DNS) and Internet Relay Chat (IRC) server. In another
instance the web site of an online bank had undergone creative enhancements that
bypassed the normal user log-on procedure.

The evidence also contained numerous Perl programming language software
scripts and temporary file residuals resulting from their execution. The Perl scripts
implemented a virtual web browser and were customized for email, auction and
payment functions. The Perl scripts appeared in numerous forms of developmental
evolution ranging from simple connection test scripts, SSL connection test scripts
with embedded links to X.509 certificates through to connectivity to a fully integrated
backend database. Thousands of email addresses were mined from the seized
evidence. These addresses were correlated to activity at a web email service provider.

The Ebay auction scripts represented a full-function user account
creation/management and auction creation/bid/close capability. The auction
management capability also included a feature that limited transactions to below the
$500 PayPal threshold. Support for the automated generation of Ebay buyer and seller
feedback was also incorporated. The $500 threshold check and automated feedback
represent a deliberate “fly below the radar” strategy.

The PayPal scripts demonstrated the capability of being able to create and
manipulate PayPal accounts. The PayPal accounts were associated with stolen credit

M. Huang

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 17

card information. The ingenuity of the Perl scripts also provided a clear evidence of
suspects’ in-depth understanding of the operation of the email, PayPal and Ebay web
servers. All of these systems had been carefully analyzed and effectively reverse
engineered by the suspects. Not only were the systems understood in terms of
implementation technology but also in terms of business level transactions and the
relation between these systems and others with which they had interaction.

The nature of the computer intrusion attack methodology is also noteworthy. We
frequently hear that attacks follow an intelligence and reconnaissance phase. Intrusion
Detection Systems typically report sensor events during reconnaissance probes (e.g.,
port scans). The intelligence phase of these attacks consisted of assembling a long list
of potential target systems. There was no need to initiate reconnaissance probes. One-
click “attack/compromise/subvert” scripts were developed. These scripts targeted
known and “as-yet unknown” (i.e., unpublished) vulnerabilities and fully automated
the installation of trojan-horse software, root kits, web proxies/relays as well as the
search, gathering and retrieval of information contained on the compromised system
and the network to which it was attached to. The targeting of the “as-yet unknown”
vulnerabilities highlights the limitations of today’s IDS and anti-virus systems which
primarily based on the “20-20 hindsight” band-aid approach and working at the
wrong level of abstraction. It also highlights the fallacy that there is benefit in keeping
unpublished security vulnerabilities secret until patches are available.

The case was prosecuted in Seattle US Federal Court in 2001. The Federal
Prosecutors successfully presented the cased by showing the reconstructing the fraud
transaction scenario. The effort eventually led to multiple criminal convictions.

5.1 Check-List Mentality

Modern day system development has become increasingly complex and this has led to
the common approach of relying heavily on the integration of “off-the-shelf”
components. When systems are constructed in this manner, security functionalities, if
addressed at all, also frequently end up being simply “off-the-shelf”, component-
based castles-and-moats solutions. This “checklist-mentality” is incapable to address
the distributed collaborative nature of the new online business paradigm. It treats
security as a second-class citizen and defines IA merely as the sum of security
functionalities of all products to be integrated into the system. However, is the sum of
parts equal to the total? Protecting the castles (firewall, IDS, encryption, security file
system, virus checking, user authentication, PKI, etc.) offers little protection to the
true values (the inter-castle transactions) in this new business paradigm.

5.2 IA System Engineering Process

For the purpose of expediency and convenience, security is usually not tightly
integrated into overall system architecture from the start. One critical question must
be asked — Can IA be simply treated as a last minute add-on or should it be part of
the entire solution and thus be integrated into the system engineering process from the
very beginning? Software development utilizes software engineering process. In
contrast, there is no IA engineering process where the security requirement is defined,
analyzed, architected and then finally implemented, tested and maintained in the

18

target environments. If such an IA engineering process exists, specific requirements
of the new business paradigm should have been able to be captures along the way.

5.3 Trusts and Assumptions

When the business paradigm shifts from trading within the castle to trading between
amongst the castles, trusts become a critical issue. What are the assumptions being
made here? Can assumptions, and the trusts that come along with it, be inherited from
the old paradigm?

1. Virtual web browser and virtual web server. Beneath the reality of on-line business
transactions, all tangible communication protocols, including HTTP and HTTPS,
represent nothing more than a stream of bits formatted according to a specification.
Most protocols, including HTTP and HTTPS, were specifically designed to permit
interoperability between the different components that implement the same
protocols. Anything that communicates like a web server is most likely a web
server. Likewise, anything that communicates like a web browser is likely a web
browser. These assumptions carry a significant implication on how a system is
assembled in the first place.

2. Transaction states. Both web servers and browsers incorporate means of
implementing “states” to support the concept of “web sessions” in support of
higher level “business transaction sessions”. “Web sessions”, for example, can be
achieved through the use of cookies or by identifiers that are generated on the fly
and embedded in script code for a given session. A common assumption here is
that anything that maintains a correct, consistent, & logical state-based transaction
is assumed to be truthful and legitimate transaction partner.

3. Virtual users. Web proxies and relays have been developed as a means of bridging
between routable and un-routable IP address spaces as well as providing firewall
capability. Web proxies and relays can both be constructed to mask the true origin
of the web traffic. The web server’s view of the web client is thus further obscured.
These intermediate, “apparent traffic” origins can also be used by criminal
elements to mask routes tracing back to sources of undesirable activity. The usage
of web proxies and relays can further amplify the deployment and effectiveness of
“virtual web browsers”, permitting a single virtual browser backend to mimic the
behavior of a large number of “human” users.

4. Virtual messaging. Numerous “free” web-based email services exist. These include
for example, Yahoo!, Gmail and Hotmail to name a few. A feature-rich messaging
system can be constructed using the virtual web browser and “free” email services.
Such a messaging system can create and manipulate web-mail accounts, send,
receive, parse and process messages and utilize a database system to maintain user
context, as well as message context, message content and web session, business
transaction states. Use of proxies/relays allows the messaging system to appear as
multiple “human” users. Traffic and user-activity resulting from the synthetic users
goes easily undetected by the email service provider. One fatal assumption is being
made here — a logical sequence of email messages validates the legality and
trustworthiness of an on-line transaction.

5. Virtual payment and virtual payment trigger. There are numerous web-payment
services in existence today. These services frequently associate a bank account or

M. Huang

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 19

credit card to an internet identity. Their intent is to facilitate the transfer of funds
between parties conducting business online. The “PayPal” online payment system
is an example. The virtual browser can be used to create an automated payment
system. With an appropriately constructed virtual browser, traffic generated by
these synthetic users is again indistinguishable from human users. The virtual
browser, combined with proxy/relay intermediates that give the appearance of
multiple, legitimate, synthetic users, can literally create, manage and pay for items
that do not even need to exist.

6. Visibility and scopes. Sensors are limited in their visibility. Businesses that provide
web services such as email, payment and auction have severely limited abilities to
detect their users’ participation in such illegal activities because their ability to
observe is well constricted within their own domains. This constraint holds true in
both computing and business contexts. Not having the sensors in the right place or
not sampling data at the right time within an on-line business transaction system
guarantees that unusual behavior will go undetected. In fact, improper placement of
sensors can convey the false impression that everything is normal and “safe”.

7. Wrong sensors. Sensors and security applications are at the wrong level of
abstraction. As the case clearly illustrated, neither today’s neither network-based
IDS nor today’s host-based IDS can be of much value in this kind of real-life
transaction-level intrusion. Sensors suitable for the platforms (network and host-
based IDS) are not necessarily appropriate for detection at the application and
transaction levels. What is not observed can never be seen.

6 The Future Beyond the IA Corner Stones

21st century business paradigm shift presents additional and unique challenge beyond
traditional security areas. This complexity rises due to the increasingly frequent,
dynamic and finer-granularity level of interactions between collaboration partner
users and often distributed, and diversely owner, data. Such intensive interaction is a
vital function for the modern virtual enterprise. Legacy IA comes out short addressing
this critical issue.

6.1 Multiple Authorization Requirement Sets

Take a large multi-national virtual enterprise for example, in order to effectively
perform collaborative engineering, design, manufacturing or even coalition warfare
operations; partners need to access and share value assets on a very frequent basis.
The business logic of who can access what, at what time, under what conditions, is a
very complex one. The logic could contain export control regulations from multiple
countries. It could also contain business contracts between any partnership
arrangements within this virtual enterprise. Moreover, each partner likely also has
internal operation process and standards that dictates additional protections and
disclosures. For all of them to be enforced appropriately, the security mechanisms
(e.g. access control list, user group setting, and access matrix) buried deep within the
end environments (e.g. file-system, database) must be correctly configured. This is no

20

Fig. 4 Challenges in providing the right mapping from the user to the data

small task considering the complexity of authorization logic within this diverse
context and the difficulties of configuring the cumbersome, inflexible, low level
system security mechanisms.

6.2 Consistency, Correctness and Completeness

Consider the following set of hypothetical access control requirements:

• Mechanical engineers who are citizens have access to privileged engineering
information

• Interns have no access to any information
• Any one with access to secret information has access to both privileged and

confidential information
• Technicians have access to privileged information only if they have clearance
• CEO cannot be auditor, and vice versa

It is not difficult to see that access control policies are in reality a formal logic model.

• (∀X) (∀τ) (M(X) ∧ C(X) ∧ Π(τ) A(X, τ))
• (∀X) (∀τ) (Ι(X) ∧ (Π(τ) ∨ Γ(τ) ∨ Σ(τ)) ¬A(X, τ))
• (∀X) (∀τ) (S(X) ∧ Σ(τ) A(X, τ))
• (∀X) (∀τ) (∀Z) (Σ(τ) ∧ A(X, τ) (Π(Z) ∨ Γ(Z)) A(X, Z))

(1)

User Authentication
•Password/Certificate Mgmt.

•Public Key Infrastructure

•Biometric Authentication

•Smart Cards, Tokens

•Directory

Data Protection
•Encryption

•Opaque Tunneling

•Watermarking, DRM

•Data Tagging

•Tethered Documents

•Vulnerability Analysis

•Risk Management

Infrastructure Protection
•Intrusion Detection (Network, Host, Application, Policies)

•Firewall, VPN, Intelligent Gateway, Survivable System

•Pro-active System Health Monitoring, Automated Recovery

•MLS Servers, Intrusion Response

.

M. Huang

 Critical Information Assurance Challenges for Modern Large-Scale Infrastructures 21

• (∀X) (∀τ) (T(X) ∧ Π(τ) ∧ A(X, τ) CL(X))
• (∀X) (CEO(X) ¬ACT(X))
• (∀X) (ACT(X) ¬CEO(X))

Where the first axiom reads as “for all X, for allτ, if X is a mechanical engineer, X is
a citizen, τ is a privileged engineering information, then access is allowed for X to τ”.
The last two read as “for all X, if X is CEO, then X cannot be an accountant” and “for
all X, if X is accountant, X cannot be a CEO.”

As one can see, it is quite possible for the requirements sets to be in conflict with
each other without carefully examination particularly when the logic are implemented
in the low-level, trivial, system-level security mechanisms. It is also possible that the
authorization requirement sets do not cover the entire access control space needed
from both logical and business perspectives. In a one-castle scenario, this issue is less
pronounced due to the lower complexity level. However, the complexity multiplies
when the number of partners, data and data ownership increases. The issue is both a
logical one as well as a business one. Thus, mathematical modeling of the formal
access control policies is essential before the complex logic is implemented into the
target system environments. Legacy IA does not address these challenges, especially
considering the fact that there has never been IA engineering process to follow to
capture the requirements.

6.3 Dynamism

Access control requirements in virtual enterprise change all the time. There are
contract expiration, updates as well as suspensions. There are also people,
organization and data updates. Whenever there is a change, all systems need to be
updated. Legacy IA treats authorization as a matrix conceptually with users on one
side and data objects on the other side. This matrix is sparsely populated and the cells
represent allowable access of a user to an object. The cells are eventually
implemented into the end systems. In the old business model where activities only
take place within a castle, this matrix is relatively small and updates are also straight
forward. In the modern virtual enterprise, the scale and complexity make the matrix
very large. When authorization requirements changes occur, it becomes also
extremely difficult to these cumbersome, inflexible, low level system security
mechanisms. Without an explicit policy representation and a management framework,
legacy IA is incapable to catch up with the rate of change in today’s virtual enterprise.

6.4 Coherent Implementation

For a large virtual enterprise with many systems, business mandates that same set of
authorization requirements needs to be enforced across multiple environments for the
same set of data objects. For example, export control regulation on the same set of
design data regardless whether it’s accessed through CAD/CAM system, file system
or databases should be consistent with each other. Legacy IA focuses on islands of
enforcement. Such coherent implementation is unattainable by today’s IA.

22 M.-Y. Huang

7 Conclusion

Security without being cognizant of the underlying business paradigm it needs to
protect is a risky business. This paper presents many critical modern IA shortfalls.
These failures largely come from inheritance the old IA paradigm and the inability to
recognize the revolutionary security requirements. Having all the tools, lumbers and
materials does not equate a house built. It is the blueprint that put the house together.
Ad-hoc application of materials and tools builds only leaky house. IA also needs to be
more than the last minute patch-up. It needs to be a business-enabler — the
technology that leads the creation the next generation of business paradigm. Playing
the IA catch-up game and gambling on the shaky security assumptions are major
roadblocks to the security of modern large-scale infrastructures.

Rule-Based Topological Vulnerability Analysis�

Vipin Swarup1, Sushil Jajodia2, and Joseph Pamula2

1 The MITRE Corporation, 7515 Colshire Drive, McLean, VA 22102
2 Center for Secure Information Systems, George Mason University,

Fairfax, VA 22030-4444
{jajodia, jpamula}@gmu.edu

swarup@mitre.org

Abstract. Attack graphs represent known attack sequences that attack-
ers can use to penetrate computer networks. Recently, many researchers
have proposed techniques for automatically generating attack graphs for
a given computer network. These techniques either use model checkers
to generate attack graphs and suffer from scalability problems, or they
are based on an assumption of monotonicity and are unable to represent
real-world situations.

In this paper, we present a vulnerability analysis technique that is
more scalable than model-checker-based solutions and more expressive
than monotonicity-based solutions. We represent individual attacks as
the transition rules of a rule-based system. We define noninterfering rule-
sets and present efficient, scalable algorithms for those sets. We then con-
sider arbitrary nonmonotonic rulesets and present a series of optimiza-
tions which permit us to perform vulnerability assessment efficiently in
most practical cases. We motivate the issues and illustrate our techniques
using a substantial example.

1 Introduction

An attacker typically penetrates a computer network by probing and modify-
ing the network configuration and by exploiting vulnerabilities. For instance,
an attacker might execute a sequence of actions that first probe a network for
vulnerable systems, then exploit a detected vulnerability to gain user-level priv-
ileges on a remote host, then exploit another vulnerability to gain root-level
privileges, and finally use the privileges to compromise the system. As another
example, consider a network with firewall rules that prevent external packets
from reaching a critical server directly. An attacker might launch an attack on
port 80 of some internal machine (thus bypassing the firewall) and then use that
intermediate host to attack the critical server.

� The work of Pamula and Jajodia was partially supported by the National Science
Foundation under grants IIS-0430402 and IIS-0242237, Air Force Research Labora-
tory, Rome under the grant F30602-00-2-0512, and the Army Research Office under
the grant DAAD19-03-1-0257.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 23–37, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

24 V. Swarup, S. Jajodia, and J. Pamula

Several graph-based vulnerability analysis techniques have been proposed to
analyze the vulnerability of networked systems to composite attacks. These tech-
niques model a computer network as a state transition system. A state represents
a computer network configuration (e.g., network topology, software versions) as
well as attacker capabilities (e.g., sniffed passwords, access to user or root-level
shells). State transitions represent actions that modify network configurations
and attacker capabilities. Analysis techniques determine, for instance, whether
an attacker can reach a compromised state from an initial state; the likelihood
of him doing so; a minimal set of actions that, if thwarted, would prevent an
attacker from reaching any compromised state; a representation of all attack
paths available to an attacker; etc.

One approach [14,7,15,6] to vulnerability analysis is to use model checking
to find attack paths that compromise a stated system security goal. While this
approach is very general and takes advantage of the substantial body of work on
model checking, its complexity grows exponentially in the size of the state space
and hence it does not scale to the enormous state space of real-world computer
networks. This problem has been addressed in an alternate approach [12,1] that
makes the assumption that an attacker’s capabilities and the exploits available
to him are never reduced by any action. With this assumption (called mono-
tonicity), the complexity of vulnerability analysis grows linearly in the state
space size and it results in efficient and scalable algorithms. However, this is not
a realistic assumption. For instance, buffer overflow attacks typically result in
the termination of the attacked service, thereby preventing other uses of that
service. In some cases, the exploit may cause the host to crash and even to halt,
or may not provide the attacker with sufficient privileges to restart the service.

In this paper, we present a rule-based approach to vulnerability analysis. We
use a state transition model as in prior work, but we express state transitions
as a set of rules. Rules may reduce the capabilities of attackers (e.g., as in the
buffer overflow case), and may depend on the absence of certain capabilities or
configuration attributes (e.g., a rule may depend on the absence of a service).
We examine common rule cases that represent typical attacks and we present
efficient and scalable vulnerability analysis algorithms for them. We motivate
the issues and illustrate our techniques using a substantial example.

The remainder of this paper is organized as follows. Section 2 presents a
formal model for graph-based vulnerability analysis. In Section 3, we define and
analyze the notion of noninterfering rules and we present efficient algorithms for
testing the security of systems under such rules. In Section 4, we consider rules
of arbitrary form and we show that, under a reasonable assumption, we can still
test system security efficiently. Section 5 presents related work and Section 6
concludes this paper.

2 Topological Vulnerability Analysis

We model the topological vulnerability analysis problem using the state tran-
sition system approach. A state represents a computer network configuration

Rule-Based Topological Vulnerability Analysis 25

(e.g., network topology, software versions, etc.) as well as attacker capabilities
(e.g., sniffed passwords, access to user or root-level shells, etc.). State transitions
represent actions that modify computer network configurations (e.g., changing
firewall rules) and attacker capabilities (e.g., exploits of vulnerabilities). The
initial state of the transition system represents the capabilities of a specific ad-
versary, e.g., an adversary with root access on a networked computer that is
external to the networked system under consideration. The goal states of the
transition system represent compromised states, e.g., states where the adversary
has root privileges on critical servers.

2.1 Model

Formally, a state transition system is a tuple T = (S, τ, s0, SG) where S is a set
of states, τ ⊆ S × S is a state transition relation, s0 ∈ S is a start state, and
SG ⊆ S is a set of goal states. A system T ′ = (S′, τ ′, s′0, S

′
G) is a subsystem of

system T = (S, τ, s0, SG) if S′ ⊆ S, τ ′ ⊆ τ , s′0 = s0, and S′
G ⊆ SG. We write

T ′ ≤ T to denote that T ′ is a subsystem of T .
A state sn ∈ S is reachable from state s0 ∈ S if there exist states

s1, . . . , sn−1 ∈ S such that (si, si+1) ∈ τ for 0 ≤ i ≤ n − 1. A vulnerable
state is a state from which some goal state is reachable. A successful attack path
is a sequence of state transitions that takes a transition system from its initial
state to a goal state. We are interested in attack graphs which represent all the
successful attack paths in a system.

Definition 1. Let T = 〈S, τ, s0, SG〉 and T ′ = 〈S′, τ ′, s′0, S
′
G〉 be state transition

systems. Then, T ′ is called an attack graph of T if T ′ ≤ T and if all states in
S′ are both vulnerable and reachable from s′0 in T ′.

Definition 2. G is called the greatest attack graph of a state transition system
T = (S, τ, s0, SG) if G is an attack graph of T and if for all attack graphs G′ of
T , G′ ≤ G.

Proposition 1. Every state transition system has a greatest attack graph.

We define topological vulnerability analysis to be the construction and anal-
ysis of greatest attack graphs. In this paper, we focus on the construction of
the graphs and present efficient algorithms that map state transition systems to
their greatest attack graphs.

2.2 States

A state represents a computer network configuration and attacker capabilities.
A state is defined to be a set of ground predicates (called attributes). Let K be
a finite set of individual constants and P be a finite set of predicate symbols.
Each predicate has an assigned arity ≥ 1. Then the (finite) set of all atoms, G,
is defined as follows: all constants in K are in G; further, if p ∈ P has arity n
and if k1, . . . , kn ∈ K then p(k1, . . . , kn) ∈ G. Finally, the set of all attributes is
A ⊆ G and the set of all states is S = 2A.

26 V. Swarup, S. Jajodia, and J. Pamula

For instance, we use the attribute reachable(s, d, p) (where s, d, and p are
constant strings) to denote that network packets that match pattern p can tra-
verse the network from source IP address s to destination IP address d. In this
paper, we restrict p to be a port number. As another example, we use the at-
tribute sh(a, u, h) to denote that the attacker a has an executable shell on host
h with privilege level u. Finally, we use service(f, p, u, h) to denote that the
service f is running on port p of host h with privilege level u.

2.3 State Transition Rules

Let A, B, C, D ⊆ A be sets of attributes with A={a1, . . . , am}, B = {b1, . . . , bn},
C = {c1, . . . , cj}, and D = {d1, . . . , dk}, and consider the transition relation
δ(A, B, C, D) ∈ S × S given by:

δ(A, B, C, D) = {(s, s′) | (s, s′ ∈ S)∧ (A ⊆ s)∧ (B ∩ s = ∅)∧ (s′ = (s∪C)−D)}

Informally, the transition rule δ(A, B, C, D) applies to states that contain the
attributes in A and do not contain the attributes in B; the rule transforms a state
by adding the attributes in C and deleting the attributes in D. We represent
δ(A, B, C, D) by the transition rule:

a1, . . . , am; b1, . . . , bn �δ c1, . . . , cj ; d1, . . . , dk

The transition relation of a set of transition rules is given by the union of the
transition relations of the individual rules. Note that we only consider ground
rules in this paper; in our examples, a rule with variables should be interpreted
as the set of ground instances of the rule.

Proposition 2. Let S = 2A for finite A. Then, any transition relation τ : S×S
can be expressed as a finite set of transition rules over A.

Definition 3. A state transition rule system is a tuple T = (A, Δ, s0, SG) where
A is a set of attributes, Δ is a set of transition rules over A, s0 ∈ 2A is a start
state, and SG ⊆ 2A is a set of goal states.

2.4 Goal States

We consider attackers whose goal is to acquire some set of attributes (i.e., capa-
bilities). A goal state is defined as a state that contains the desired attributes.
We require that if state s is a goal state, then every superset of s is also a goal
state. For instance, a goal state can be defined as any state which contains the
attribute sh(Charlie, root, DBMS).

We call s a minimal goal state if s is a goal state but no proper subset of s is
a goal state. Let Ψ(s) = {s′ | s′ ⊆ s, s′ is a minimal goal state} be the set of all
minimal goal states that are subsets of s. We say that goal state s1 dominates
goal state s2 (written s1 ≥ s2) if Ψ(s1) ⊇ Ψ(s2).

Rule-Based Topological Vulnerability Analysis 27

2.5 Example 1

We now consider an example consisting of four distinct exploits. Each exploit
is represented as a state transition rule. An attacker can chain these together
in various ways (see Figure 1), some of which let him penetrate a protected
network. We will use this example in the remainder of this paper to illustrate
and motivate our algorithms and contributions.

DNS Server

δ2

���
��

��
��

��
��

��
�

H
Attacker

�� Firewall
(25,53)

δ1

��������������

δ3

���
��

��
��

��
��

�
CS

δ4,δ5 �� DBMS

Mail Server

δ2

����������������

Fig. 1. An example of exploit chaining

Exploits BIND NXT Remote Root Exploit
The incorrect processing of DNS NXT records by a BIND name server may
allow an attacker to gain a root level privilege on a remote vulnerable name
server [3,19]. Let P be the primary name server which is authoritative for some
domain, say “foo.com”. The attacker A first establishes his machine H as the
authoritative name server for some subdomain of “foo.com”, say “bar.foo.com”.
The victim name server V is then interactively queried for some host in that
subdomain. V then queries P which redirects the query to H . H returns a NXT
record containing exploit code, overflowing V ’s buffer, and spawning a shell for
the attacker. The shell has the same process level that the DNS process had.
Note that the exploit requires that H is not running DNS on port 53. We model
the exploit as a rule δ1.

a1, a2, a3, a4, a5, a6, a7, a8, a9; b1 �δ1 c1; d1

where: a1 = sh(A, root, P), a2 = sh(A, root, H), a3 = reachable(H, V, 53),
a4 = reachable(V, P, 53), a5 = reachable(P, H, 53), a6 = service(DNS, 53, l1,
P), a7 = service(vul-DNS, 53, l2, V), a8 = DNS-authority(P, “foo.com”), a9 =
DNS-subdomain(P, “bar.foo.com”, H), b1 = service(DNS, 53, l3, H), c1 = sh(A,
l2, V), and d1 = service(vul-DNS, 53, l2, V).

Generic SSHd Remote Buffer Overflow Exploit
The remote SSHd buffer overflow exploit allows an attacker to get a shell on a
remote host with root privileges. We model this exploit by a transition rule δ2

28 V. Swarup, S. Jajodia, and J. Pamula

where an attacker A on host H launches a remote SSHd attack against a victim
host V .

a1, a2, a3 �δ2 c1; d1

where: a1 = reachable(H, V, 22), a2 = service(vul-SSHd, 22, root, V), a3 =
sh(A, l1, H), c1 = sh(A, root, V), and d1 = service(vul-SSHd, 22, root, V).

Remote Buffer Overflow Exploit in Sendmail
A popular message transfer agent, Sendmail, can be remotely compromised al-
lowing an attacker to gain a root level privilege on a remote victim’s host [2].
A malicious custom e-mail message is sent to the victim’s machine V , which
overflows the victim mail server’s buffer. We model this exploit as a rule δ3. An
attacker A launches the exploit from his machine H .

a1, a2, a3 �δ3 c1

where: a1 = reachable(H, V, 25), a2 = service(vul-Sendmail, 25, l1, V), a3 =
sh(A, l2, H), and c1 = sh(A, l1, V).

Anonymous FTP .rhosts Remote Login Exploit
The purpose of the FTP .rhosts file attack is to obtain a trust relationship
between two hosts, say H and V , as described in [15,6]. The FTP vulnerability
allows an attacker A to write/overwrite any files in the home directory of an
FTP user F . This permits an attacker to create/modify a .rhosts file in the FTP
home directory on host V , and thus to masquerade as a legitimate user of the
system without the need for a password. We model the FTP .rhosts attack as a
transition rule δ4.

a1, a2, a3, a4 �δ4 c1

where: a1 = sh(A, l1, H), a2 = service(vul-FTP, 21, l2, V), a3 = reachable(H,
V, 21), a4 = writable-ftp-home-dir(F, l3, V), and c1 = rshTrust(H, l3, V).

And finally, we model the remote login trust exploit as a transition rule δ5.

a1, a2, a3 �δ5 c1

where: a1 = sh(A, l1, H), a2 = rshTrust(H, l3, V), a3 = reachable(H, V, .rlogin),
and c1 = sh(A, l3, V).

Chaining of Exploits. Let Δ = {δ1, δ2, δ3, δ4, δ5} where the rules δ’s are as
described above. These exploits can be chained together as illustrated in Figure 1
depicting two simple attack paths. A firewall with only two ports in an open
state, ports 25 and 53, isolates the internal hosts from the external (Internet)
hosts. That is, the firewall only allows DNS and mail network packets into the
network. Also, note that the critical server (CS) and DBMS host are not directly
accessible from outside the network. This can be represented by the following
reachability predicates:

Rule-Based Topological Vulnerability Analysis 29

reachable(H, DNS, 53), reachable(H, Mail, 25),
reachable(DNS, CS, all), reachable(Mail, CS, all), and
reachable(CS, DBMS, all).

The attacker’s goal is to gain root level privilege on server CS, and a user level
privilege on host DBMS. Figure 1 depicts two different attack paths that achieve
the attacker’s goals in this system. In one attack path, the attacker first gains
root level privilege on the DNS server. Once inside the network, the attacker
gains appropriate privileges on hosts CS and DBMS. In the second attack path,
the attacker first gains root level privilege on the Sendmail server instead of the
DNS server.

3 Noninterfering Rules

We first consider a class of rules (which we call noninterfering rules) that can
never interfere with an attacker’s goal of performing a successful attack. While
these rules can provide the attacker with new capabilities that assist him in his
goal, they can never restrict the set of goal states that he can reach. This means
that an attacker can invoke such rules freely (whenever they are applicable)
without worrying about the order in which he invokes them, and he never needs
to backtrack in order to reach his goal.

Definition 4. Let T = (A, Δ, s0, SG) be a state transition rule system. We say
that a rule δ(A, B, C, D) ∈ Δ is a noninterfering rule in T if:

– For all c ∈ C and for all rules δ(A′, B′, C′, D′) �= δ(A, B, C, D) ∈ Δ, c �∈ B′.
– For all d ∈ D and for all rules δ(A′, B′, C′, D′) �= δ(A, B, C, D) ∈ Δ, d �∈ A′.
– For all d ∈ D, d is not a member of any minimal goal state in SG.

We call a set of noninterfering rules a noninterfering ruleset.

Proposition 3. Let δ ∈ Δ be a noninterfering rule in system T and let s, t be
states such that (s, t) ∈ δ. Then, for every goal state sg that is reachable from s,
there exists a dominating goal state tg ≥ sg that is reachable from t.

Figure 2 presents an algorithm for constructing the set of noninterfering
rules of a state transition rule-system. The complexity of computeNRS() is
O(|A|2.|Δ| + |A|.|SM |). Figure 3 presents an algorithm for extending a state
transition sequence using only noninterfering rules. findMaximal() takes as ar-
guments a partial attack path seq (in reverse order, so s0 is the last element of
the state sequence seq), and a noninterfering ruleset Δ. It uses the rules in Δ to
extend seq until the path cannot be extended further, and it returns the resulting
path (again in reverse order). The complexity of findMaximal() is O(|Δ|2.|A|2).
Proposition 4. If T = (A, Δ, s0, SG) has a goal state that is reachable from
s0, and if Δ is a noninterfering ruleset in T , then findMaximal(〈s0〉, Δ) is a
successful attack path in T .

In particular, if the first state in findMaximal(〈s0〉, Δ) is not a goal state,
then T is secure, i.e., no goal state is reachable from s0.

30 V. Swarup, S. Jajodia, and J. Pamula

Input:
Δ – set of rules.
SM – set of minimal goal states, SM ⊆ SG.

Output:
Δ′ – set of noninterfering rules.

Algorithm:
computeNRS(Δ, SM)

P = Q = R = ∅
for each δ(A,B, C, D) ∈ Δ do

P = P ∪ A
Q = Q ∪ B

for each sm ∈ SM do
R = R ∪ sm

Δ′ = ∅
for each δ(A,B, C, D) ∈ Δ do

if C ∩ Q = ∅ and D ∩ P = ∅ and (D ∩ R = ∅) then
Δ′ = Δ′ ∪ {δ}

return Δ′

Fig. 2. Computing the noninterfering rule subset of a ruleset

Input:
seq – a reverse attack path, seq ∈ S∗.
Δ – set of noninterfering rules.

Output:
A maximal state transition sequence

Algorithm:
findMaximal(seq, Δ)

s = head(seq)
if A ⊆ s and B ∩ s = ∅ for some rule δ(A, B, C, D) ∈ Δ then

s′ = ((s ∪ C) − D)
return findMaximal(s′.seq, Δ − {δ})

else
return seq

Fig. 3. Computing a maximal state transition sequence using a noninterfering ruleset

3.1 Monotonicity

A ruleset Δ is called monotonic if for all rules δ(A, B, C, D) ∈ Δ, B and D
are empty. Clearly, if T = (A, Δ, s0, SG) is a state transition rule-system with
monotonic ruleset Δ, then all rules in Δ are noninterfering rules in T . Hence,
from Propositions 3 and 4, monotonic rules may be applied in any order and
findMaximal yields a successful attack path if one exists.

4 Nonmonotonic Rules

We now consider transition rules δ(A, B, C, D) where A, B, C, D can be arbitrary
sets of attributes. Such rules (called nonmonotonic rules) can represent actions

Rule-Based Topological Vulnerability Analysis 31

that require the absence of some attributes and that cause the absence of other
attributes.

In order to see why monotonic rules are inadequate for some real-world situ-
ations, consider that a buffer overflow attack typically results in the termination
of the attacked service. Further, it may also cause the victim host to crash or
halt. An attacker may use this to disable a host while he hijacks a connection it
had with another host. However, in doing this, the attacker may lose access to
the host and may no longer benefit from trust relationships (e.g., as represented
in .rhosts files) that the host has with other hosts. Thus, in this example, the
attacker must execute actions in a specific order so as to achieve his goal. In a
more complex situation, the constraints may be such that an attacker cannot
succeed since exploits invalidate each other.

Such situations may be represented directly using nonmonotonic rules. Some
researchers have suggested that such situations may also be captured by the
careful design of monotonic rules. One approach is to ignore some constraints
while modeling or analyzing the system. The monotonic approximation that we
present in Section 4.1 is an example of this approach. However, as we will show,
this approach yields attack paths that are not available in practice due to order-
ing constraints on individual exploits. Another approach is to carefully design
attributes and rules so that all constraints are captured by monotonic rules.
However, this is as hard as doing the nonmonotonic analysis since the system
modeler must determine the consequences of all nonmonotonic constraints while
modeling the system. In fact, this is quite undesirable both since it is unnatural
and since it shifts the burden from the computational analysis to the human
modeler.

While nonmonotonic rulesets capture real-world constraints directly, they
also introduce two problems. First, rules must be invoked in a specific order
and hence searching for a path may involve backtracking. Second, a successful
attack path may take the system through all (or a large number of states) before
reaching a goal state. Hence, the length of attack paths is bounded by the number
of states |2A| (as opposed to the number of attributes |A| for monotonic rulesets).

4.1 Monotonic Approximation

Let Δ be a set of transition rules. Let Δ′ be a set of monotonic transition rules
such that δ(A, ∅, C, ∅) ∈ Δ′ if and only if δ(A, B, C, D) ∈ Δ for some B, D ⊆ A.
We call Δ′ the monotonic approximation of Δ, and we call rule-system T ′ =
(A, Δ′, s0, SG) the monotonic approximation of rule-system T = (A, Δ, s0, SG).

A key observation is that an adversary can reach a goal state in a rule-
system T only if he can reach a goal state in the monotonic approximation of T .
That is, a system is vulnerable to attacks only if its monotonic approximation
is vulnerable.

Proposition 5. Let T = (A, Δ, s0, SG) be a state transition rule-system and let
T ′ = (A, Δ′, s0, SG) be the monotonic approximation of T . For each goal state
sg ∈ SG that is reachable from s0 in T , there exists a goal state s′g ∈ SG such
that sg ⊆ s′g and s′g is reachable from s0 in T ′.

32 V. Swarup, S. Jajodia, and J. Pamula

Corollary 1. If T ′ has no reachable goal state, then T has no reachable goal
state.

The corollary provides us with an efficient way of testing that a system is
secure (i.e., has no exploitable vulnerabilities): A system is secure if its monotonic
approximation has no reachable goal state. Note that this test is sufficient but
not necessary—a system may be secure even if its monotonic approximation is
vulnerable.

Figure 4 presents an algorithm transform() (with complexity O(|Δ|)) for com-
puting the monotonic approximation of a state transition system. The algorithms
of Section 3 can then be used to check whether the monotonic approximation is
secure.

Input:
T – state transition rule-system.

Output:
T ′ – monotonic state transition rule-system.

Algorithm:
transform(T)

let T = (A, Δ, s0, SG) in
Δ′ = ∅
for each δ(A,B, C, D) ∈ Δ do

Δ′ = Δ′ ∪ {δ(A, ∅, C, ∅)}
return (A, Δ′, s0, SG)

Fig. 4. Monotonic approximation algorithm

Example 2 Let δ1 be the transition rule for the BIND NXT remote root exploit
described in Section 2.5. Then, Δ = {δ1}, where δ1 is (as defined earlier):

a1, a2, a3, a4, a5, a6, a7, a8, a9; b1 �δ1 c1; d1

The rule δ1 has two negative attributes, namely b1 = service(DNS, 53, l3, H)
and d1 = service(vul-DNS, 53, l2, V). Then Δ′, the monotonic approximation
of Δ, is Δ′ = {δ′1} where δ′1 is defined as:

a1, a2, a3, a4, a5, a6, a7, a8, a9;�δ′
1

c1;

If an attacker is unable to carry out the exploit δ′1 in a less restrictive environment
(i.e., in an environment where a DNS service may or may not be present on the
attacker’s host), then clearly the attacker will not be able to execute the exploit
δ1 in a more restrictive environment in which a DNS service is absent. This
simple example shows that if the monotonic approximation has no reachable
goal state, then the original system has no reachable goal state.

4.2 Nonmonotonicity

Let us assume that T = (A, Δ, s0, SG) is a state transition rule-system and
Δ′ = computeNRS(Δ) the noninterfering rule subset of T . Figure 5 presents

Rule-Based Topological Vulnerability Analysis 33

an algorithm (TVA()) that returns a successful attack path if one exists. TVA
takes a partial reverse attack path σ as an argument, together with Δ and Δ′. It
also takes a fourth argument as which is the set of attributes that were deleted
by the last rule that was applied thus far. TVA first applies findMaximal to
extend the attack path since noninterfering rules can be applied in any order
as shown earlier. If the path is successful, it returns the path. Otherwise it
tries to recover the attributes in as. We have not included the pseudo-code for
recoverAttributes. However, when an attribute is first acquired, we mark the
attribute with the attack path that causes it to be acquired. Then, to recover an
attribute, recoverAttributes reapplies the rules in the stored attack path. Having
done this, TVA then tries completing the attack path. If it fails, it backtracks
and then tries each rule in Δ−Δ′ in turn; after applying each rule, it recurses
to repeat the above process.

We observe that in practice, most attributes that are lost due to some exploit
(e.g., as in the buffer overflow examples) can be immediately recovered without
impacting the attacker’s ability to reach a goal state. In this case, the algorithm
does not backtrack and remains efficient. Thus, the algorithm backtracks only
in the unusual event that the lost attributes must be recovered in a delayed
manner. Figure 6 shows a graphical representation of TVA() algorithm.

4.3 Example 3

The BIND and SSHd buffer overflow exploits described in Example 1 exhibit the
property of privilege loss: they provide an attacker with a root shell on the target
machine but terminate the BIND or SSHd service. Since the attacker has root
level privilege in the shell, the attacker is able to restart the previously crashed
BIND or SSHd service.

We can represent the transition rules for restarting the BIND and SSHd
daemons on host V for an attacker A as follows. Let δ6 be the transition rule for
restarting the SSHd daemon. Then,

a1 �δ6 c1

where: a1 = sh(A, root, V) and c1 = service(SSHd, 22, l1, V). Similarly, we can
write the transition rule for restarting the BIND daemon.

5 Related Work

Dacier et al. [4,5] and Ortalo et al. [8] represent the vulnerabilities in a system
by means of a privilege graph where nodes are sets of privileges owned by users
and edges represent vulnerabilities. Our attack graph representation is motivated
by their work. However, while they focus on security metrics that are based on
privilege graphs, we focus on the efficient construction of greatest attack graphs.

Templeton and Levitt [18] proposed a “requires/provides” model that models
attacks in terms of their preconditions and postconditions (expressed as pred-
icates over capabilities). The models presented in [1,7,14,13,15,6] all model at-

34 V. Swarup, S. Jajodia, and J. Pamula

Input:
σ – a reverse attack path, σ ∈ S∗.
Δ – set of rules.
Δ′ – noninterfering ruleset of Δ.
as – attributes to be reacquired.

Output:
A successful attack path, if one exists; else 〈〉.

Algorithm:
TVA(σ, Δ, Δ′, as)

σ′ = findMaximal(σ, Δ′)
s = head(σ′)
if s ∈ SG then

return σ′

else
if as 	= ∅ then

σ′′ = recoverAttributes(σ′, as)
σ′′′ = TVA(σ′′, Δ, Δ′, ∅)
if σ′′′ 	= 〈〉 then

return σ′′′

for each δ(A,B, C, D) ∈ Δ − Δ′ do
if A ⊆ s and B ∩ s = ∅ then

s′ = (s ∪ C) − D
if s′ 	= s then

σ′′ = TVA(s′.σ′, Δ, Δ′, s − s′)
if σ′′ 	= 〈〉 then

return σ′′

return 〈〉

Fig. 5. TVA() algorithm

tacks using a similar approach. Our model is also based on this representation
of attacks.

Phillips and Swiler [9] present a model which uses “attack templates” and
a “physical network topology” description to generate attack graphs. Swiler et
al. [17] describe a tool that implements this model but they do not present
or analyze the algorithms used to generate attack graphs. We present several
scalable algorithms for our formal model of vulnerability analysis.

Ritchey and Ammann [14] propose the use of model checking to automat-
ically generate attack paths, while Sheyner et al. [15,16] propose the use of
model checking to automatically generate attack graphs. Jha et al. [7,6] present
two analyses of attack graphs. Ramakrishnan and Sekar [10,11] use a model
checker to discover individual vulnerabilities on single hosts. Ritchey et al. [13]
present improvements to Ritchey and Ammann’s model [14] by presenting a
more expressive model for the connectivity of networks. This body of work pro-
vides a model checker with a model of a specific system and of known attacks,
and a safety property; the model checker determines whether the given safety
property is satisfied in the model. When the safety property is not satisfied, the
model checker generates a counterexample in the form of an attack path. While

Rule-Based Topological Vulnerability Analysis 35

S0

δ′0(S0), δ′0∈Δ′

��
S1

Δ′∗

����
��
��

Sn

δ1(Sn), δ1∈Δ−Δ′

����
��

��
�

�� ���
��

��
��

•
Δ′∗

����
��
��

•... ... •

⎫⎪⎪⎬⎪⎪⎭ Δ − Δ′

•

����
��

��
�

�� 		�
��

��
��

�

• •

Δ′∗
����
��
��

... ... •

⎫⎪⎪⎬⎪⎪⎭ Δ − Δ′

...

Fig. 6. Graphical representation of TVA() algorithm

the model checking techniques appear promising for automatic attack graph
generation, these techniques break down when handling non-trivial, real world
examples. The model checker’s complexity grows exponentially in the size of the
state space and hence it does not scale to the enormous state space of non-trivial,
real world computer networks. In this paper, we present scalable algorithms for
common real-world situations.

To compensate for the state explosion problem inherent in the model checking
approach, Ammann et al. [1] propose “a more compact and scalable graph-based
approach to network vulnerability analysis”. Their approach relies heavily on
the assumption of monotonicity: (i) an attacker can gain capabilities, but never
lose them; and (ii) gaining additional capabilities does not reduce the exploits
available to an attacker. The problem with this approach is that it does not allow
for non-monotonic rules in a system. In this paper, we present efficient algorithms
for vulnerability analysis of a system containing monotonic and non-monotonic
rules, thus reflecting a model for real world examples.

6 Conclusion

In this paper, we have presented a formal model and a set of scalable algorithms
for performing topological vulnerability analysis. Our approach is more scal-
able than model-checker-based solutions and more expressive than monotonicity-
based solutions. We represent individual attacks as the transition rules of a

36 V. Swarup, S. Jajodia, and J. Pamula

rule-based system. For noninterfering rulesets, our algorithms are similar to
monotonicity-based solutions. For arbitrary nonmonotonic rulesets, our algo-
rithms remain efficient in the most common case where if an attacker loses a
previously acquired capability, then the attacker can reacquire it when desired.
The algorithms only backtrack in the event that this does not hold. Our ap-
proach permits the modelling of real-world situations where exploits have the
side-effect of temporarily reducing an attacker’s capabilities.

References

1. Ammann, P., Wijesekera, D., Kaushik, S.: Scalable, Graph-Based Network Vul-
nerability Analysis. Proceedings of the 9th ACM conference on Computer and
Communications Security. (2002) 217–224 ACM Press

2. CERT: CERT Advisory CA-2003-07, Remote Buffer Overflow in Sendmail.
http://www.cert.org/advisories/CA-2003-07.html

3. ADM Crew: BIND NXT Remote Root Exploit.
http://adm.freelsd.net/ADM/exploits/t666.c

4. Dacier, M., Deswarte, Y.: Privilege Graph: An Extension to the Typed Access
Matrix Model. In: Gollman, D. (ed.): Proc. Third European Symposium on Re-
search in Computer Security (ESORICS’94). Lecture Notes in Computer Science
875, Springer-Verlag (1994) 317–334

5. Dacier, M., Deswarte, Y., Kaniche, M.: Models and tools for quantitative assess-
ment of operational security. Proceedings IFIP SEC (1996) 177–186

6. Jha, S., Sheyner, O., Wing, J.M.: Minimization and Reliability Analyses of Attack
Graphs. Technical Report CMU-CS-02-109, School of Computer Science, Carnegie
Mellon University. (February 2002)

7. Jha, S., Sheyner, O., Wing, J.M.: Two Formal Analyses of Attack Graphs. In
Proceedings of the 2002 Computer Security Foundations Workshop, Nova Scotia,
Canada (June 2002) 45–59

8. Ortalo, R., Deswarte, Y., Kaaniche, M.: Experimenting with Quantitative Evalu-
ation Tools for Monitoring Operational Security. IEEE Transactions on Software
Engineering, Vol. 25(5) (September/October 1999) 633–650

9. Phillips, C., L. Painton Swiler: A Graph-Based System for Network-Vulnerability
Analysis. Proceedings of the 1998 workshop on New Security Paradigms. ACM
Press, Charlottesville, VA, USA (1998) 71–79

10. Ramakrishnan, C.R., Sekar, R.: Model-based Vulnerability Analysis of Computer
Systems. Proceedings of the 2nd International Workshop on Verification, Model
Checking and Abstract Interpretation (September 1998)

11. Ramakrishnan, C.R., Sekar, R.: Model-Based Analysis of Configuration Vulnera-
bilities. Journal of Computer Security. Vol. 10 (1–2) IOS Press (2002) 189–209

12. Ramsdell, J.: Penetration Analysis Application. The MITRE Corporation. (April
2001)

13. Ritchey, R., O’Berry, B., Noel, S.: Representing TCP/IP Connectivity for Topo-
logical Analysis of Network Security. 18th Annual Computer Security Applications
Conference. (December 2002)

14. Ritchey, R.W., Ammann, P.: Using Model Checking to Analyze Network Vulner-
abilities. Proceedings of the IEEE Symposium on Security and Privacy. (2000)
156–165

Rule-Based Topological Vulnerability Analysis 37

15. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated Generation
and Analysis of Attack Graphs. Proceedings of the IEEE Symposium on Security
and Privacy. IEEE Computer Society (2002) 254–265

16. Sheyner, O., Wing, J.: Tools for Generating and Analyzing Attack Graphs. Pro-
ceedings of International Symposium on Formal Methods for Components and
Objects, LNCS 3188 (2004) 344–371

17. Swiler, L.P., Phillips, C., Ellis, D., Chakerian, S.: Computer-Attack Graph Genera-
tion Tool. Proceedings DISCEX ’01: DARPA Information Survivability Conference
and Exposition II. (June 2001) 307–321

18. Templeton, S.J., Levitt, K.: A Requires/Provides Model for Computer Attacks.
Proceedings of the New Security Paradigms Workshop. Ballycotton, County Cork,
Ireland. ACM Press (2000) 31–38

19. US-CERT: Vulnerability Note Number: 16532—BIND NXT record processing may
cause buffer overflow. http://www.kb.cert.org/vuls/id/16532

Models and Analysis of Active Worm Defense

David M. Nicol and Michael Liljenstam

University of Illinois, Urbana, IL 61801
dmnicol@uiuc.edu

http://www.project-moses.net

Abstract. The recent proliferation of Internet worms has raised ques-
tions about defensive measures. To date most techniques proposed are
passive, in-so-far as they attempt to block or slow a worm, or detect and
filter it. Active defenses take the battle to the worm—trying to eliminate
or isolate infected hosts, and/or automatically and actively patch sus-
ceptible but as-yet-uninfected hosts, without the knowledge of the host’s
owner. The concept of active defenses raises important legal and ethical
questions that may have inhibited consideration for general use in the
Internet. However, active defense may have immediate application when
confined to dedicated networks owned by an enterprise or government
agency. In this paper we model the behavior and effectiveness of differ-
ent active worm defenses. Using a discrete stochastic model we prove
that these approaches can be strongly ordered in terms of their worm-
fighting capability. Using a continuous model we consider effectiveness in
terms of the number of hosts that are protected from infection, the total
network bandwidth consumed by the worms and the defenses, and the
peak scanning rate the network endures while the worms and defenses
battle. We develop optimality results, and quantitative bounds on de-
fense performance. Our work lays a mathematical foundation for further
work in analysis of active worm defense.

1 Introduction

A computer worm is so called because it has a life of its own. Once burrowed into
a susceptible system, it attempts to propagate through the network. The usual
means is through “scans”, it attempts to connect to and infiltrate other hosts
throughout the network. Worms interfere with normal use of computers, and
exact an economic cost of eradicating them and repairing systems infected by
them. Worms have the potential to wreak havoc on the systems they infect, and
on the networks they traverse. This potential has been realized already, several
times.

The large-scale worm infestations in recent years have triggered several ef-
forts to model worm spread in order to understand how the low-level factors in
the propagation mechanism translate into macroscopic behavior, assess threat
levels of different worms, and evaluate the effectiveness of detection methods
and proposed counter-measures. Staniford appears to have been the first to rec-
ognize that the macroscopic propagation of the Code Red v2 worm could be

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 38–53, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Models and Analysis of Active Worm Defense 39

well modeled through the logistic equation [10]. This model and the equivalent
simple epidemic model from the epidemic modeling literature (see e.g. [3]) have
since been used in several studies [11,6,7,5,13,14]. [12] proposed a model to take
removals into account (based on the general epidemic model) and [1] proposed
a discrete time model.

Our work is unique in considering a wide space of defensive capabilities, and
in sample path comparison of them. It is most similar in spirit to [7,1,14] as we
use epidemic models to evaluate proposed worm counter-measures. We extend
simple epidemic models to consider the interaction of worms and counter-worms
and other “active” counter-measures.

For the purpose of illustration the experimental portion of our paper uses
parameters reflective of the Code Red v2 worm, released in July 2001. It is
important to remember that as far as the mathematics goes, time-scale is irrele-
vant. Having said that, it is true that very fast worms have had their propagation
shaped by the impact they have on the network infrastructure, and the simple
mathematical models we develop would not apply.

We focus on worms that spread autonomously by probing other systems for
vulnerabilities that can be exploited to propagate from one machine to another.
This class of worms captures the essence of the rapidly spreading large-scale
infestations seen to date, such as Code Red v2, Code Red II, and Nimda in
2001, and Slammer, Blaster, and Welchia in 2003. Thus, we deliberately exclude
most typical email born viruses that require a user action to enable infection.
In contrast, worms such as Slammer have proven that the time-scales involved
for fast moving autonomously propagating worms can be so short that human
intervention to stop them is impossible. Consequently, this class of worms poses
a substantial threat and a trigger for development of automated defensive mech-
anisms, such as those we consider in this paper.

In the wake of one worm attack (Blaster), a counter-worm (Welchia) was
launched that sought hosts infected by Blaster, attempted to patch them, and
use them to find other infected hosts. Whatever the intentions of the authors
might have been, Welchia had consequences as bad or worse than Blaster—it was
harder to get rid of, and effectively created a denial-of-service attack on patch
servers, so that people trying manually to protect their systems had a harder
time doing so. The question is raised therefore of the effectiveness and impact
that an “active defense” might have. We examine this question agnostically and
without overt consideration of the legal and ethical issues raised by wide-spread
active defense. It is enough for us that an organization as large as the United
States Department of Defense could mandate such measures on its own gargan-
tuan networks; we seek to understand the power and the limitations of active
defense deployment, should they be deployed. Our approach is analytic. We con-
sider four aspects of active defense—patching uninfected hosts, increasing the
active defense population by using uninfected hosts that are susceptible to the
worm, suppression of infected hosts discovered through scans, and suppression of
infected hosts discovered through scans and traffic analysis. Using a very general
discrete stochastic model, we show that adding each capability (in that order)

40 D.M. Nicol and M. Liljenstam

to the active defense assumptions results in a stochastically stronger increase
in worm-fighting power. Using a continuous model we quantify some aspects of
active defense behavior, and prove some results about it.

2 Active Defense

Imagine a network where there are N hosts with a particular set of vulnerabil-
ities, and then a worm is released that is able to exploit one or more of these.
We suppose that a host infected by this worm scans the network looking for
vulnerable hosts it may infect. We assume that a scan consists of a random
selection of an IP address— if that host is susceptible and uninfected it im-
mediately becomes infected. In our discrete model we assume that the address
selection is oblivious to the state of the network. This means that non-uniform
random scanning can be accommodated in the model, so long as the sampling
is not affected by any knowledge of other hosts, infected or not. This does not
preclude the sort of stratified sampling seen in some worms (where hosts “closer”
to the infected one are sampled with higher probability), but it does preclude a
dynamic partitioning of the search space based on coordination among infected
hosts. We assume a random delay of time between successive scans from a host,
once again assuming that the sampling is independent of network state.

Under these assumptions we can picture the behavior of a worm on a time-
line populated with scan events. Each scan event has a source and destination
identity. Each of the susceptible hosts has a state of uninfected, or infected. A
scan event that has an uninfected host as destination changes that host’s state,
and thereafter it contributes to the scanning. (It is straightforward to augment
the model to account for latency between when a scan is sent and when it is
received, we have not done so for simplicity of exposition).

2.1 Defense Capabilities

At time 0 the worm is launched from w0 of the N susceptible hosts. Each in-
fected host scans the network using a randomized strategy that is oblivious to
the network state. We assume that the worm immediately inhibits further pen-
etration through the same vulnerability, but that a counter-worm scanning it
can recognize the presence of the worm, (e.g. through observation of banner in-
formation that the host’s software returns, revealing a version and build that
admits penetration through the known vulnerability).

We envision a model of active defense as follows. At time T0 > 0, some I0

hosts begin executing an active defense. Each of those hosts scans, using a strat-
egy (probably, but not necessarily random) that is oblivious to the network state.
Whenever one of these scans targets a susceptible but uninfected host, that host
becomes (instantly!) patched to prevent infection from the worm. We call this a
simple patch defense. This defense (and all the others we consider) presumes
that the defensive mechanism was prepared before the worm was launched. So-
called 0-day attacks, ones that exploit previously unknown exploits, are fairly

Models and Analysis of Active Worm Defense 41

rare. The vulnerabilities that worms exploit are more typically announced when
discovered, often with patches available. More often than not the patch code re-
veals details worm writers use to target as-yet unpatched systems. It is not unrea-
sonable to suppose then that patching defense code could be crafted along with
the patch. A reason for not releasing the patching defense in anticipation of a
worm is that the release would contain the code to exploit the vulnerability, with
no work or further cleverness needed by a worm-writer. A patching defense must
be coupled with a worm-detection mechanism, such as those proposed in [5,13].

One could increase the presence of the active defense by increasing the num-
ber of hosts running the patching logic. So we define a spreading patch defense
as one where, when an uninfected susceptible host is scanned, it is endowed with
a counter-worm that both patches, and scans. While the number of patching
hosts remains constant in a simple patching defense, it grows in a spreading
patch defense. Such a mechanism has been seen in the wild [4].

A third presumed defensive capability is worm suppression. Suppose that
when a patching host scans an infected host it is able to identify the host
as infected, and to suppress the infecting scans from being seen elsewhere,
thereafter—it is able to nullify the infected host. For example, the spreading-
patch worm might have an ability to cause the infection traffic to be filtered
by a nearby router; another way might be if every machine in an organization
had a “lock”, such that when the proper “key” is applied, some or all of that
machine’s external communication is inhibited—an organization’s active defense
posture would include selective suppression of machines thought to be infected.
For our purposes, the important thing is that the infected host be discovered by
a scan, and that thereafter it is no longer a source of infection. We call this a
nullifying defense.

A fourth presumed defensive capability takes advantage of the fact that some
attacks are complex enough to require that the attacking host use its legitimate
IP address as source in its packets (and we may anticipate that in the future
the ability to spoof source addresses will become much diminished, through
more active router verification procedures). Because of this, a patching host that
receives a scan from an infected host could turn around and nullify the infection.
In this sniper defense one expects that infected hosts diminish in number faster
than when they are discovered merely by scans.

2.2 Metrics

There are different ways of assessing an active defense. When host integrity is
paramount, then an appropriate metric is the number of hosts infected by the
worm. We define I(D, t) to be the cumulative number of hosts infected by time t
under defense D. This metric is a random variables; we will say that Di is more
powerful than Dj if for all t > 0 and n > 0,

Pr{I(Di, t) > n} ≤ Pr{I(Dj, t) > n}.
When this relationship holds we say that the distribution (with respect to ran-
domness due to sampling) of I(Dj , t) is stochastically larger than I(Di, t)[9],

42 D.M. Nicol and M. Liljenstam

denoted I(Dj , t) ≥st I(Di, t). Di is more powerful in the sense that it does a
better job at preventing susceptible hosts from becoming infected. This stochas-
tic ordering is strong in its implications. It is known that if X ≥st Y and f is
any increasing function, then E[f(X)] ≥ E[f(Y)]. This has bearing then for any
system metric that depends monotonically on infection counts, e.g., the prob-
ability of system failure would likely be monotone increasing in the number of
infected hosts.

An active defense may increase the overall scanning activity on the network,
and there is evidence that intense scanning can harm the network [2]. When net-
work health is the principle concern, then measures of scanning history, and/or
scanning intensity are appropriate. If λ(D, t) denotes the scanning rate due to
both worm and defense D, then we assess a defense in terms of its peak scanning
rates over some interval [0, t]:

max
0<s<t

{λ(D, s)}

We might also assess it through its aggregate scanning rates (the space-time
product) over some interval [0, t]:∫ t

0

λ(D, s) ds.

3 Ordering of Defenses

Intuition suggests that the four active defensives (five, if we include the empty
defense) we’ve outlined might be ordered in terms of power. We now show that
this is exactly the case. In the comparisons made, we use the Common Sample
Path assumption, that once a host is infected (or takes on the counter-worm), its
scanning behavior is completely determined by a random number stream that
is independent of any other. When we compare two defenses, we assume that a
host uses that same stream in both systems, which allows us to compare the two
systems on commonly constructed sample paths. The implication is that once
a host is infected (or starts to run a counter-worm), its sequence of inter-scan
delays are the same in both systems, and the pattern of hosts scanned are the
same in both systems. Thus, if the two systems cause a host to be infected at the
same instant, on the sample paths being compared that host will scan exactly
the hosts at exactly the same time, in both systems.

The results to follow are based on a construction we call the Sample Path
Graph (SPG). For every susceptible host hi let Ii be a sequence of pairs (ti, dsti)
identifying the time since the host started infection scanning, and a destination
dsti of a scan. Ii is ordered by increasing values of ti. We define Ci similarly,
describing the scanning pattern once a host starts running a counter-worm. We
construct a graph whose nodes represent hosts that are assumed to be infected
already at time 0 (and which have scanning sequences), nodes representing hosts
that eventually start counter-worm scans (with their own scanning sequences),
and susceptible hosts. The graph contains a directed edge for every potential

Models and Analysis of Active Worm Defense 43

scan described in the sets {Ii} and {Ci} whose target was susceptible at time
0. The edge is directed from the source of the scan to the target; an edge will
be called an infection edge or countering edge, depending on whether it comes
from an infection or counter-worm sequence, respectively. The node for host hi

will have values S(hi) recording the earliest time it was scanned by an infected
host, and C(hi) recording the earliest time it was scanned by a host running a
counter-worm. Some of the edges are labeled with the time of the scan—these
edges are particularly important in our analysis. The values of S(hi) and C(hi),
the edges labeled and the values of those labels all depend on the particular
defense. However, common to those defenses are the following rules:

– All hosts assumed to be already infected at time 0 label each of their edges
with the corresponding scan time;

– all hosts that are used to start the counter-worm label each of their edges
with T0 plus the corresponding scan time offset contained in the scan se-
quence.

The differences between different defense’s SPGs are characterized as follows:

Empty Defense (D0)

1. The node for host hi defines S(hi) to be the smallest label among all labeled
infection edges directed to it; S(hi) =∞ if no such edge exists.

2. A host hi labels the infection edge corresponding to the jth element of Ii

(say, (sj , dstj)) with value S(hi) + sj , j = 1, 2, · · ·.
The difference between the simple patch defense and the empty defense is

that susceptible hosts are protected from infection if they are touched by a
countering scan before being touched by an infection scan.

Simple Patch (D1)

1. Item (1) from the Empty Defense rules.
2. The node for host hi defines C(hi) to be the smallest label among all labeled

countering edges directed to it; C(hi) =∞ if no such edge exists.
3. If S(hi) < C(hi) the node labels the infection edge corresponding to the jth

element of Ii (say, (sj , dstj)) with value S(hi) + sj , j = 1, 2, · · ·.
4. If C(hi) < S(hi) the node does not label any of its edges.

The difference between a spreading patch defense and a simple patch one is
that a host that receives a countering scan before any infection scan becomes
host to counter-worm software, and generates its own countering scans.

Spreading Patch (D2)

1. Items (1) from the Empty Defense rules, (2), and (3) from the Simple Patch
rules.

2. If C(hi) < S(hi) the node labels the countering edge corresponding to the
jth element of Ci (say, (sj , dstj)) with value C(hi) + sj, j = 1, 2, · · ·.

44 D.M. Nicol and M. Liljenstam

The difference between a nullifying defense and a spreading patch defense
is that when a countering scan reaches a host that is already sending infection
scans, the infection scans stop.

Nullifying Defense (D3)

1. Item (1) from the Empty Defense rules, item (2) from the Simple Patch
rules, and item (2) from the spreading patch rules.

2. If S(hi) < C(hi) the node labels the infection edge corresponding to the
jth element of Ci (say, (sj , dstj)) with value C(hi) + sj, for all j such that
S(hi) + sj ≤ C(hi).

And finally, the difference between a sniper defense and a nullifying defense
is that infection scans that encounter hosts running countering scans cause the
host sending the infection scan to cease. This may occur before the host is itself
scanned by a countering scan (which has the same nullifying effect).

Sniper Defense (D4)

1. Item (1) from Empty Defense rules, item (2) from the Simple Patch rules,
item (2) from the Spreading Patch rules.

2. If S(hi) < C(hi), let k be the smallest index for (sk, dstk) ∈ Ii such that
S(hi)+sk > C(dstk), and define Ki = S(hi)+sk. The node for hi labels the
infection edge corresponding to the jth element of Ci (say, (sj , dstj)) with
value C(hi) + sj , for all j such that S(hi) + sj ≤ min{C(hi), Ki}.
The construction above make the conditions under which a given infection

edge is labeled increasingly restrictive, as we move through sequence of defenses.
This implies that if we choose a host hi and defenses Da and Db with a < b,
then the set of labeled incoming infection edges it has in the SPG for Db is a
subset of the labeled incoming infection edges it has in the SPG for Da. This
fact enables us to prove the central results comparing different defenses.

Lemma 1. Consider two defenses Da and Db, a < b, under identical boundary
conditions. Let Ga and Gb be corresponding Sample Path Graphs constructed
under the Common Sample Path assumption, and let S(y)(h) and C(y)(h) denote
the S(h) and C(h) variables for host h under defense y ∈ {a, b}. Then for every
host h, S(a)(h) ≤ S(b)(h) and C(b)(h) ≤ C(a)(h).

Proof. Without loss of generality renumber the hosts by increasing value of
S(b)(h), we induct on this order. Consider the base case of h0. Both S(a)(h0)
and S(b)(h0) are defined by edges from hosts assumed to be infected at time 0,
and are thus identical. In both Ga and Gb host h0 gets the same set of labeled
countering edges from the initial set of hosts running the defense, and C(h0) in
both graphs is no larger than the smallest of these labels. However, in Gb there
may be more countering edges labeled, and hence the possibility of a shorter
path to h0 through those edges, whence C(b)(h0) ≤ C(a)(h0) and the induction
base is established. For the induction hypothesis we assume that the assertion

Models and Analysis of Active Worm Defense 45

is true for all hosts h0, h1, . . . , hn−1 for some n, and consider host hn. Let e
be the labeled infection edge coming into hn whose label defines S(b)(hn), and
consider its manifestation e′ in Ga. By the construction of SPG’s, an infection
edge may appear labeled in the SPG of one defense Du and not another Dv if
its target hy has a smaller value C(hy) in Gv than in Gu, or if Gv is nullifying
and scans a countering host. In all cases the only way a labeled edge appears in
Gu and not Gv is when u < v. Consequently e′ appears labeled in Ga. This in
turn implies that the node hm from which e′ is directed satisfies m < n, as it is
directed from the same node in both Ga and Gb. By the induction hypothesis
S(a)(hm) ≤ S(b)(hm), which implies that the label on e′ is no larger than the
label on e, and thus, that S(a)(hn) ≤ S(b)(hn). A similar argument shows that
the labeled countering edge g which defines C(a)(hn) (when this exists) has a
labeled counter-part g′ in C(b)(hn), whose label is no larger in Gb than it is in
Ga, and thus that C(b)(hn) ≤ C(a)(hn). This completes the induction. ��

From this result comes the main result.

Theorem 1. For defense Di and every time t, let I(Di, t) denote the number
of hosts infected by time t (including those that later become nullified). Then for
a < b, I(Da, t) ≥st I(Db, t) for every t ≥ 0.

Proof. Lemma 1 shows that for any sample path of scans and every time t, the
number of hosts h with S(a)(h) ≤ t is greater than or equal to the number of
hosts h with S(b)(h) ≤ t. For any sample path these counts define the random
variables I(Da, t) and I(Db, t). Coupling results in [9] establish the result. ��

These results show that the difference between defenses is structural, and
strong. The results are very general, free of distributional assumptions other
than independent of sampling from network state. However, they don’t give
much insight into how well these defenses perform.

There is one exception, in the special case where the counter-worm has the
same scanning characteristics as the worm. Then we may assume that whenever
a host is entered either by a worm, or a counter-worm, its pattern of scans (inter-
scan delays, sequence of targets scanned) is the same under any defense. From
the point of view of the same path analysis we’ve done, it means that whenever a
node is triggered to scan we may assume it does so with exactly the same pattern
regardless of if that is an infection or countering scan. This means that any host
that scans in an empty defense also does so in a spreading patch defense, only
possibly earlier (if the scan is a countering scan).

These observations establish the theorem.

Theorem 2. Suppose that the scanning structure of the counter-worm is iden-
tical to the worm. For every time t let λ(D0, t) and λ(D2, t) denote the instan-
taneous number of hosts scanning under the empty defense and spreading patch
defense, respectively. Then for every t, λ(D2, t) ≥st λ(D0, t).

This theorem is a strong statement about a condition when adding defense is
worse, from the point of view of the network. Increasing functions of λ(D, t) in-
clude the peak number of hosts scanning over an interval, the space-time product

46 D.M. Nicol and M. Liljenstam

of the bandwidth devoted to scanning, the probability of network partition, and
so on. The stochastic ordering asserts that the expectation of each of these is
larger when we use a spreading patch defense than when we use no defense at
all.

4 Epidemic Models

We use a style of modeling based on well known models from the epidemic mod-
eling literature. In typical simple epidemic models we consider a fixed population
of N , where each individual is susceptible to infection, and each individual will,
at any given time, be in one of a small set of predefined states. For instance, in
the simple epidemic model [3] (aka the SI model and equivalent to the logistic
equation) an individual is either in state S (susceptible to infection) or I (in-
fected). We denote by s(t) and i(t) the number of individuals in state S and I
respectively at time t, and thus ∀t, s(t)+i(t) = N . For large enough populations,
the mean rate of state changes S → I can be modeled as:

ds(t)
dt

= −βs(t)i(t)

di(t)
dt

= βs(t)i(t)

where the constant β is the infection parameter, i.e. the pairwise rate of infection.
β reflects the aggregate scanning rate of an infected host, as well as the mean
probability of selecting a given address for an individual probe attempt. The
system boundary conditions are given by the number of initially susceptible
hosts s(0) and initially infected hosts i(0). This model rests on assumptions of
homogeneous mixing, which correspond well to a uniformly random scanning
worm spreading freely through a network, so in the following we will refer to
this the Random Scanning Worm Model.

Other scanning strategies are possible. For instance, worms such as Code
Red II, Nimda, Blaster, and Welchia utilized preferential (rather than uniform)
scanning techniques where addresses close in the address space to the scanning
host’s would be probed with higher probability. Other suggested possibilities
include a “Divide-and-Conquer” approach to probing the address space (see
“partitioned permutation scan” in [11]). Here each worm is assigned a disjoint
fraction of the address space to probe.

Other simple tricks for speeding up the propagation have been suggested,
such as the use of pre-compiled hit-lists or using inter-domain routing tables
to only scan routed space [14]. We can incorporate these into our framework;
hit-listed hosts can be made to be infected as a boundary condition, and use
of routing tables just increases β to reflect that the scanning is over a smaller
address space.

The early stage of infection is the most critical time for any counter-measures
to be effective. Since the worms behave similarly in the early stages we will, in
the following, focus on random scanning worms as this is the type of worm that
has been observed in the wild to date.

Models and Analysis of Active Worm Defense 47

In [7], Moore et al. note that when considering the effectiveness of defensive
measures, it is preferable to consider the quantiles of infection rather than the
mean number of infections due to the variability inherent in the early stages
of infection growth. However, we prefer to use these mean-value based models,
because they lend themselves to analysis in a way that stochastic simulations do
not. Moreover, we are mainly concerned with the relative performance of different
defenses as we compare them, and we believe that the relative performance can
be credibly determined in terms of the mean, even though the predicted mean
absolute performance should be viewed with caution.

The simple epidemic model we study is suitable only in contexts where the
worm scanning is unaffected by the network topology. This assumption is fine
for worms whose mass and scan rates aren’t constrained by bandwidth (as was
the case with Code Red, and others), but is not acceptable when network con-
straints hinder worm growth. In related work we are exploring how to incorporate
network constraints into efficient simulation of worm dynamics [8].

4.1 Spreading Patch Counter-Worm

Consider the spreading patch counter-worm model discussed earlier, and assume
that it uses the same vulnerability and propagation strategy as the original worm.
Under these assumptions the second worm will spread at (approximately) the
same rate as the original worm, seeking the same susceptible population of hosts.
A simple model is:

ds(t)
dt

= −βs(t)(ib(t) + ig(t))

dib(t)
dt

= βs(t)ib(t)

dig(t)
dt

= βs(t)ig(t)

where ib refers to infections by the malicious (bad) worm and ig refers to infec-
tions by the spreading-patch (good) worm. Given β and ib(0), system behavior
is governed by the time T0 at which spreading-patch worms are released, and
the number of worms I0 released then. We assume that the spreading-patch
worms are launched on “friendly” machines that are not part of the susceptible
or infected set.

Spreading-patch worm effectiveness as a function of response time and initial
population is shown in Figure 1. An effective response requires a combination of
low response time and a sufficiently large initial population. Launching a single
counter-worm has little effect, and the window of opportunity for launching even
a thousand spreading-patch worms disappears after a couple of hours.

At T0, ib(T0) hosts have succumbed to the original worm and there are s(T0)
remaining susceptibles. How many spreading-patch worms must be launched to
protect a given fraction fraction p of those remaining susceptibles? If we consider
the fraction of infection growth due to the spreading-patch worm

dig(t)/dt

dig(t)/dt + dib(t)/dt
=

ig(t)
ig(t) + ib(t)

48 D.M. Nicol and M. Liljenstam

0
200

400
600

800
1000 1 2 3 4 5 6 7 8

0

10

20

30

40

50

60

70

80

90

100

Response time (T
0
) [h]

Response Initial Population (I
0
)

%
 h

os
ts

 in
fe

ct
ed

 b
y

m
al

ic
io

us
 w

or
m

Fig. 1. Effectiveness of spreading-patch worm as a function of response time and initial
counter-worm population

we see that since the propagation rates are the same, the proportions of the
susceptible population consumed by each worm from T0 onwards simply corre-
spond to their proportion of the population at T0. Thus, ultimately the fraction
of hosts which were susceptible at T0, but eventually are patched is

p =
I0

I0 + ib(T0)
.

Solving for I0 we get

I0 =
(

p

1− p

)
· ib(T0) (1)

Thus, the fraction of all susceptibles s(0) that will be protected is

p̃ =
p · s(T0)

s(0)
=

p[s(0)− ib(T0)]
s(0)

= p

(
1− ib(T0)

s(0)

)
If the infection is caught early on, then ib(T0)� s(0), and the protected fraction
p̃ ≈ p. Thus, equation (1) can be used as a guideline for selecting I0 given only an
estimate of how many hosts have been infected at the time of response (ib(T0)),
assuming that the response occurs early. Such an estimate can reasonably be
obtained by analysis of observed scanning behavior.

Models and Analysis of Active Worm Defense 49

The spreading-patch worm model considered here assumes only that it scans
at the same rate as the original worm. It does not assume any information
about the malicious worm and its behavior. As worms to date have exploited
vulnerabilities that were previously known, it is not unreasonable to suppose
that a patching worm might be developed when the vulnerability is identified
(but before it is announced), against the possibility of needing to use it. Such
a worm would not be launched before needed, because it could be captured
and analyzed for the means to exploit the vulnerability. However, the fact that
the spreading-patch worm has higher impact on the network (Theorem 2) than
no defense at all encourages us to explore counter-worms that have stronger
capabilities in worm identification and suppression, with smaller impact on the
network.

4.2 Nullifying Defense

Next we develop a continuous model of the nullifying defense. Using notation
similar to that for the spreading patch defense, we develop state equations

ds(t)
dt

= −βs(t)(ib(t) + ig(t))

dib(t)
dt

= βs(t)ib(t)− βib(t)ig(t)

dig(t)
dt

= βs(t)ig(t)

Here we see a new component to (dib(t)/dt), the subtraction of hosts due to
being scanned by the counter-worm.

Under our assumptions, in the limit of increasing time t, the aggregate scan
rate under the spreading patch defense is proportional to the number of “out-
side” spreading-patch hosts I0 plus the initial susceptible population size s(0)—
eventually every susceptible host is running either the worm, or the counter-
worm. However, in the case of nullifying worms, the aggregate peak scan rate
may be smaller than the aggregate peak scan rate of the unfettered worm.

Theorem 3. Suppose that I0 initial nullifying worms are released at time T0. If
I0 ≤ ib(T0), then the aggregate peak scan rate using the nullifying worm is less
than the peak scan rate of the unfettered worm.

Proof. Let in(t) be the aggregate number of infected hosts that a nullifying
defense has identified and contained by time t, and let e(t) be the number of
formerly susceptible hosts that have been “enlisted” to run the nullifying worm.
At any time t the aggregate scan rate of a defense is proportional to ib(t)+ig(t) =
ib(t) + I0 + e(t). From the invariant s(0) = s(t) + ib(t) + in(t) + e(t) we replace
e(t) in the scan rate expression to see that the scan rate at t is proportional to
I0 + s(0)− s(t)− in(t). The maximum value of this term will always be less than
s(0) if I0 < s(t)+in(t) for all t. Examination of derivatives shows that s(t)+in(t)
is monotone decreasing, hence its lowest value is the asymptotic value of in(t),

50 D.M. Nicol and M. Liljenstam

say, N = limt→∞ in(t). By assumption I0 ≤ ib(T0), and clearly ib(T0) < N . The
conclusion follows immediately. ��

It is interesting to compare this result—which says if one limits the initial
infection of the counter-worm you can bound the peak scan rate from above,
with the spreading-patch defense results which turn these inequalities around.
With the spreading-patch defense a minimum size of the release needs to be
I0 > ib(T0) to give it enough mass to overtake the original worm. But because
the nullifying worm fights by decreasing the number of scanning worms, it gets
by with a smaller initial counter-worm population.

Another capability a nullifying defense could have is that it stop all defensive
scanning, upon centralized command. This would help mitigate against over-
whelming the network with scans from the defenses (a characteristic reported of
the counter-worms seen in the wild). Denote the defensive worm stopping time
by ts. The modified state equations after time ts are

ds(t)
dt

= −βs(t)ib(t) (2)

dib(t)
dt

= βs(t)ib(t) (3)

dig(t)
dt

= 0 (4)

Figure 2 illustrates the evolution of system state where the nullifying defense is
propagating without stopping. Also shown, is the resulting peak total population
(directly related to peak bandwidth in our model) as a function of stopping
time ts. Taking the time at which the defensive worms are stopped as a control
parameter, we see that the minimized peak scan rate obtained by optimally
selecting the stopping time is no larger than the peak scan rate if the defenses
are never turned off. This capability can only improve the peak scan rate over
that of the earlier nullifying defense we considered.

For t < ts the scan rate is proportional to ib(t) + ig(t); the peak scan rate
achieved after ts is proportional to ib(ts) + s(ts), for the original worm will
eventually infect all hosts left unprotected once we stop the defensive scans.
Examination of derivatives shows that

d(ib(t) + ig(t))
dt

= β (ib(t)(s(t) − ig(t)) + s(t)ig(t))

which we observe is positive at least as long as s(t) ≥ ig(t). Likewise, derivatives
show that ib(t) + s(t) is a decreasing function :

d(ib(t) + s(t))
dt

= −βig(t)(ib(t) + s(t)).

If the nullifying defense scans are stopped at ts with s(ts) ≥ ig(ts) we are
assured that the peak scanning rate of the system is

max{ib(ts) + ig(ts), ib(ts) + s(ts)}.

Models and Analysis of Active Worm Defense 51

0

50000

100000

150000

200000

250000

300000

350000

400000

0 2 4 6 8 10 12 14 16

N
um

be
r

of
 H

os
ts

Hours

susceptible
infected and scanning

nullifying hosts
peak #scanning if stopped at t

Fig. 2. Peak bandwidth used by the nullifying defense (and original worm) as a function
of when it is switched off

So long as the first argument is increasing and the second argument is decreasing,
the stopping time that minimizes the maximum occurs when the arguments are
equal, e.g., when ig(t) = s(t); since ib(t) + ig(t) is still monotone at this point,
ts minimizing the peak aggregate scanning rate satisfies ig(ts) = s(ts).

We are in a position now to quantify the performance of a defensive worm. We
can show that the minimal peak number of hosts scanning is at least (1/3)(s(0)+
I0), provided that I0 ≥ ib(T0), a result which we state formally.

Theorem 4. Consider a nullifying defense that is launched at time T0 with
I0 ≥ ib(T0) initial instances, and whose scans can be stopped on command. The
stopping time ts which minimizes peak scanning is the unique solution to ig(ts) =
s(ts). A lower bound on the peak number of hosts scanning is (1/3)(s(0) + I0).

Proof. We first note that under the assumption I0 = ig(T0) > ib(T0), that
ig(t) ≥ ib(t) for all t ≥ T0. This is a result of both the worm and the counter-
worm competing for exactly the same pool of susceptible hosts—at the same rate
(per host)—with the counter-worm starting with at least as many hosts as are
in the infection at the time the counter-worm is released. A consequence is that
the time ts when s(ts) = ig(ts) occurs before the time tb that s(tb) = ib(tb). This
fact turns out to be important as we ask for conditions under which ig(t) ≥ in(t),
where in(t) is the number of infected hosts that have been nullified. We know
that ig(T0) > in(T0); analysis of the derivative of ig(t) − in(t) shows that this
difference grows so long as s(t) ≥ ib(t)—a condition which can only occur after
the stopping time ts. Finally, we note the invariant

52 D.M. Nicol and M. Liljenstam

ib(t) + ig(t) + in(t) + s(t) = s(0) + I0.

At the stopping time, s(ts) = ig(ts), and ig(ts) > in(ts), whence

ib(ts) + 3ig(ts) > s(0) + I0.

It follows that ib(ts) + ig(ts) > (1/3)(s(0) + I0). ��
We see that under the theorem’s assumptions, the capabilities nullifying de-

fensives have over spreading-patch defenses (suppress an infected host’s scans,
stop the “good worm” scanning) serve to give it greater power, but the peak num-
ber of hosts scanning (both worm and counter-worm) is still at least one third
of the initial susceptible population. It should be noted that this result depends
signficantly on an assumption that the counter-worm’s scan rate is identical to
the worm’s. We are exploring the consequences of relaxing this assumption, as
well as pushing on looking for ways of countering worms with increasing power,
while reducing the impact on the network.

5 Conclusions

This paper studies active defenses against Internet worms. We use discrete and
continuous mathematical models to study a hierarchy of worm fighting capabil-
ities. We are able to prove a number of results about these models, including

– strong stochastic ordering of infection counts in a hierarchy of five defense
types;

– that a simple counter-worm defense has a stochastically larger aggregate
scanning intensity than does the unfettered worm;

– that by starting a defense with enough outside hosts scanning to implant
counter-worms, any desired fraction of the remaining susceptible hosts can
be protected from a worm;

– that by starting a nullifying defense with few enough outside hosts, the peak
scanning intensity is less than the unfettered worm;

– even when peak scanning time is minimized under the nullifying defense, it
is still the case that the peak number of hosts scanning is at least 1/3 of the
total number of susceptibles;

There is much work yet to be done. This paper does not address the very
significant problem of quickly and automatically detecting when a worm attack
has been launched—we have looked only at the relative effectiveness of measures
put into place after the detection. Our experiments of effectiveness of defense as
a function of response time (Figure 1) show that rapid detection is absolutely
critical.

Acknowledgements

This research was supported under Award number 2000-DT-CX-K001 from the
U.S. Department of Homeland Security, Science and Technology Directorate.

Models and Analysis of Active Worm Defense 53

Points of view in this document are those of the author(s) and do not necessarily
represent the official position of the U.S. Department of Homeland Security or the
Science and Technology Directorate. In addition this research was supported by
SPAWAR contract N66001-04-C-6013. Accordingly, the U.S. Government retains
a non-exclusive, royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so, for U.S. Government purposes.

References

1. Chen, Z., Gao, L., Kwiat, K.: Modeling the spread of active worms. In INFOCOM
2003 (2003)

2. Cisco. Dealing with mallocfail and high cpu utilization resulting from the “code
red” worm. http://www.cisco.com/warp/public/-63/ts codred worm.shtml (Octo-
ber 2001)

3. Daley, D.J., Gani, J.: Epidemic Modelling: An Introduction. Cambridge University
Press, Cambridge, UK (1999)

4. Ferrie, P., Perriot, F., Sz or, P.: Worm wars. Virus Bulletin (www.virusbtn.com),
Oct 2003. http://www.peterszor.com/welchia.pdf [Last accessed Oct 01, 2003

5. Liljenstam, M., Nicol, D., Berk, V., Gray, B.: Simulating realistic network worm
traffic for worm warning system design and testing. In in Proc. of the First ACM
Workshop on Rapid Malcode (WORM’03) (Oct 2003)

6. Moore, D., Shannon, C., Claffy, K.: Code-red: a case study on the spread and
victims of an internet worm. In in Proc. of the Internet Measurement Workshop
(IMW), Marseille, France, Nov 2002. ACM Press

7. Moore, D., Shannon, C., Voelker, G., Savage, S.: Internet quarantine: Requirements
for containing self-propagating code. In Proceedings of the 22nd Annual Joint Con-
ference of the IEEE Computer and Communications Societies (INFOCOM 2003)
(April 2003)

8. Nicol, D. M., Yan, G.: Simulation of network traffic at coarse time-scales. In Pro-
ceedings of the 2005 Conference on Principles of Advanced and Distributed Simu-
lation (2005)

9. Ross, H.S.: Stochastic Processes. Wiley, New York (1983)
10. Staniford, S.: Code Red Analysis Pages: July infestation analysis.

http://www.silicondefense.com/cr/july.html (2001)
11. Staniford, S., Paxson, V., Weaver, N.: How to Own the Internet in

Your Spare Time. In in Proc. of the USENIX Security Symposium (2002)
http://www.icir.org/vern/papers/cdc-usenix-sec02/index.html.

12. Zou, C., Gao, L., Gong, W., Towsley, D.: Code red worm propagation modeling
and analysis. In 9th ACM Conference on Computer and Communication Security
(CCS), Washington DC (Nov 2002)

13. Zou, C., Gao, L., Gong, W., Towsley, D.: Monitoring and early warning for internet
worms. In Proceedings of 10th ACM Conference on Computer and Communication
Security (CCS’03) (2003)

14. Zou, C., Gong, W., Towsley, D.: Worm propagation modeling and analysis. In
Proceedings of the First ACM Workshop on Rapid Malcode (WORM) (2003)

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 54 – 75, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Prevention of Information Attacks by Run-Time
Detection of Self-replication in Computer Codes

Douglas Summerville, Victor Skormin, Alexander Volynkin,
and James Moronski

Binghamton University, Binghamton NY 13902, USA
{dsummer, vskormin}@binghamton.edu,
alex@volynkin.com, jim@moronski.com

Abstract. This paper describes a novel approach for preventative protection
from both known and previously unknown malicious executable codes. It does
not rely on screening the code for signatures of known viruses, but instead it
detects attempts of the executable code in question to self-replicate during run
time. Self-replication is the common feather of most malicious codes, allowing
them to maximize their impact. This approach is an extension of the earlier
developed method for detecting previously unknown viruses in script based
computer codes. The paper presents a software tool implementing this
technique for behavior-based run-time detection and suspension of self-
replicating functionality in executable codes for Microsoft Windows operating
systems.

1 Introduction

Due to its high interconnectivity, global dimensions and very large number of entry
points, the Internet is increasingly vulnerable to information attacks of escalating
sophistication. Any biological system, being gigantic in terms of complexity,
interconnectivity and number of entry points, is also vulnerable to sabotage by foreign
microorganisms, which are, in many ways, similar to information attacks. The
proliferation of biological systems in spite of these attacks can be explained by their
very effective defense mechanisms capable of the detection, identification, and
destruction of most foreign entities that could have an adverse effect on the system.
The ability of immune mechanisms to reliably differentiate between “self” and “non-
self” at the protein level inspired the authors to utilize the concepts of genetic
composition and genetically-programmed behavior as the basis for the development
of a novel approach to the detection of malicious software [1].

Most information attacks are carried out via Internet transmission of files that
contain the code of a computer virus or worm. Upon receipt, the target computer
executes the malicious code resulting in the reproduction of the virus or worm and the
delivery of its potentially destructive payload. Self-replication, which is uncommon in
legitimate programs, is vital to the spread of computer viruses and worms allowing
them to create computer epidemics thus maximizing the effectiveness of the attack.
As with any function, self-replication is programmed; the sequence of operations
resulting in the self-replication is present in the computer code of the virus. The

 Prevention of Information Attacks by Run-Time Detection 55

implementation of the function of self-replication is not unique; there is more than
one sequence of operations that can perform this task. Moreover, it is expected that
these sequences are dispersed throughout the entire body of the code and cannot be
detected as an explicit pattern. While self-replication can be achieved in a number of
different ways, this number is definitely finite. Consequently, developers of new
malicious codes are destined to utilize the same self-replication techniques again and
again.

Previously we developed the computer virus detection system based on these
principles [2], [3]. This system is able to detect the gene of self-replication (GSR) in
most script viruses written in Visual Basic, Java and other high-level script languages.
However, there was still a large family of viruses that could not be successfully
detected by this technique, as it was unable to deal with regular and, especially,
encrypted compiled executable code. While the same principle could still be
instrumental, its different implementation had to be developed for extracting self-
replication sequences from such viruses. The technology presented herein is
applicable to the most common and difficult, in terms of detection, computer viruses
and worms which are represented by an already compiled, often encrypted, executable
code; the detection is conducted at run-time during normal code execution under
regular conditions by monitoring the behavior of every process with regards to the
operating system’s system calls, their input and output arguments and the result of
their execution. Unlike existing antivirus software, this methodology facilitates
preventative protection from both known and previously unknown attacks.

The authors do realize that a very sophisticated attacker can further modify the
self-replication mechanism and are prepared to face the next step in the ever-
escalating “arms race”.

2 Background

Modern computers are designed for a wide variety of purposes, frequently to be
accommodated by a single machine. Allowing for such unification and scalability
requires an increasingly complex computer software and hardware infrastructure.
Currently, this infrastructure is facilitated by a computer operating system, which
abstracts details of the hardware from application software. Applications (programs)
interface with the operating system through the Kernel Application Programming
Interface, or system calls. Therefore, system calls do play a major role in the
interaction between the software and the operating system characterizing the behavior
of both malicious and legitimate computer programs.

Unlike legitimate programs, malicious software performs operations that adversely
affect various hardware/software system components. There are a vast number of
operations that can be considered malicious and generally speaking, could be detected
within the sequence of system calls. However, the sequence of system calls produced
by an application can be huge and the malicious operation can be dispersed
throughout the sequence, making run-time detection a non-trivial task. Self-
replication is a function common to the most insidious malicious programs, including
all viruses and worms that cause computer epidemics maximizing the impact of an

56 D. Summerville et al.

information attack. Thus, the search for malicious programs can be narrowed to the
search for self-replication activity in the sequences of system calls.

The concept of detecting the GSR is generic in its nature; therefore it can be
applied to any computer system without necessarily binding it to a specific operating
system. The remainder of this paper deals specifically with the Microsoft Windows®
operating system, but the basic principles can be applied to any operating system on
any computer hardware platform.

When dealing with system calls in Windows® kernel, it is important to realize that
a system call by itself is a rather complicated entity. Apart from the call to a specific
interface there are also many important parameters passed, such as the origin of the
system call (process and thread identifiers), control flags, input arguments, data
structures, output parameters and the result of call execution. All of these parameters
must be taken into consideration for the detection of self-replication activity.

3 Definition of the Gene of Self-replication

The GSR is viewed as a specific sequence of commands passed to the computer
operating system by certain program code that causes this code to replicate itself
through the system or multiple systems. Replication can be accomplished in several
ways depending on a particular computer system as well as the software the system is
running. For example, computer viruses designed for the Microsoft DOS® operating
system utilized direct access to hardware for this purpose. With the widespread
introduction of microprocessors that allowed for different privilege level accesses,
and operating systems supporting and enforcing these access levels facilitated new
methods of self-replication. Computer viruses began employing different software
APIs, from hijacking a simple email client API to interfacing very complex OS.
Nevertheless, the most sophisticated and versatile viruses are still implemented in
assembly language (ASM) and assembled into executable files. Since computer
viruses are expected to self-replicate and this task cannot be accomplished without
interfacing the operating system, monitoring and analyzing system calls to certain OS
APIs provides the means for the detection of this common feature of malicious
software.

3.1 GSR Structure

Virtually every process running in the system produces system calls; however they
are not mixed and can easily be differentiated for every process and thread. In all
cases, system calls, generated at run time, represent a direct time line sequence of
events, which can be analyzed during the execution. For any given process, this
sequence can be large or relatively small depending on what system resources it is
trying to access. The GSR is contained within the sequence produced by a malicious
process and it could be dispersed throughout that sequence.

Since none of the system calls alone can be considered malicious, only the
particular sub-sequences of calls can form the GSR. As per [3], the GSR is described
using the concept of building blocks, where each block performs a part of the chosen
self-replication procedure. This concept is illustrated in Fig. 1. Most of the building

 Prevention of Information Attacks by Run-Time Detection 57

blocks involved in malicious self-replication activity can individually be performed
by any piece software for a variety of legitimate reasons. Only when integrated into
larger structures and based on their inter-functional relationships, these building
blocks are indicative of attempts to self-replicate.

The GSR can be composed of such blocks in various ways. Therefore its structure
can be viewed as a regular sentence being built up by concatenating phrases, where
phrases are built up by concatenating words, and words are built up by concatenating
characters.

One of the major reasons for applying such a syntactic approach to describing the
GSR is to facilitate the recognition of sub-patterns. This implies the recognition of
smaller building blocks first, establishing their relevance and contribution to the
replication, and then considering the next sub-pattern. This process is consistent with
text analysis, which includes recognizing characters first, then concatenating them
into words, running a spell checker on an entire word to check for mistakes, then
continue concatenating words into phrases and sentences checking for correct
grammar and punctuation. The syntactic description of the GSR provides a capability
for describing and detecting large sets of complex patterns by using small subsets of
simple pattern primitives. It is also possible to apply such a description any number of
times to express the basic structures of a number of gene mutations in a very compact
way.

Following the concept of syntactic description the GSR structure could be
represented using the grammar definition notations [4]:

{ }SPVVG TN ,,,= (1)

where,
 G - gene of self-replication

 NV - non-terminal variable

 TV - terminal variable

 P - finite set of rules
 S - starting point of the gene
Assuming, that the GSR is represented by the pyramidal structure (Fig.1), the non-

terminal variable NV in the expression above can be expressed as:

=

ll_System_CaWrite_File

,alle_System_CCreate_Fil,lSystem_CalOpen_File_,lSystem_CalDirectory_

,lockFile_Copy_,kearch_BlocFile_,tionlf_replicaGene_of_se

VN

BS

(2)

The terminal variable TV represents the GSR sequence:

{ }(...)(...),(...),(...), eZwWriteFilleZwCreateFiZwOpenFileectoryFileZwQueryDirVT =

(3)

58 D. Summerville et al.

Fig. 1. GSP pyramidal structure

The sum of NV and TV forms the complete vocabulary TN VVGV ∪=)(, and

the intersection of NV and TV is indeed an empty set, Ο=∩ TN VV .

The set of rules P is expressed as βα → , where α and β interconnections in

V so that α involves at least one simplest block in NV .

Finally, NVS ∈ represents the starting point in NV , which corresponds to the

tionlf_replicaGene_of_se in the structure above.

3.2 Details

In spite of the apparent simplicity of the above structure, in order to accurately
describe the GSR the relations between different blocks and system calls could be
very complex. Our research shows that in some cases, the margin between malicious
activity and normal behavior is quite narrow and the differentiation requires fine-
tuning of inter-functional relations.

Normally, a single system call has a unique CID that identifies it to the kernel, a
number of input arguments, a number of output arguments to be generated upon
completion of the system call execution, and the indicator of the result of the

System Calls
ZwQueryDirectoryFile(…)

ZwOpenFile(…)

Token set #1
System Calls Arguments

ZwQueryDirectoryFile Handle01,
accessFlag,…

ZwOpenFile Handle02,…

System Calls
ZwCreateFile(…)
ZwWriteFile(…)

Block #1 Block #3

Block #4

Block #2

Block #5

Replication

Block 1: File Search

Interfunctional
Relations

Token set#2
System Calls Arguments
ZwCreateFile Handle03,

accessFlag,…
ZwWriteFile Handle03,…

Block 2: File Copy

 Prevention of Information Attacks by Run-Time Detection 59

execution. Also, every system call carries IDs of the process (PID) and the thread
(TID) from where the call has been originated. The structure of the system call is
depicted below:

PID TID CID Input Arguments Output Arguments Result

Input arguments, as well as output arguments may include any data structures,
allowed by the system, such as numerical values, flags, object handles, and data
strings. Some of these arguments indicate direct relations among different system
calls that could be utilized to bind system calls together to define the GSR. The
following is an example of binding two system calls together by their arguments to
form a single building block of the GSR:

Fig. 2. GSR Building Block Internal Structure

In this case, “Data Write Block” is derived from two basic system calls
ZwCreateFile and ZwWriteFile. The unit is responsible for writing specific data into a
newly created file. System calls inside the block are linked together by several key
parameters. For this particular block we consider the following three parameters to
play the key role in identifying the correct pair of block’s internals:

• Object Name / Path
• Object Access Flags
• Object Handle

The file system operates on files in a number of different ways, but with only a few
system calls. Therefore, it needs to define strict regulations for every key system call,
specifying what exactly that system call is expected to do with the file. A number of
flags are supported by almost every system call; most of these flags are designed to
specify Access Rights to be applied by the system call onto the target object, the file
in this particular case. For example, in order to create a file for writing, the “Generic

OUT

OUT

IN

IN

ZwCreateFile

ZwWriteFile

Handle [File]

Handle [File]

[C:\Dir\Filename]

Access Flags

Status

Result

IN

OUT

Status

Access Flags

Data Write Block

60 D. Summerville et al.

Write” flag has to be set to “HIGH”. There are also several other important flags to be
set, such as File Attributes Flag “Normal” – specifies an attribute for a newly created
file to Normal, Share Access “Write” – specifies the limitations on sharing the file,
File Create Disposition flag defines what to do with the file in case it already exists,
etc.

Another important link parameter is the Object Handle. Files, as well as many
other resources, are considered to be an Object type by the operating system.
Therefore, every time a process creates a new object, it receives a unique access
handle, which facilitates fast access to this object within the process and by other
processes as well. The usage of this handle is obvious, since it is created by a system
call and it links to an object, any time another system call uses this handle, it is trying
to gain access to the object, and therefore, the given system calls are related. In the
case of Data Write Block, ZwCreateFile creates the handle upon completion of the
call execution. Later, this handle (Handle [File]) is used by another call, ZwWriteFile,
in order to write data into a file, represented by that handle.

Finally, when two system calls are properly linked together, the inputs of the first
system call become the inputs of the entire block, and likewise the block inherits the
outputs of the last system call. Then, the structure forms one solid block of the
pyramid with its own inputs and outputs, and is ready to be included as a unit into a
larger structure.

While defining connections between different blocks or system calls, it is
important to realize, that some of the larger blocks, created as a result of this
combination, are likely to serve legitimate purposes of any regular program. This is
expected, since computer viruses tend to employ the same kind of techniques for
accessing operating system infrastructure. However, regular computer programs
would never call these blocks in a particular order with particular input parameters. At
the same time, some blocks are very typical for computer viruses. These
considerations provide the basis for the GSR definition.

3.3 Detection Mechanism

Since the GSR structure is defined in terms of sub-patterns similar to the structure of a
sentence with its phrases, words and characters, the automata theory for text
recognition is applicable for GSR detection.

A finite-state machine A represents a quintuple { }FqQA ,,,, 0δΣ=

where,
 Σ - finite set of simple input blocks
 Q - finite set of states

 δ - mapping of Q×Σ into 1+nQ

 0q - the initial state, such that Qq ∈0

 F - set of final states, such that QF ⊆

According to [4], it is possible to define a finite-state automata

{ }{ }FSTVVA NT ,,,, δ∪= with)()(GLAT = , if { }SPVVG TN ,,,= ,

 Prevention of Information Attacks by Run-Time Detection 61

defined above, is a finite-state GSR expression. Since P always contains relation rule
for S when detecting a GSR, the set of final states F contains S , such that

{ }TSF ,= . Therefore, the finite-state machine can be constructed for GSR

detection purposes, so that all replication combination that are accepted by the
automata are, in fact, in the state space of a phrase-structure language defined as

)(GL . This language is to be generated by the GSR grammar in the following way:

{ }TVxxGL ∈= |)(, such that xS
G

⎯→⎯ , (4)

Where, x is a replication building block, and xS
G

⎯→⎯ implies that x is

directly derived by another building block S , such that both x and S follow the

rule P by yielding 21αωω=S and 21βωω=x , where βα → by the

definition of P .
A complex computer operating system such as Microsoft Windows XP receives

hundreds of calls every second from many different processes. Most of the function
calls, produced by an application in user mode deal with secure objects and hardware
resources such as File System, Processes and Threads, Graphical System Services,
System Registry, etc., are transferred into the Kernel mode of the operating system for
further execution in secure environment. During this process, function calls are
processed into system calls for unification, compatibility, security and other reasons.
At the Kernel level, system calls are processed by System Service Dispatcher (SSD)
and routed to a designated service. The internal structure of system call dispatching is
even more complex and is not a subject of this paper.

The Operating System in question provides us with almost no support for
monitoring its Kernel level for security reasons; therefore such a software monitor has
to be created. While it is not a trivial task, as it requires very low-level system design
and implementation, the very basic idea for the monitor is shown in figure 3.

When Kernel receives a function call from user mode, it has to decide which
Kernel interface to call to process this function. The API Processing Unit also known
as System Service Dispatcher (KiSystemService) is responsible for making this
decision by looking up an appropriate system call handler in its System Service Table
(SST), which stores handlers to every system call supported by the Kernel, and
invoking it. However, if the handler to a particular system call in SST is replaced with
a fake one pointing to other memory location, System Service Dispatcher will simply
execute a different function at that location. This extra function can be designed to
gather information about the system call, its parameters and the origin. When all
needed information is collected, the function calls the original system call and the
entire system proceeds as usual.

All system calls, once invoked at the Kernel level, are expected to produce a result,
whether it was successful or not. This result is represented by the output arguments of
the system call, as well as the return value that confirms successful execution, or
indicates errors. All system calls, intercepted by the monitor, appear in two parts:
system call with input arguments and system call with output arguments.

62 D. Summerville et al.

Fig. 3. Functionality of the System Calls Monitor

Table 1. Typical system call layout

Process ID 1023
Thread ID 1
System Call NtCreateFile

Access Mask 11000000000100000000000
010000000 (bin)

Length 24
Dir pointer 12
Object Name “virus.exe”
Attributes 1000000 (bin)

(Obj_Case_Insensitive)
Security
Descriptor

0

O
bj

ec
t a

tt
ri

bu
te

s

SecurityQoS 0
Allocation Size 0
File Attributes 10000000 (bin) (NORMAL)
Share Access 0
Create Disposition 1 (FILE_OPEN)
Create Options 1100000 (bin)
Buffer NULL

Input Arguments

Buffer Length 0
File Handle 56

status 0
Output Arguments

Status
Block info 1 (FILE_OPENED)

Result 0 (SUCCESS)

Function Call API Processing
Unit

System Call Handler
[Fake]

System Call
Information Dispatcher

System Call Handler
[Original]

System Call

User Mode

Monitor

Kernel Mode

 Prevention of Information Attacks by Run-Time Detection 63

Our research shows, that sometimes the information a system call returns as a
result of its execution is even more important than incoming arguments for the
purpose of virus detection. Table 1 shows a typical system call layout as it goes
through our monitor.

Having the information, observed by the monitor, it is possible to conclude, that
Thread #1 that belongs to Process #1023 invoked a system call named NtCreateFile
for the purpose of opening a file named “virus.exe”. Upon completion of call
execution, the file was successfully opened and a unique handle,56, was assigned for
further access to that file.

In order to detect if such a call belongs to any parts of the virus’ self replication,
we have to consider most of its input and output arguments. While obviously, any
system call by itself with all possible combinations of input/output arguments cannot
be considered as a threat, we believe that certain APIs called with certain arguments
when combined do present a clear pattern of self replication.

During the GSR detection process, every system call intercepted by our monitor
comes right into the Replication Detector, where it goes thought a complete range of
different detection and filtration mechanisms. Following the concept of decoupling of
Gene definition, presented in the previous part of this paper, the detection process is
also highly decoupled to ensure compatibility and to reduce false detections. Just like
the GSR is formed from many different building blocks, the detection mechanism
observes and makes decisions regarding every block separately, until it finally reaches
the top of the GPR pyramid structure and declares the alarm state. Below is a brief
diagram of detection algorithm for a single block:

Fig. 4. Detection Algorithm for abnormal behavior

As soon as a system call is detected, the History Tracer communicates with the
database, where the GSP Structure is defined, to determine whether or not this system
call can be combined with any other lower level blocks to form a larger structure.
When such combination is possible, the Combiner takes two chosen lower level
blocks and forms a single upper level block so that its inputs are identical to the inputs
of the Lower Block taken from the history, and the outputs are inherited from the

Gene Structure

Lower level

Upper level

Detector

Lower Block
(system call)

History Tracer

Combiner

Upper Block

64 D. Summerville et al.

newly detected Lower Block. When new Upper Block is finally formed, the history is
updated and the algorithm repeats itself, but with regards to this newly created block.
At every repetition, the detection is taking place at a higher level, as though climbing
up the pyramidal structure.

4 Experiments

The concept of GSR definition explained earlier requires building a pyramidal
structure with basic system calls at the bottom, combinations of calls represented by
Blocks in the middle, and the GSR itself at the top. While usually replication is not a
very complicated process, it may involve a number of steps, and among them the
system calls dominate greatly. Therefore, the complexity of GSR definition depends
on several facts:

− The number of unique system calls involved.
− The number of inter-functional relations among system calls.
− The complexity of inter-functional relations.

Table 2. Replication schemes for major types of computer viruses

Replication Type Details Replication Scheme
Overwriting Virus overwrites an

existing executable by
replacing its content
with the body of the
virus

1. Read “Virus.exe”
2. Open “Host.exe”
3. Write “Virus.exe”

into “Host.exe”
4. Close “Host.exe”

Companion Virus renames an
existing executable and
replaces the original
with itself

1. Read “Host.exe”
name

2. Rename
“Host.exe” into
“Host.ex”

3. Rename
“Virus.exe” into
“Host.exe”

Parasitic Virus attaches itself
to an existing file by
injecting its code into
the body of the
executable and replacing
code entry points

1. Open “Virus.exe”
2. Read “Virus.exe”

Code
3. Open “Host.exe”
4. Inject Code into

“Host.exe”
5. Patch “Host.exe”

Entry point

Since the margin between malicious and normal behavior can be small, it is important
to keep the complexity of the GSR at the high level whenever possible in order to
avoid misdetections. On the other hand, some flexibility when connecting blocks of
the GSR is needed as well; otherwise the approach becomes less generic.

 Prevention of Information Attacks by Run-Time Detection 65

Computer viruses, implemented as executables have enough flexibility when
interfacing with the operating system to replicate in several different ways. In our
experiments we consider three basic types of virus replication:

− Overwriting existing files (Overwriting viruses).
− Creating new look-alike files (Companion viruses).
− Attaching to existing files (Parasitic viruses).

These three types of replication are sorted by simplicity of implementation, with
Overwriting viruses being the simplest. Table 2 presents details for every type, as well
as their simplified replication schemes.

All viruses, falling under these categories, require low-level access to system
resources, and therefore are detectable. However, categories have to be identified first
and described in terms of the GSR. A way to establish the GSR is to acquire samples of
a real live virus, extract self-replication behavior and process the leads. Viral behavior
acquisition was done in an isolated controlled environment running Windows XP
operating system, under surveillance of our system calls monitoring system. Apart from
maintaining a sufficient system security level, one of the acquisition problems we have
encountered was the elimination of noise from other concurrently running processes.
The most suitable solution found was to introduce a per-process monitoring and
detection scheme, where every signal detected by the monitor gets traced back to its
origin, the process ID. Therefore, every signal is associated with a unique process so
that signals coming from different sources do not mix.

As an example virus with parasitic behavior, we consider a classic internet worm
“I-Worm.Xanax”. This is a small worm, capable of replicating onto Windows system
executable files. When executed, the worm searches for .EXE files in the Windows
directory and replicates onto them while changing the entry point of the file. The virus
follows the replication algorithm accordingly, and makes a total of 639 calls to the
operating system. As it passes through the monitor, we observe some replication
related activity among many others, such as self-access by consequently opening the
source directory “Virlab” on local disk “C”:

NtOpenFile 100020h, {24, 0, 42h, 0, 0,
"\??\c:\Virlab\"}, 3, 33 ... 12, 0h, 1) result = 0

1

The execution of this call completed successfully, introducing a new directory
handle. Later, this handle is used when accessing the contents of this directory.
Indeed, after throwing some garbage into the system, the virus invokes another
suspicious command by trying to open itself for reading:

NtCreateFile 80100080h, {24, 12, 42h, 0, 1243404,
"xanax.exe"}, 0h, 128, 3, 1, 96, 0, 0 ... 68, 0h,
1) result = 0

2

Once again, upon successful execution, a new handle, #68, is created, which points
itself. According to our definition of the structure for the GSR, we may bind these two
calls and form a larger structure representing a File Access Block. These calls are
then bound by several different important parameters such as the directory handle and
input flags shown in grey above. When bound, the new structure inherits input

66 D. Summerville et al.

parameters from its first component, as well as output parameters from its second
component.

In the same manner, after locating a target host file, the virus is expected to open it
and append the viral body to the host so that the control over code execution gets
passed over to the viral code. In our experimental run of the virus, it was able to
locate the “Windows” directory, a very common target for viruses due to a very high
probability of infecting the most important and frequently run system files and
utilities. While searching for a host to infect, the virus invokes another pair of system
calls to locate an executable. This pair forms another replication block called Host
Search Block:

Table 3. Virus searching for executable file in Windows folder

System Call Input Arguments Output
Args

NtOpenFile 0x100001 {24, 0, 0x40, 0, 0,
"\??\C:\WINDOWS\""},
3, 16417

12,
{0x0,1}

3

NtQueryDirectoryFile
12

0, 0, 0, 1243364,
616, 3, 1, "<.exe", 0

{0x0,110
}

4

The next step in the replication is to read itself and append itself to the host file.
Since the virus knows perfectly well its own location (output handle # 68 of File
Access Block), it easily executes yet another pair of system calls to map itself into a
memory location 980000h:

Table 4. Virus maps its body into memory

The memory mapping routine pair allows for defining another replication building
block named Memory Mapping Block. Since this block requires a file handle as an
input parameter, which in turn is provided by the File Access Block constructed
earlier, these two blocks are bound into a new higher-level structure named File-in-
Memory Block. As usual, the block inherits inputs and outputs of the two parenting
structures.

Finally, when the virus is in memory and the victim file is identified, another set of
system calls is required for completing a successful replication, the set that is
responsible for actually writing the viral code into the host body. However, since
overwriting the host with the virus code would trigger an alarm for to the user, clearly
implying that something is going wrong with the system, it is much more elegant to

File Extension

 Prevention of Information Attacks by Run-Time Detection 67

append viral body to the host and change code entry pointers in such a way that the
viral code gets executed first, then passing control back to the original host, allowing
for regular file execution. Therefore, the virus in question needs to open the host,
locate the correct section for viral code injection and finally append its code by
executing an NtWriteFile system call:

Table 5. Virus injects its code into the host

This set of calls, while being the last sequence in replication, also form the final
block for GSR Pyramid, called the Code Injection Block. It inherits its input
parameters from its first system call NtCreateFile, while the outputs of NtWriteFile
become its output arguments. These four blocks form the final structure — The Gene
of Self Replication:

Fig. 5. Final replication behavior structure of a virus

The graph below shows the replication timeline along with the system calls related
to the replication for Xanax worm. There are two visible replication attempts, one of
which has been successful, reaching the top of the pyramid – the replication point.

File Access
Block

 Host Search
Block

Memory Mapping
Block

Code Injection
Block

Replication

68 D. Summerville et al.

0

1

2

3

4

5

0 100 200 300 400 500 600 700

System Call #

Level 4:
Replication occured

Level 3:
Ready for transmission

Level 2:
Code integration

Level 1:
Code generation

Level 0:
Normal activity

R
ep

lic
at

io
n
 L

ev
el

7-9

Attempt # 1 Attempt # 2

5

3

2

1

6

4

1 2
3-4

5-6

Fig. 6. Sample Virus Replication Data (648 points, 2 attempts)

There are certainly other ways to follow exactly the same algorithm and execute a
successful replication, such as using virtual memory for data swapping instead of the
direct memory access, etc. Also, there are still two more types of replication (see
Table 2) to be covered. There could be many attempts to obfuscate virus code for the
purpose of misleading the detector (i.e. changing object handles on-the-fly before),
however these attempts are easily traceable by the detector since they are also
implemented at a low level with the use of system calls. Finally, the block structure of
the GSR allows for detection of many different replication sequences of the same
Gene by simply rearranging building blocks in the GSR definition.

5 Parts of Gene of Self Replication in Legitimate Code

While most computer viruses and worms capable of self-replication are believed to be
detectable by their replication activity, there is always a considerable number of non-
viral, fully legitimate pieces of software that have to pass through the monitor
undetected and be able to continue their legitimate actions. After all, the system calls
used to identify the GSR are all created to serve these “good” programs. Our major
assumption in this research is that this legitimate software never tries to replicate itself
through any means of communication, either through local disk propagation or remote
network communication. This means that the GSR has to be designed in such a way
that it only incorporates replication blocks from the beginning to the end, as
legitimate code is never supposed to follow replication completely. However, it is
expected, that legitimate software may contain some parts of the GSR, and this can
and should be detected in case that the software starts expressing suspicious behavior.

Testing the detector on legitimate processes was a part of the experiment. In this
attempt we were trying to show how close to detection a regular non-infected process
can get. Windows native service process svchost is a good common example of a
regular system process running constantly in the background. This process is actually

 Prevention of Information Attacks by Run-Time Detection 69

a generic host process name representing different services currently running, and
therefore can do virtually any operation within the system including access to files,
networks, internet, etc. Upon invocation, svchost interacts with the system in order to
load a file into memory, the algorithm and implementation of such an action is very
similar to the virus described above, however there are some differences:

NtCreateFile 80100080h, {24, 0, 40h, 0, 14678832,
"\??\C:\WINDOWS\Prefetch\CMD.EXE-087B4001.pf""}, 0h,
0, 0h, 1, 96, 0, 0, ... 2080, 0h, 1) result = 0

2

Here the file is opened with the same system call and even the same access mask
(80100080h), however the file object does not propagate its handle to any children
processes (flag 40h), nor is it opened with “Read” and “Write” share access flags
(0h). But the main difference in these two system calls is that svchost, being a
legitimate process, does not open itself, instead it is working with other files within
the system.

There is a definite similarity between two processes when it comes to working with
memory objects, which is a normal procedure, and most processes are expected to
have it done in the same manner:

Table 6. Memory operation in a legitimate program

Therefore, there is a probability for the Memory Mapping Block above to be
detected even in non-malicious programs, but this one block, as well as many other
blocks in GSR structure such as Code Injection Block, by itself in no way represents
the entire GSR Pyramid.

Finally, the graph below represents the timeline for the legitimate process svchost
as it goes through approximately 240 instructions, many of which in one way or
another relate to some parts of the GSR structure. However, process actions never
reach the replication level.

While comparing these two graphs representing two different processes, the
difference in their behavior is obvious. It is expected from a legitimate process to
generate a behavior similar to that of a virus when operating on files and directories,
as they have to use the same API. However the malicious process clearly goes all the
way to the end of the replication procedure on its second attempt, while the legitimate
process, expressing normal behavior, never goes beyond Level 2 no matter how many
“attempts” it makes.

70 D. Summerville et al.

0

1

2

3

4

5

0 50 100 150 200 250 300

System Call #

Level 4:
Replication occured

Level 3:
Ready for transmission

Level 2:
Code integration

Level 1:
Code generation

Level 0:
Normal activity

R
ep

lic
at

io
n
 L

ev
el

Attempt # 1

Attempt # 3Attempt # 2

Fig. 7. Sample legitimate code activity graph 240 points, (3 attempts)

5.1 Replication over the Local Network and the Internet

Ever since computers started communicating with each other using local networks,
virus writers have exploited this feature. Indeed, networking opens endless
possibilities for a virus to replicate itself to as many computer systems as it possibly
can within the network instead of just infecting a limited number of files on a host
machine. Such a remote replication is possible with the use of specific network
protocols administrated by the operating system.

Theoretically speaking, replication over the network is almost identical to local
replication with the only difference being the necessity for a computer virus to
enumerate available network resources before it can access target files on a remote
computer. Therefore, a complete algorithm of virus replication for a parasitic virus,
which attaches itself to an existing file by injecting its code into the body of the
executable and replacing code entry points, would look as follows:

1. Open “Virus.exe”
2. Read “Virus.exe” Code
3. Enumerate network resources
4. Open remote “Host.exe”
5. Inject Code into “Host.exe”
6. Patch “Host.exe” Entry point

Hence, it is only required to add one block into the Gene’s syntax describing
Network resources enumeration in order for the detector to recognize the behavior.
However, enumeration can be accomplished in several different ways such as:

• Sockets
• Remote Procedure Calls
• Named pipes
• NetBIOS
• Other networking APIs

 Prevention of Information Attacks by Run-Time Detection 71

A very good example of network communication via Named Pipes can be observed
in the behavior of a family of parasitic viruses named EfishNC1 [5], the “C” version
of this virus uses named pipes when trying to communicate to other computers on the
network. While the actual source code for resource enumeration via named pipes is
only a couple of lines, the operating system has to take care of most of the
communication. Thus, the algorithm for named pipes from the OS’ point of view
would be as follows:

1. Open a pipe as a file object
2. Set appropriate information affecting the pipe
3. Send a request for resource enumeration to the pipe
4. Receive enumerated shares of a remote computer
5. Proceed with regular replication

All the events listed above are accomplished by consequently invoking regular file
management system calls with specific parameters as illustrated in table 7.

Communication through the means of Named Pipe “PIPE\srvsvc” presented above
requires several valid handles to be produced during sequence execution. First, a file
object has to be created with NtCreateFile pointing to a remote machine (BU-
SY46Q9D3MCQ2), this file object is assigned with a handle (228). As soon as the
handle is returned, the file object is set to represent a pipe that is later involved in
communication with the remote machine to obtain its available resources.
NtFsControlFile sends a packet containing the enumeration request to remote
computer (BU-SY46Q9D3MCQ2) returning a list of all available resources including
standard Windows administrative resources such as “IPC$” and “Admin$”, as well as
a single file share directory named “fake”. For the purpose of the experiment, this
directory contains a fake copy of the “Windows” system folder allowing viruses to
safely replicate onto critical operating system components – the most hunted targets.

From the point of view of networking through named pipes, Internet
communications work almost identically with a single difference in remote machine
naming convention. Specifically, when opening a named pipe to access a remote
machine over the Internet, its IP address is used as the UNC instead of the computer’s
actual name. For example, the following system call would try to open a named pipe
connection on a PENTNET remote computer.

Replication over the Internet is usually more complicated than the local network
attack, partially due to the fact that remote machines with direct Internet access are
less vulnerable. Longer response times and a much broader range of computers to
scan can make such virus activity obvious for a skilled user. Computer viruses have to
conduct a variety of tests on every single computer they attack in order to detect,
recognize and exploit vulnerability so that replication can be possible. However, such
activities are hard to predict and they should not be accounted for when defining this

1 W32.EfishNC is a memory-resident infector of all Windows Portable Executable

applications. It infects files in all folders on all local and mapped network drives. It also
infects files in folders on network shares and IP addresses that are shared with write access. It
uses entry-point obscuring (EPO) and an encryption method that is both very simple to
implement and very hard to decrypt without the key. [Symantec Security Response]

72 D. Summerville et al.

Table 7. Network resources enumeration via a Named Pipe

part of the GSR. A virus, looking for an IP on the network is by itself is a suspicious
activity that may or may not lead to a complete successful replication.

System Call Input Arguments Output

Args
NtCreateFile
0xc0100080

24, 0, 40h, 0, 4060988,
"\??\UNC\134.11.4.132\PIPE\srvsvc",
0h, 0, 3, 1, 4194368, 0, 0

228,0h,
1

The sequence of events described above represents a perfect example of a well
bound structure where every system call produces a result that is vital for the
subsequent execution and such dependencies are very traceable. Therefore, such a
sequence can be syntactically described as part of replication and can form another
component of the GSR. Such a component is called Pipe Enumeration Block and is
connected to other blocks of the Gene right before the File Access Block.

 Prevention of Information Attacks by Run-Time Detection 73

Fig. 8. Final replication behavior structure of a virus with networking capabilities

6 Results

The experiments have shown that most blocks of the GSR, being described in a
generic form, do express the behavior of many well-known as well as yet
undetermined viruses. The detection mechanism, implemented as a finite-state
machine, allows for successful tracking and detection of such behavior. Table 8 below
shows detection system response to several viruses as well as some legitimate
processes expressing similar “viral” behavior from the replication point of view. Only
the most vital blocks of self-replication are shown.

Table 8. Detection system response to various malicious and legitimate processes

 Host
Search

File
Access

Networkin
g

Memory Injection/
infection

Replication
(total)

W32.Alicia 100 % 100 % 100 % 32.4 % 100 % 100 %
W32.Bogus 100 % 100 % 5.3 % 3.7 % 100 % 100 %
W32.Crash 100 % 100 % 0 % 100 % 100 % 100 %
W32.Neo 100 % 100 % 7.0 % 100 % 100 % 100 %
W32.Linda 100 % 100 % 4.3 % 100 % 100 % 100 %
W32.Stream 100 % 100 % 32.5 % 100 % 100 % 100 %
Svchost.exe 26.3 % 100 % 79.4 % 100 % 36.0 % 78.4 %
Explorer.exe 14.5 % 92.1 % 100 % 84.5 % 47.4 % 86.2 %
Acrobat.exe 75.0 % 89.0 % 53.5 % 100 % 87.1 % 89.8 %

Since the approach is generic in its nature, many legitimate applications may
trigger some of the Gene’s building blocks. It can be seen from the table that some of
the blocks, being more generic, are detected at a rate very close or even equal to
100 % for non-malicious applications tested. A process “svchost”, for example,
indeed expressed behavior identical to a virus when working with system memory
objects. However, the host search routine has only been presented by partial detection
directory listing, therefore earning only 26 % of the entire host search behavior.

File Access
Block

Pipe Enumeration
Block

Host Search
Block

Memory Mapping
Block

Code Injection
Block

Replication

74 D. Summerville et al.

Similarly, not all computer viruses have to incorporate every possible mean of self-
replication in a single body. Companion virus W32.Bogus, for example, did not show
any signs of replication over the network or the Internet, neither it actually deals with
system memory object. However, the replication for this particular virus is proven by
other very strong arguments, such as host search and code injection.

The authors realize that no detection method is 100 % perfect and it is expected
that some viruses may express different behavior that are not yet described in terms of
the GSR. However, all viruses have to follow the most generic rules of replication. In
the case of a false positive detection of a block in the replication pyramid, provided
that other blocks are detected correctly, the protection system may conclude that the
replication rate for the given process is achieved to a certain degree, while it is still
lower than 100 %. In this case, the threshold can be set to suspend a suspicious
process from any further action and alarm the user. However, such a threshold should
not be set below 90 %, as it can be seen from the table, a high rate of false positives
will be generated under such conditions.

7 Conclusion

In this paper we proposed an advanced approach to software behavior recognition
with specific application to the detection of malicious behavior in computer viruses.
The reason for choosing the mechanism of self-replication as the detection criteria is
that non-malicious codes have no reason to disseminate themselves, while self-
replication is crucial for deploying widespread information attacks. One of the
primary strengths of the proposed approach is its ability to detect previously unknown
viruses with a very low false-positive rate. In addition, it is independent of the style of
the programmer, programming language, and compiler (assembler) used. Malicious
behavior detection is done at a very low level, in the operating system, where the most
important activities can be monitored. This prevents the detection system from getting
overflowed with useless calls that can be accomplished at a higher, more vulnerable
level, while still allowing for the monitoring all activities of processes accessing vital
operating system facilities. The detection is implemented as a runtime monitor – a
detector system allowing for immediate detection and termination of any number
suspicious of processes currently running on the system.

Of course, no method of detection is perfect. Although this paper presents an
attempt to detect and account for all existing methods of self-replication, there may be
some new techniques in virus writing that will thwart this effort. The authors are
aware of the feasibility of multi-processing self-replication that could be implemented
by a very sophisticated attacker and intend to address this threat in future research.
However, most information attacks require the use of less sophisticated programming
techniques to ensure successful execution on a wide range of computer systems,
assuring the success of the proposed technology.

Acknowledgement

The authors are grateful to the Air Force Office of Scientific Research for funding the
project “Recognition of Computer Viruses by Detecting Their Gene of Self
Replication” that has resulted in findings presented in this paper.

 Prevention of Information Attacks by Run-Time Detection 75

The authors are also grateful to Prof. Scott Craver of Binghamton University for
his valuable suggestions and insights.

References

1. Skormin V. at al.: “BASIS: A Biological Approach to System Information Security”,
Proceedings of the International Workshop Mathematical Methods, Models and
Architectures for Computer Network Security, Lecture Notes in Computer Science,
Vol. 2052, Springer Verlag (2001) 127–142

2. Tarakanov, A., Skormin, V., Sokolova, S.: Immunocomputing. Theory and Applications.
Springer-NY (2003) pp. 210

3. Skormin, V., Summerville, D., Moronski, J.: “Detecting Malicious Codes by the presence
of their Gene of Self-Replication”, “Computer Network Security”, Lecture Notes in
Computer Science, Vol. 2776, Springer (2003)

4. Fu, K.S.: Syntactic Methods in Pattern Recognition. Academic Press Inc., NY (1974)
5. Symantec Security Response

http://securityresponse.symantec.com/avcenter/venc/data/w32.chiton.gen.html
6. Ludwig, M.A.: The Giant Black Book of Computer Viruses. 2nd Ed., American Eagle

Publications (1998)
7. Russinovich M.E., Solomon, D.A.: “Microsoft Windows Internals, Fourth Edition:

Microsoft Windows Server 2003, Windows XP, and Windows 2000”, Microsoft Press
(2005)

8. Nebbett, G.: “Windows NT/2000 Native API Reference”, Macmillan Technical
Publishing, IN (2000)

9. Poor, H.V.: An Introduction to Signal Detection and Estimation. 2nd Ed., Springer (1994)
10. Skormin, V., Summerville, D., Moronski, J., McGee D.: “Biological Approach to System

Information Security (BASIS): A Multi-Agent Approach to Information Security”, Lecture
Notes in Computer Science, Vol. 2691, Springer-Verlag Heidelberg (2003)

11. Weaver, N., Paxson, V., Staniford, S., Cunningham, R.: “A Taxonomy of Computer
Worms”, Proc. ACM CCS Workshop on Rapid Malcode (October 2003)

12. Kienzle, D., Elder, M.: "Recent Worms: A Survey and Trends", Proc. ACM Workshop on
Rapid Malcode (October 2003)

13. Aho, A.V., Sethi, R., Ullman, J.D.: Compilers: Principles, Techniques, and Tools.
Addison-Wesley (1986)

14. Grune, D., Jacobs, J.H.: Parsing Techniques: A Practical Guide. Ellis Horwood (1990)
15. Whalley, I., Arnold, B., Chess, D., Morar, J., Segal, A., Swimmer, M.: An Environment

for Controlled Worm Replication and Analysis. IBM TJ Watson Research Center (Sept
2000)

16. Weaver, N., Paxton, V.: A worst case worm. 3rd Annual Workshop on Economics and
Information Security (WEIS04), May 13–14, 2004 University of Minnesota, Digital
Technology Center

17. Schechter, S.E., Smith, M.D.: “Access for Sale: A New Class of Worm”, The ACM CCS
Workshop on Rapid Malcode (WORM 2003), Washington, DC (October 2003)

18. Ellis, D.: “Worm anatomy and model”, Proc. ACM CCS Workshop on Rapid Malcode,
(October 2003)

19. Arnold, W., Tesauro, G.: Automatically Generated Win32 Heuristic Virus Detection.
Virus Bulletin Conference (2000)

Calibrating Entropy Functions Applied to
Computer Networks

Duncan A. Buell

Department of Computer Science and Engineering,
University of South Carolina,

Columbia, South Carolina 20209
buell@cse.sc.edu

http://www.cse.sc.edu/ buell

Abstract. It has been suggested that the problem of determining the
state of a network could be solved by computing entropy functions based
on the dynamic connections that are made among the nodes of that net-
work. In this paper we will attempt to calibrate, in a quantitative way,
the computation of those entropy functions on simulated data that we
believe should resemble real data. Our purpose is to understand how
one might use the entropy functions to signal that the state of a net-
work is undergoing a significant change, perhaps due to an attack on
the network or an attack emanating from the network. Our results are,
we believe, either inconclusive or negative. Specifically, we believe that
our simulations suggest either that these entropy functions are not suf-
ficiently indicative of anomalous behavior in a network as to be usable
for this purpose or that conversely in order for them to be used to detect
anomalous behavior, the underlying “normal” behavior of the network
would have to be more stable than we might expect it to be.

1 Introduction

It has been suggested [1,3] that the problem of determining the state of a net-
work could be solved by computing entropy functions based on the dynamic
connections that are made among the nodes of that network. In this paper we
will attempt to calibrate, in a quantitative way, the computation of those en-
tropy functions on simulated data that we believe should resemble real data.
Our purpose is to understand how one might use the entropy functions to signal
that the state of a network is undergoing a significant change, perhaps due to
an attack on the network or an attack emanating from the network.

We are attempting to model the behavior of a network, which we assume
comprises at least hundreds if not thousands or tens of thousands of nodes. A
large university campus, for example, has on the order of 10, 000 nodes connected
to its network. From the traffic on the network, we can construct a connectivity
matrix C that represents the dynamic connections of the network as defined by
the traffic in the time interval during which data has been gathered.

We note that the physical network topology is not of interest here. Physical
connections are not relevant to the state of the network unless they are actually

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 76–87, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

Calibrating Entropy Functions Applied to Computer Networks 77

used. What is of interest is the logical set of network connections, that is the
set of point-to-point connections of which use has been made. We thus let the
connections of the network be defined by the data and not by a predetermined
description of the underlying hardware.

We also note two characteristics of the matrix C that we will deal with later,
but that we mention only in passing in this introductory discussion. The first is
the fact that the dynamic connections of the network, as defined by its traffic,
are time-varying, but we cannot hope (for reasons of computational efficiency, if
for no other reason) to view them as connections that vary continuously. We will
of necessity deal with the network data in discrete, perhaps overlapping, time
intervals in order to obtain a sequence of snapshots of the network.

Second, the matrix C can be defined in many ways, depending on one’s con-
cept of “network traffic.” Perhaps the simplest definition is that it is simply the
adjacency matrix of nodes of the network, representing an undirected graph (and
thus a symmetric matrix) in which nodes are connected if they have exchanged
a message (in either direction) during the time interval during which data has
been collected, and not connected otherwise. More complicated matrices can be
constructed by weighting the adjacency matrix to reflect the number of messages
sent, the number of bytes sent, and so forth. Later in this document, when we
discuss the issues of entropy, we will normalize the entries so that the sum of all
entries is 1.

Finally, we must deal with the diagonal entries of C. In keeping with the
proposal made by Gudkov, Johnson, Madamanchi, and Sidoran [3], we place in
the diagonal entries of the matrix the negative of the row (or column, since the
matrix is assumed symmetric) density off the diagonal. This is done by Gudkov
et al. so as to obtain a matrix that represents a Markov process and thus to be
able to argue that a deeper analysis based on the theory of Markov processes
is relevant. In what follows here we in fact never use the diagonal entries of the
matrix, so the actual values assigned to them are not relevant.

The matrix C will change over time as the dynamic connections change. If
we were to view the network as a graph, and we had a sequence of matrices,
then we could (in theory) view the graphical images of the graphs over time
and detect changes in the network that would represent anomalous behavior
and/or intrusions. The proposal of Gudkov et al. is that one can apply entropy
functions to these matrices, and that the changes in the entropy functions will
reflect changes in the matrix (and by extension, the network) in a useful way.

Caveats About the Real World

There are a number of assumptions about the real world that may or may not
be true and which would affect the ability of an entropy metric as mentioned
here to detect anomalous situations in a network. On the one hand, verifying
that these assumptions were true would be important if one were to determine
that this version of an entropy approach were viable for detecting anomalies
in a network. On the other hand, if our analysis suggests that the approach is
not viable even if the assumptions were true, then the matter of verifying the
assumptions becomes moot.

78 D.A. Buell

One assumption is that anomalous situations might result in clusters of con-
nections among nodes. This was the initial assumption of Gudkov et al., but
there is reason to believe that a cluster is not what one would expect from an
anomaly. A worm, for instance, that was scanning IP addresses for vulnerable
computers, would be indicated not by a cluster in the matrix but by a high den-
sity of nonzeros in the row and/or column for that node. A collection of nodes
infected with a worm would be indicated by a set of denser “lines” in a set of
rows and columns, but not a cluster. On the other hand, the entropy change
from a cluster will be greater than that from a small list of lines, so if changes
caused by clusters cannot be detected reliably, then changes caused by sets of
lines will be even harder to detect.

The argument of the previous paragraph can also be made regarding the
question of what kinds of attacks might be detectable by this approach. An attack
includes some set of machines involved in higher-than-normal communication
with other machines. The extreme end of higher-than-normal communication is
not just a cluster but a solid block of nonzero entries for the nodes involved in
the attack either as attacking or attacked machines.

Further concerns about the utility of this approach come from questions
about whether it would be feasible to collect the everything-to-everything con-
nectivity data in a real network. It would be difficult–indeed probably
impossible–to gather data from every node in a network. Further, the return
of that data to a central node for processing would in itself look very much like
an anomalous event. Also, normal traffic is almost certainly not just the random
sending of messages among nodes; there will be daily and weekly fluctuations,
bursts of events, broadcasts to all users, and such. With a very short time win-
dow one would be hard pressed to distinguish an administrative communication
to all machines on a net from an infected machine searching all machines to find
those that might be vulnerable.

Again, we do not attempt to address these questions. If under ideal situations
there is insufficient ability to distinguish anomalies from normal behavior with
the proposed entropy metric, then there is little reason to worry about whether
anomalies could be detected under less-than-ideal conditions.

Finally, this paper describes an experiment based on simulated data. We
are in the process of gathering real data for processing. In the event that this
approach shows promise, then it would be necessary to verify simulation results
against real data. However, in an experimental mode it is necessary to begin
with real data so that the input to the processing can be predictable and the
presence and severity of an anomaly can be measured.

2 Entropy Functions

Following the method by which Gudkov et al.[3] address the question of entropy
in the network, we first normalize the connectivity matrix C so that

∑
i,j Cij = 1.

For convenience, we will abuse notation and also refer to this as C in this section.
Although our matrix is symmetric, reflecting an undirected graph, we will

intuitively view the values Cij in what follows as representing connections from

Calibrating Entropy Functions Applied to Computer Networks 79

node (row) i to the node (column) j. The sum Pi =
∑n

j=1 Cij is thus the
probability of a connection from node i to the other nodes in the network, and
we can define a row-wise Shannon entropy

H(row) = −
n∑

j=1

Pi log Pi. (1)

We note that we could just as well consider a column-wise entropy H(column)
and that H(row) = H(column) since the matrix is assumed to be symmetric.

The Shannon mutual information, or negative Shannon entropy, contained
in the matrix C is

I(C) = H(row) + H(column)−H(column|row) =
n∑

j=1

Cij log
Cij

PiPj
. (2)

We note that I(C) is independent of the labelling of the nodes of the network.
A more general Rényi entropy of kind q [6] can be defined as follows.

Hq(row) =
1

1− q
log

n∑
j=1

P q
j . (3)

The Rényi information of the first kind (q = 1) is identical with Shannon in-
formation [2,7]. One can in fact view Rényi information as a generalization of
Shannon information. The Rényi formulas above follow as the only formulation
of entropy/information that is consistent with axioms set forth by Kolmogorov
and Nagumo [4,5].

Since Rényi entropy is a generalization of Shannon entropy, we can consider
the entropy of equation (3) and the associated

Hq(column|row) =
1

1− q
log

⎛⎝∑
i,j

Cq
ij

⎞⎠ . (4)

From these we can compute the Rényi mutual information Iq(C) for a connec-
tivity matrix in a manner analogous to that for Shannon information.

One suggestion made by Gudkov et al. is that instead of computing the
entropy functions alone, we could compute the difference between the Rényi
entropies of the second and first kinds as a way of measuring the state of a
network.

3 Calibration

The proposal has been made to use entropy functions to measure the state of
a network. The work of Gudkov et al. has shown that a qualitative change in
the entropy function does arise from a change in the connectivity matrix derived

80 D.A. Buell

from traffic data. To use the entropy functions in a viable system for detect-
ing anomalous behavior, one must calibrate these functions to determine their
predictive capability. In an operational setting, one could imagine a constant
recomputation of entropies and a comparison of the values computed against
a baseline of “normal” behavior. The goal would be to know that abnormal
behavior would change the values computed in a definable, measurable, pre-
dictable, way so that such changes could be used to trigger the alarm bells and
the necessary responses to what would be presumed to be an attack or other
anomaly.

All software was developed and run on a Red Hat Linux system and the gcc
compiler. This is relevant only in that the random numbers used were generated
by the built-in rand() function. We acknowledge that this sequence of pseudo-
random numbers may not satisfy high-grade tests for randomness. Some of our
tests were done again with a better random number generator, and the change
in the results was too small to be considered relevant to our basic conclusion at
the end of this paper.

3.1 Assumptions

In order for the entropy functions of the previous section to be applicable, it is
necessary that the underlying input data be compatible with the computation
of these entropies. Specifically, we assume for the purposes of calibrating these
functions that we have a matrix of n rows and columns, representing n nodes
on the network, and with n ≈ 10000 as a ballpark estimate. We would expect
n < 5000 to be too small to be of interest and n > 50000 to be perhaps too
large. The entropy measures are global measures of network behavior; absent
an incremental approach or a method for rapidly determining a subset of the
connectivity matrix on which to focus, we would expect an O(n2) or worse
computation for n > 50000 to be prohibitive for real time. We assume also
that there is a background density of connections between nodes, and we take
that density to be in the range of 5% to perhaps 15%. Finally, the underlying
assumption in the use of these entropies is that, when properly viewed, the
matrix will have a nonrandom structure. In Gudkov et al. and in this work
we look at clusters that could be seen (with an appropriate permutation of the
node subscripts) as denser blocks along the diagonal. Anomalies that scanned, for
example, all the nodes in a subnet local to the infected machine would result in
rows and/or columns of the matrix that were much denser than the background.

We admit that the assumptions of the previous paragraph are in fact just
assumptions. In another part of the larger project of which this work is a part
we are studying real data from networks to determine whether the above as-
sumptions are justified and how the simulated data would have to change in
order to be more realistic. But these assumptions must be expressed in order to
understand why the parameters of our experimental data have been chosen as
they have been. We postulate, however, for the purpose of initial study, that we
could calibrate these entropy functions by studying the following independent
variables.

Calibrating Entropy Functions Applied to Computer Networks 81

1. The overall size of the network. This is the number of rows (also of columns)
in the matrix C. We will study sizes ranging from approximately 100 up
through approximately 10000.

2. The background density. This is the probability that one node will be con-
nected to another at random. We will assume until shown to be in error that
these probabilities will fall in the range 0.05 to about 0.15.

3. The number of clusters in the network.
4. The sizes of the clusters.
5. The densities of the clusters.

It is the latter three variables that require justification. We assume that in a
large network, such as a university, that departments, colleges, and other units
will appear in the connectivity matrix as clusters, because the nodes in these
units will have reasons to be communicating with each other more frequently
than would be observed for the background random activity. If one were to
have complete information about the network traffic (this would require an NP-
complete computation to be done), then one could, for any chosen threshold that
would define a cluster, rearrange the matrix C into a block-diagonal form. In the
absence at present of any real data contradicting the assumption, we will assume
that the number of clusters of a given size will have a Zipf-like distribution and
will vary inversely with the size of the clusters, and we will generate simulated
data accordingly. For our initial experiments we have chosen cluster densities in
the range of 0.50 to 0.90. We have chosen initially to study two types of cluster
structure. The first is a single cluster of varying size that could in fact be the
entire network. This follows the mode of Gudkov et al. in looking at difference of
entropies for a single cluster as it grows from a small size eventually to become
the entire network. The second study is motivated by an assumption about how
C might change for a network experiencing an anomaly. We begin with a series
of clusters of decreasing size, computing the entropies as we go, to establish the
parameters for a “normal” state. We then introduce a moderately large cluster
(on the order of 10% of the entire network) that we might postulate to arise
from a newly-infected computer that has begun an attack.

3.2 The Software Artifact

A brief description of the software is in order. Our program takes as input a
set of parameters that includes the matrix size, the background density, and the
number, size, and density of the clusters to be simulated. Calls to rand() are
made to fill in the background of a symmetric matrix of the appropriate density,
and the background entropy is computed. Following this, the simulated clusters
are added one at a time and the entropy recomputed. An overall outer loop
controls the number of such tests to be made. Any of the entropy calculations
themselves are simply effected by a double loop through the rows and columns of
the matrix (which is for programming convenience represented in dense matrix
form). The code was written for simplicity and flexibility, not for performance,
and since even for the larger matrices the running times were at worst in minutes,
we made no attempt to improve the efficiency of the code if that would have
added complexity and/or decreased the flexibility.

82 D.A. Buell

3.3 Variability Due to Sampling

One first question to be addressed is whether the entropy functions are stable
from one randomly-generated matrix to another, a fundamental question of the
signal-to-noise ratio of the functions being studied. To this end, we have run two
experiments.

– In the first experiment, we assume a background density of 5% for random
connections, we assume overall network sizes of 1000 to 10000 nodes in in-
crements of 1000 nodes, and we assume a cluster size of 1000 nodes with a
cluster density of 80%.

– In the second experiment, we assume a network size fixed at 10000 nodes,
a single cluster of 1000 to 5000 nodes in increments of 1000 nodes, and the
same background and cluster densities as in the first experiment.

In both cases we do ten iterations and compute the Shannon entropy (equation
(1)), the Rényi entropy (equation (3)), the mutual Shannon entropy for q = 2
(equation (2)), the mutual Rényi entropy for q = 2 (equation (4)), and the
difference between the latter two mutual entropies.

We did not conduct a thorough statistical analysis, because this did not
seem necessary. If we naively compute the difference between the maximum and
minimum values and divide by the average value with each parameter setting,
we obtain a measure of the relative error from using different random samples
but with all other variables held constant.

The result of both experiments seems to be that the differences arising from
sampling are very small. There were a few instances in which this relative error
was as large as 2.0 × 10−4, but for the most part the relative errors were even
smaller than this, often less than 10−6. As long as the predictive use of entropy
as an indicator of anomaly is based on observed changes significantly larger than
1 in 10000, say, we would not expect sampling variations to have a significant
effect.

3.4 The Entropy Functions Themselves

We turn next to the entropy functions themselves.

Single-Cluster Matrices: In our first simulation we computed entropies for
all matrices with

– network size 100 to 1000 in increments of 20, with constant background
density 0.05

– a single cluster of size 20 to 1000 in increments of 5
– cluster densities from 0.50 to 0.80 in increments of 0.10

We present a plot that provides a heuristic view of the functions. Figure 1 is of
the standard Shannon entropy for cluster densities 0.80. The plot is quite similar
for different cluster densities and for the Rényi entropy for various densities. As
one would expect, the entropy is high for networks in which either few or most

Calibrating Entropy Functions Applied to Computer Networks 83

Fig. 1. Shannon entropy, cluster density 0.80

nodes are not in a cluster, and the entropy is smaller for networks in which
roughly half the nodes are in a cluster. What is to be noted, however, and is also
to be expected, is that the variation between high and low decreases, for a fixed
pair of densities, as the network size increases. This bodes ill for the scalability
of this approach to detecting network anomalies.

In Figure 2 we present the difference between Shannon and Rényi entropies
of the second kind for cluster density 0.80. We present the view from a slightly
different angle and with a slightly different view so as to expose the shape of the
surface.

Multiple-Cluster Matrices the initial experiment: For our second exper-
iment, we have constructed a single matrix of 10000 nodes with a background
density of 0.05. To this we have then added five clusters of 500 nodes each (that
is, 5% of the total matrix size for each cluster), four clusters of 300 nodes (3%),
three clusters of 200 nodes (2%), and seven clusters of 100 nodes (1%), all with
a density of 0.80. This represents a total of 50% of the matrix contained in clus-
ters, and this we take to be the matrix in “normal” state. To this we then add
one final cluster of 500 nodes to simulate a new hot spot in the network.

The plot of the entropy differences is shown in Figure 3. An initial tentative
conclusion from this experiment is that these entropy measures may not be
sufficiently sensitive to be used to predict behavior. Although we do observe a
drop in the mutual entropy when the hot spot is introduced, the change is not
obviously so great as to be convincing that such a change could be detected in
an operational situation.

84 D.A. Buell

Fig. 2. Entropy difference, cluster density 0.80

Fig. 3. Entropy difference

A more general test: For our final experiment, we used a network of 10, 000
nodes with a background density of 0.05. We then added clusters, with densities
all at 0.80, whose node counts summed to 5, 000, or half the total network. To
this mix we then add one cluster of 1000 nodes, or 10% of the entire network.
The sequences of clusters added were of the percentages of the total network
indicated in Table 1. For example, the first experiment used a single cluster that

Calibrating Entropy Functions Applied to Computer Networks 85

Table 1. Clusters used in the large experiment

e 50 10
f 45 5 10
g 40 5 5 10
h 35 5 5 5 10
i 30 5 5 5 5 10
j 30 10 5 5 10
k 25 5 5 5 5 5 10
l 25 10 5 5 5 10

m 25 10 10 5 10
n 20 5 5 5 5 5 5 10
o 20 10 5 5 5 5 10
p 20 10 10 5 5 10
q 20 10 10 10 10

Fig. 4. Difference of entropies, experiments e through i, o through q

was 50% of the entire network, to which a subsequent cluster of size equal to
10% of the network was then added. In the last experiment, we began with a
single cluster that was 20% of the network and then added three clusters each
of size equal to 10% of the network before adding a final cluster of size 10%.

We apologize for less-than-optimal plotting capability in this version of the
paper, but present the results below. Figures 4 and 5 contain the differences of
mutual entropy of Shannon and Rényi, and is thus a generalization of Figure
3. Although the sequences are somewhat hard to distinguish, the lines repre-
senting entropy values are in essentially reverse order, top to bottom, as the
cluster sequences are presented in Table 1. The upper grouping in Figure 4 is
of experiments i through e, top to bottom, and the lower grouping is of experi-

86 D.A. Buell

Fig. 5. Difference of entropies, experiments j through n

ments q through o, top to bottom. In Figure 5 the sequence top to bottom is of
experiments n through j.

Our analysis of this very preliminary data suggest that it may well be difficult
to distinguish the presence of a new cluster, even one so large at 10% of the entire
network, on the basis of entropy values. This conclusion is based on the fact that,
although there is a decided bend in the graphs when the last cluster is added,
the ranges of values that we observe with the last cluster fall well within the
ranges we would expect with a different sequence of normal clusters. In order to
use the “kink” of the last cluster as a predictor of anomalous behavior, it would
probably be necessary for the network in steady state to have an extremely fixed
structure. We suspect that computer networks might well be more dynamic than
would be necessary to use these small changes in entropy as predictors.

4 Conclusions and Future Work

We believe we can draw three conclusions from the experiments presented here.

– We believe that the entropy functions suggested in Gudkov et al. are robust
under statistical variations in random number generation.

– We observe noticeable qualitative changes in the entropy functions due to
the addition of clusters in the connectivity matrix on the order of 5% to 50%
of the entire matrix.

– We are unsure as to the predictive capability of these entropy functions for
detection of anomalies. Although a change in the entropy functions can be
observed when a cluster of size 10% of the matrix is added, that change

Calibrating Entropy Functions Applied to Computer Networks 87

is well within the range of what would be “normal” changes depending on
the prior addition of clusters of similar sizes. We remark that to be effective
in detecting anomalies, a system would have to respond to changes in time
windows certainly not much larger than five minutes, if even that large.
Normal changes might be observed from diurnal work habits, lunch breaks,
morning broadcast of messages, and the like, and it is unclear whether or
not such changes would mask, in something like a five-minute window, the
effect of an anomaly.

To resolve the question left open in the third bullet above, we are refining
our simulation software. We are generating background and anomaly data based
on statistical characteristics actually observed in real traffic so that we might
better understand the range of changes in the background that would mask the
effects of an anomaly.

Acknowledgements

We are grateful to the Joe Johnson and Vladimir Gudkov for assistance in mak-
ing sure that our computations were a correct implementation of the functions
suggested.

References

1. Buell, D.A., Huang, C.-T., Janies, J., Gudkov, V., Johnson, J.E.: Introductory
material. Prepared for a DARPA workshop 18-20 October 2004, Kiawah Island,
South Carolina.

2. Brillouin, L.: Science and Information Theory. Academic Press. New York (1956)
3. Gudkov, V., Johnson, J., Madamanchi, R., Sidoran, J.L.: Monitoring of network

topology dynamics. Proceedings, NATO Symposium on Adaptive Defence in Un-
classified Networks. (2004) To appear

4. Kolmogorov, A.N.: Sur la notion de la moyenne. Atti della Reale Accademia
Nazionale dei Lincei, Serie VI, Vol. 12. (1930) 388–391

5. Nagumo, M.: Über eine klasse der mittlewerte. Japanese Journal of Mathematics,
Vol. 7 (1930) 71–79

6. Rényi, A.: Probability Theory. North-Holland. Amsterdam and London (1970)
7. Shannon, C.: A mathematical theory of communication. Bell System Technical

Journal, Vol. 27 (1948) 379–423, 623–656

A Passive External Web Surveillance Technique
for Private Networks

Constantine Daicos and Scott Knight

Royal Military College of Canada,
PO Box 17000, Station Forces Kingston, Ontario Canada K7K 7B4

cdaicos@gmail.com, knight-s@rmc.ca

Abstract. The variety and richness of what users browse on the Inter-
net has made the communications of web-browsing hosts an attractive
target for surveillance. We show that passive external surveillance of web-
browsing hosts in private networks is possible despite the anonymizing
effects of NATs and HTTP proxies at the gateway. These devices ef-
fectively anonymize the origin of communication streams, and remove
many identifying features, making it difficult to group web traffic into
mutually disjoint same-host single user sets called sessions. Sessions of-
fer a complete picture of each user’s web browsing experience. Without
them, passive external surveillance is of little use. This paper offers a con-
tent analysis technique called Link Chaining that aids the sessionization
process by recovering large pieces of sessions called session fragments.
The technique is based on the knowledge that the majority of down-
loaded web resources are clicked-to from other web pages. By following
hyperlinks in the bodies of HTTP messages in passively collected trace
data, web traffic can be be coalesced into session fragments and used
by human analysts to isolate individual users’ sessions. The technique
gives the human analyst a significant advantage over manual methods.
The implementation presented here has been tested on accumulated local
data and demonstrates the feasibility of the scheme.

1 Introduction

Given a raw trace of web traffic collected from the outside of a private network,
an adversary performing surveillance can be expected to take three steps:

1. Reconstruct TCP/IP connections from raw packets
2. Organize the connections into user sessions

(mutually disjoint same-host sets)
3. Browse the web content of each session to gather intelligence

Without the effects of gateway devices, the second step is trivial. The ad-
versary logging packets from the outside can group them by the original host’s
IP address and produce user sessions. With (network address translation (NAT)
and HTTP proxies however, the original IP address and other identifying infor-
mation is absent, making it very difficult for to group traffic into user sessions.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 88–103, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

A Passive External Web Surveillance Technique for Private Networks 89

Without any sophisticated techniques, an adversary performing surveillance
on the outside of any of these devices would be able to reconstruct individual
TCP/IP connections, but would be unable to group those connections into user
sessions. The adversary would be forced to sessionize them manually. This would
involve evaluating the web content of every single connection and making a
best guess at which ones belong together. The problem is akin to accurately
assembling the pieces of many jigsaw puzzles jumbled together in one box.

The Link Chaining Attack (LCA) of this research aids the adversary by au-
tomatically organizing TCP connections into groups we call session fragments.
Fragments are formed by following HTML hyperlinks across multiple TCP con-
nections. These fragments are much larger than individual connections, and allow
the adversary to assemble sessions more quickly.

1.1 Related Work

The are three types of devices that pose increasing levels of difficulty to the
problem of grouping traffic into user sessions (mutually disjoint same-host sets).

1. NAT
2. Plain HTTP Proxy
3. Anonymizing HTTP Proxy

Although none are designed specifically for surveillance, existing techniques
[4] [5] can be used to sessionize traffic collected from the outside of NATs and
plain HTTP proxies, but not anonymizing HTTP proxies. The LCA was designed
to operate under the strict conditions of anonymizing HTTP proxy. There is no
known existing technique for doing this. The following three sections will explain
why.

1.2 NAT

With NAT in place, a large number of private addresses are mapped to a small
number of public addresses (often just one), so all traffic looks like it is coming
from a single host. When all communication is with the same IP, there is no
obvious way to differentiate the streams of traffic generated by individual hosts.

Existing attacks like Bellovin’s IPid technique [4] can be re-purposed to group
NATed web traffic into user sessions. These attacks exploit the fact that most
NAT devices are configured to re-write only the IP address of packets. Other
fields are left untouched, passing through NAT unchanged from their originating
host. Bellovin traces the unchanged IPid field to reveal which packets come from
the same host.

1.3 Plain HTTP Proxy

Web proxies are middlemen that fulfill transactions on the client’s behalf. With-
out a web proxy, HTTP clients talk directly to HTTP servers. With a web proxy,

90 C. Daicos and S. Knight

two separate TCP connections are established: one between the client and HTTP
proxy, and one between the proxy and server. The use of this intermediary means
that, unlike NAT, the TCP/IP packet headers contain no identifying features to
differentiate streams emanating from different hosts. This renders attacks like
Bellovin’s IPid technique useless.

Original host information can still be found however, in the HTTP headers
of outgoing requests. Plainly configured HTTP proxies pass these headers to the
web server unchanged. If browsers in a network are not all configured identically,
these headers can be used [5] to resolve at least some of the HTTP traffic to
same-host sets. Of course, this assumes that the headers are present, and have
not been scrubbed by an anonymizing proxy.

1.4 Anonymizing HTTP Proxy

The HTTP Anonymizing Proxy performs the same functions as a plain proxy,
but scrubs all non-essential headers from outgoing requests. Without any headers
to uniquely identify distinct hosts, keying on HTTP headers is not at all effective.

The Link Chaining Attack can be an effective technique under the condi-
tions of an anonymizing web proxy because it operates on the HTTP message
body. Although HTTP headers can be changed by intermediate devices, the
web content itself cannot be changed in any meaningful way without affecting
the browsing experience. The Link Chaining Attack takes advantage of this by
reconstructing individual web pages from the traffic stream and following the
links they contain forward in time to chain TCP connections into user session
fragments.

1.5 Research Goals

The aim of this work is to develop a technique that aids the analyst’s manual
sessionization by grouping TCP connections into fragments that are as large and
accurate as possible. The technique follows the hyperlinks in HTTP messages
to identify the TCP connections that belong together. The theory is described
in section 2 and the experiment is outlined in section 3. Before presenting the
results in section 5 we propose some metrics to evaluate the quality of fragments
isolated by our technique. In the analysis of section 6 we validate the work by
establishing a lower bound on the effective analyst speedup.

2 Theory

The Link Chaining technique coalesces independent TCP connections into same-
host groups by following hyperlinks in web pages. By matching the URLs con-
tained in the body of an HTTP response of one connection to the URLs in the
HTTP requests of all other connections, and judiciously removing impossible or
improbable links, it is possible to assemble fragments of user sessions.

The TCP connection is the basic building block in this process. Figure 1
depicts the HTTP requests and responses of two independent TCP connections.

A Passive External Web Surveillance Technique for Private Networks 91

Fig. 1. Chaining Two Independent TCP Connections

The figure illustrates how the independent connections TCP 1 and TCP 2 can
be chained by matching URLs. The hyperlink B in the first HTTP response of
the first connection is matched with the URL B in the first HTTP request of
the second connection.

The four phases of the Link Chaining technique are: Naive Chaining, Im-
possible Link Removal, Unlikely Link Removal, and Session Fragment Isolation.
The first phase produces a tangled mass of edges and nodes representing all pos-
sible links between all connections. The two subsequent phases chip away at this
mass, selectively removing impossible and unlikely links. By traversing the edges
of the isolated graphs that remain, connection nodes are aggregated into groups.
These groups of connections form session fragments. The process is summarized
in Figure 2.

Fig. 2. Four Phases of the Link Chaining Attack

The raw inputs to the LCA are reconstructed TCP streams, HTTP messages,
and the HTML hyperlinks they contain. Although these inputs are extracted
from logged packets using known methods, the difficulty of this process should
not be discounted. Before links can be extracted from web pages, the pages
must be accurately reconstructed from individual packets. In many cases, the
pages must also be decoded, uncompressed, parsed, and normalized. Relative
links must then be resolved to their absolute form, stored with contextual meta
data like timestamps and connection origin, and indexed appropriately for use
in the LCA. For link extraction to be comprehensive and accurate, the software
must also accomodate imperfect implementations of web protocols. These spec-

92 C. Daicos and S. Knight

ifications essentially require the development of TCP/IP assembly and HTTP
parsing facilities comparable to those of a full-fledged web browser.

2.1 Naive Chaining

The first step of the Link Chaining technique is to naively match all response
URLs with all request URLs across all connections. A ”URL match” is defined
as a literal match between a URL in any response of one connection (e.g. in a
web page) and a URL in the first line of any request in another connection (e.g.
in a GET request). The complete set of URL matches can be represented as a
list of adjacencies (ordered pairs) forming one or more directed graphs, where
each node is a TCP connection.

Naive chaining identifies every single adjacency. This includes adjacencies
representing link traversals that never actually occurred. By including all adja-
cencies, naive chaining produces a set of comprehensive starting graphs for the
Link Chaining Attack. Many edges must be removed from these graphs before
individual user session fragments can be isolated.

2.2 Removing Impossible Adjacencies

In the second phase of Link Chaining, the impossible edges in the graphs are
removed. An edge is considered impossible if the link traversal it represents could
never happen. The TCP and HTTP protocol mechanisms impose structural and
temporal constraints on the traversal of links. Certain connections cannot be
chained because it would imply an impossible link traversal. Two impossibilities
are defined based on these constraints:

1. Connections Chained Backward in Time
2. URLs Chained Backward in Time

Each is discussed in turn.

Connections Chained Backward in Time. When a page containing URL
pointers to other resources is downloaded, it is followed by a flurry of requests.
Some of these are due to the browser automatically requesting resources associ-
ated with the page, others are due to a user’s clicking of a hyperlink. These are
implicit and explicit requests respectively. In terms of HTTP protocol specifica-
tion, no distinction is made between implicit and explicit requests.

If the requested resources are on the same server, and the web server and
browser are so configured, HTTP requests may be issued on the same, already
open TCP connection used to download the initial page. Otherwise, a new con-
nection is opened to issue the request. HTTP requests can also be sent on older
connections to the same server that are still open. This flexible connection reuse
policy is made possible by HTTP/1.1 [2], and it affords us only one temporal
constraint on the chaining of connections:

Constraint 1: For any two TCP connections A and B, if B is closed
before A is opened, A cannot be chained to B.

A Passive External Web Surveillance Technique for Private Networks 93

URLs Chained Backward in Time. The second important temporal con-
straint is due to the fact that a resource request cannot be made if the URL
pointer to that resource has not yet appeared in a response. For implicit re-
quests, this simply means the browser cannot request a URL that has not yet
been downloaded. For explicit requests, it means that users cannot click on URL
hyperlinks that have not yet appeared on screen. This constraint is summed up
as follows:

Constraint 2: A link traversal is impossible if the request URL appears
before the response URL. A URL Match representing such a traversal is
invalid. Two connections cannot be chained if every URL Match between
them is invalid.

Since the packets of connections are interleaved on the wire, the content of
connections is interleaved in time. To determine the validity of a URL Match,
the timestamp of the request URL must be compared with the timestamp of the
response URL. In a timing diagram, HTTP events in a connection might look
like Figure 3.

Fig. 3. Chaining Two Independent TCP Connections

Assuming a URL in the response of connection 1 matches the URL in the
request of connection 2 in the figure, we must decide whether it is temporally
possible that the request in connection 2 was initiated from 1. If not, the connec-
tions cannot be chained. To do this, URLs must be tagged with the time their
containing packet appeared in the traffic stream.

2.3 Marking Likely Adjacencies

The preceding step identifies adjacencies that are definitively impossible, and
can therefore be removed from the connection graphs. The remaining adjacencies
cannot be removed this easily. Since they do not violate any of the constraints,
every remaining adjacency is a potential candidate for inclusion.

To accurately isolate user session fragments, the most likely of the remaining
adjacencies must be identified. A time oriented heuristic was developed to do

94 C. Daicos and S. Knight

this. The heuristic is based on the time between the appearance of a URL, and
the request for the resource it points to. This time is called think time, and it is
defined differently for browsers and users.

User Think Time (Δe): Length of time between a page download and a
hyperlink click (explicit request). User think time includes the browser’s
parsing and rendering time.

Browser Think Time (Δi): Length of time between a page download
and an ancillary, automatic request (implicit request). Browser think
time includes browser parsing time.

Think time corresponds exactly to the length of time between matching URLs
in distinct connections. It can be represented by a label on each edge in a TCP
connection graph. An example of this is shown in Figure 4.

Fig. 4. Think Times for Two Links between Two Connections

The figure shows two potential URL matches linking connections 1 and 2.
The first URL match implies an implicit request (an ancillary request made
automatically by a browser fetching embedded content), while the second implies
an explicit request (a request resulting from a human user click). Think times
are calculated for every URL match, including matches implying link-traversals
that never occurred. The marking of likely adjacencies is based on the length of
these think times.

The time oriented heuristic is a simple set of think time limits outside which
link traversals are deemed unlikely and removed. Link traversals (represented by
URL matches) are removed according to the following rules:

Implicit URL Match (Browser Request): if think time tt > Δi, remove.
Explicit URL Match (User Request): if think time tt > Δe, remove.

Borrowing from the traditional sessionization techniques of web analytics [5], the
values of Δi and Δe are 20 seconds and four minutes respectively.

The heuristic is only applied to those connection nodes having an indegree
greater than one. That is, nodes with multiple incoming edges that imply the
node was linked-to from more than one other connection. An example is shown
in Figure 5.

A Passive External Web Surveillance Technique for Private Networks 95

Fig. 5. Removing Unlikely Adjacencies from a Multi-Indegree Node using the Time
Oriented Heuristic

Multi-indegree nodes (MINs) are an ideal target for edge removal because
they are over-represented in the adjacency graphs. Although naive chaining pro-
duces lots of them, MINs only happen for real when requests initiated from mul-
tiple connections are being issued on a single, already open, connection. This is
a connection reuse scenario that web browsers do not experience often. MONs
(multi-outdegree nodes), on the other hand, happen all the time. They represent
the situation where multiple connections are being initiated from the same con-
nection, like when a flurry of implicit requests are made for objects embedded
in a page.

Because it focuses only on MINs, the time oriented heuristic is consistently
optimistic. It leaves most out-links intact. The only out-links it removes are those
associated with MINs.

2.4 Fragment Isolation

The Link Chaining process begins as a tangled graph of naively chained con-
nections. This graph is then processed to remove the impossible and unlikely
adjacencies. The remaining graphs of connected nodes form the fragments that
the analyst will use to assemble user sessions. The fragments are isolated by
simply tracing the edges of each graph and aggregating the connection nodes.

3 Experimental Setup

Network traffic was collected passively from the inside of a live campus network
with a high volume (2 GB/hour) of web traffic and later written to a database.
The logging point was situated at the gateway before any NAT or proxy so that
individual host IP addresses were visible. A real attack would tap external to
this gateway, but IP address visibility was necessary here to validate the results.
All traffic features that would not normally appear in the presence of NAT or
proxy were selectively ignored for each experiment. The tap and network under
test are illustrated in Figure 6.

Traffic collection was performed using Snort 2.0. Snort is an open source net-
work intrusion detection system, capable of performing real-time packet sniffing,

96 C. Daicos and S. Knight

Fig. 6. Network Under Test

analysis, and logging on IP networks [6]. In this experiment, it was used ex-
clusively for its packet sniffing and packet logging capabilities. The tool was
configured to break out packets into their constituent fields and write them to
a MySQL [8] database.

Figure 7 shows the three tools used to prepare the data. The first tool labels
all packets by TCP connection and removes broken or empty connections. The
second reconstructs the contents of every TCP connection while preserving the
relationship of those contents with their underlying packet features. The final
tool parses all relevant HTTP features and statistics from each TCP stream.
The results from each of these steps are written back to the database.

Fig. 7. Three Data Preparation Steps

These tools process the raw packets to produce multiple views of the data
across all relevant protocols. They provide a convenient, granular, and relational
breakdown of every traffic feature of interest. All tools were written in C++
and made extensive use of MySQL++ [8], an object oriented API used to access
the database. The API allows queries and query results to be handled as STL
Containers. Shell scripts were used to drive the compiled tools. Perl was employed
for some ancillary tools.

A Passive External Web Surveillance Technique for Private Networks 97

The TCP reassembler reconstructs TCP streams accurately despite packet
retransmissions or out-of-order delivery. The reassembler operates on a database
of packets (as opposed to a raw log) and preserves the mapping between a
stream’s content and its constituent packets.

The HTTP Parser extracts information from the HTTP transactions in re-
assembled TCP stream files. It parses individual HTTP headers as well as the
web resources contained in the bodies of HTTP responses. For example, the
parser can rebuild sounds, images, and documents from the HTTP stream. It
can also inflate or unzip HTML web pages that have been compressed by web
servers. This is necessary for extracting the valuable hyperlinks that allow the
Link Chaining Attack to chain TCP connections together into user sessions. The
parser very much emulates the parsing functionality of a web browser.

Data preparation constituted a significant effort before the Link Chaining
Attack could be applied.

3.1 Experimental Inputs and Procedure

The experiment was performed for five sets of Port 80 traffic data. Each set was
collected in the same hour on different week days. In raw TCPdump [9] format,
the data sets were roughly 550Mb each. They each contained about 30 minutes
of traffic generated by approximately 500 active hosts. Each set contained about
750,000 packets, 25,000 TCP connections, and 100,000 HTTP messages.

3.2 Two Versions of Fragment Isolation

Fragment isolation was performed in two ways for each data set. In the first,
fragments were isolated from all possible adjacencies. In the second, fragments
were isolated only from those adjacencies marked as likely by the heuristic. The
two tests were labelled A and B respectively.

Fragment Isolation Tests
A - All possible adjacencies
B - Adjacencies marked as likely by the heuristic

Both tests are versions of the Link Chaining Attack. Test A should be con-
sidered a naive implementation. It was conducted to establish a baseline for the
performance of the heuristic in test B.

4 Link Chaining Evaluation Metrics

For session fragments to be useful to a human analyst, they must be as large and
accurate as possible. The evaluation of the Link Chaining Attack is based on a
series of metrics that measure how the test fragments compare to actual whole
user sessions. Actual user sessions are complete sets of same-host connections,
organized by IP address. The IP address of every TCP connection is recorded in
the experiment so that actual user sessions can be isolated and easily compared
with fragments.

98 C. Daicos and S. Knight

The measures for fragment quality are based on the degree to which actual
sessions are reconstructed by fragments. These measures consider the number of
TCP connection elements in the intersection of a fragment and an actual session.
They are described in the following sections.

4.1 Coverage

Coverage is the degree of overlap between the connection elements in fragments
and actual sessions. Coverage measures the size of the fragment in relation to the
size of the actual session. For a given fragment f and actual session s, coverage
C is given by:

Coverage C =
|f ∩ s|
|s| (1)

4.2 Accuracy

The fraction of fragment elements that have been correctly assigned. It is calcu-
lated as follows:

Accuracy A =
|f ∩ s|
|f | (2)

Ideally, the Link Chaining attack would reproduce entire user sessions. That
is, it would produce fragments of unit coverage and accuracy. This is highly
unlikely. Instead, the goal is to consistently isolate non-trivial session fragments
of high accuracy. Regardless of their size, non-trivial fragments decrease the
session assembly time for an analyst as long as they are accurate.

4.3 Matching Fragments to Actual Sessions

There are always more session fragments than actual user sessions. Before ap-
plying any metrics, each fragment must be matched to the user session of which
it is a part. The best matching user session is the one that shares the largest
number of connection elements with the fragment. For a given fragment f , and
the set of all user sessions S, the matching session m, is given by:

Matching Session m =
{
mεS

∣∣∣|f ∩m| = max
{|s ∩ f |

∣∣∣sεS}} (3)

4.4 Ambiguous Fragments

Some fragments will match multiple sessions. Such fragments are inaccurately
chained and contain equal numbers of connections from two or more sessions.
For example, the following fragment f matches sessions s1 and s2 equally:

f =
{
1, 2, 3, 4

}
s1 =

{
1, 2, 5, 9, 13

}
s2 =

{
0, 3, 4, 12, 26, 52

}
To evaluate these fragments effectively, they must be assigned to, and compared
with, a single whole session. There is no way to do this meaningfully. Such an

A Passive External Web Surveillance Technique for Private Networks 99

assignment would be essentially arbitrary. Fragments that are too ambiguous to
evaluate in the context of this experiment would be similarly confusing to the
analyst in practice. Measuring the quality of such fragments is pointless; they
are all bad. For this reason, the metrics are not applied to ambiguous fragments.
Instead, the fragments are counted separately, and presented as an index of
ambiguity, indicating one aspect of the performance of the LCA overall.

Ambiguity =
AmbiguousFragments

AllFragments
(4)

4.5 Trivial Fragments

By definition, fragments made up of one connection element always match one
session and have unit accuracy. Their effect is to increase the aggregate accuracy
in a meaningless way. For example, if half of all fragments are trivial, the aggre-
gate accuracy is guaranteed to be at least 0.5. This is an unnaturally inflated
score that does not represent the accuracy of non-trivial fragments. To correct
this, accuracy is not measured for trivial fragments, and aggregate results are
presented with a triviality score.

Triviality =
TrivialFragments

AllFragments
(5)

5 Results

5.1 Trivial and Ambiguous Fragments

Trivial fragments accounted for 5.25% to 9.33% of all fragments in Test A and
12.81% to 16.81% in Test B. The larger number of trivial fragments in Test B is
to be expected, as the naive method of Test A chains connections into fragments
much more readily than the discerning heuristic of Test B. It is important to
mention that some fragments were small because the sessions themselves were
small. Specifically, 3.48% to 7.21% of actual user sessions were trivial.

Ambiguous fragments accounted for 2.25% to 4.41% of all fragments in Test
A and 1.14% to 4.02% in Test B. There was no statistically significant difference
in ambiguity between the two methods.

5.2 Coverage

The distributions of coverage scores for Tests A and B are shown in Figure 8
and 9. The coverage of the fragments isolated by the heuristic appear to be
exponentially distributed, with about 75% of them having session coverage less
than 25%. The naively isolated fragments are distributed much differently, with
generalized peaks at coverages less than and greater than 50%.

5.3 Accuracy

The distribution of fragment accuracy for Tests A and B is shown in Figures 10
and 11. The figures show clearly that the heuristic isolates fragments that are
much more accurate than those of the naive method.

100 C. Daicos and S. Knight

Fig. 8. Distribution of Session Coverage
of Fragments (Test A)

Fig. 9. Distribution of Session Coverage
of Fragments (Test B)

Fig. 10. Distribution of Accuracy
Scores, Naive Chaining (Test A)

Fig. 11. Distribution of Accuracy
Scores, Heuristic (Test B)

6 Analysis

The previous section showed that the Link Chaining Attack was able to group
TCP connections into non-trivial fragments with moderate success. The inde-
gree heuristic proved to be far more accurate than naive chaining, although the
fragment sizes it produced were much smaller. The averages for each metric are
summarized in Table 1 below.

Table 1. Summary of Link Chaining Performance Averages

Test Fragment Size Coverage Accuracy Triviality Ambiguity

A. Naive 58.67 31.48 24.15 6.96 3.28
B. Heuristic 10.62 12.63 88.41 14.3 3.32

A Passive External Web Surveillance Technique for Private Networks 101

This research has been predicated on the notion that it is desirable for human
analysts to group the contents of passively logged TCP connections into user
sessions for the purpose of surveillance. The above results are now used to show
how Link Chaining aids this process.

6.1 Modeling Sessionization Time

Without Link Chaining, or a similar technique, the largest unit of network traf-
fic that can be rebuilt from the stream automatically and reliably is the TCP
connection. After TCP connections are rebuilt, it is assumed the analyst would
sessionize them by analysing hyperlinks, content, semantics etc. Since no real
data on human sessionization time is available, the time ts, to sessionize n con-
nections is modeled as follows:

Sessionization Time Model 1 ts = tc
n(n− 1)

2
(6)

Where the time to compare one connection or fragment to another, tc, is con-
stant, and is multiplied by the maximum number of comparisons required (i.e.
the comparison of all possible connection pairs or

(
n
2

)
). This is a conservative

model.
Modeling sessionization time without empirical data is admittedly clumsy.

The following relationship is used to model the best case sessionization time
achievable by an analyst, t�s , which is linear with respect to the number of con-
nections. It is impossible to argue that a human (or even a computer) can do
better than compare all connections in one pass simultaneously, so the model is
used as an ultra-optimistic benchmark.

Sessionization Time Model 2 t�s = n · tc (7)

6.2 Time Savings

The average size of fragments isolated by the heuristic in the Link Chaining
Attack was 10.62 connections. Based on this average, the number of pieces, n,
that an analyst would have to sessionize is reduced to n

10.62 . Figures 12 and 13
illustrate the effect of such a reduction on sessionization time using both models
M1 and M2.

The first model shows that based on the average fragment size of the experi-
ments, a human analyst working with fragments (as opposed to individual TCP
connections) would experience a speedup of greater than 100 when based on a
conservative model of analyst efficiency. When based on an optimistic model for
analyst efficiency, the LCA represents a ten-fold speedup. Since the optimistic
model represents the best possible case for a human analyst’s unaided perfor-
mance, it is expected that the actual speedup would be significantly better than
the indicated ten-fold speedup.

The amount of content visible in each fragment has a definite impact on
sessionization speed. Individual TCP connections offer only a small window onto

102 C. Daicos and S. Knight

Fig. 12. Sessionization Time Functions,
Original and With LCA, Model 1

Fig. 13. Sessionization Time Functions,
Original and With LCA, Model 2

a user’s browsing sessions, while fragments made up of multiple connections offer
a much larger window. This larger window provides the analyst with much more
semantic context, allowing him to infer user sessions more easily than he could
with individual TCP connections.

For example, some of the fragments in this experiment were rendered in a
web browser. These fragments revealed stock research pages, online education
seminars, and shopping pages. In a few cases, whole webmail sessions were con-
tained in one fragment and could be rendered in their entirety, including email
attachments.

7 Conclusion

By reducing the high cost of sessionizing connections manually, the Link Chain-
ing Attack makes passive external surveillance of private networks a real possi-
bility. The results suggest a minimum ten-fold speed improvement for a human
analyst with acceptable accuracy. This number may be closer to 100 when using
a reasonable model of human sessionization speed.

The fact that the indegree heuristic performed more accurately than the
naive method of fragment isolation demonstrates that web traffic contains an
exploitable relationship that is more descriptive than that marked by hyperlinks
alone. Web browsing is governed by a discernible pattern of user and browser
think times that can be used — together with tracing hyperlinks — to group
connections.

The Link Chaining Attack capitalizes on navigation and time oriented heuris-
tics to sessionize fragments of user sessions. Proposed improvements include the
tuning of user and browser think time thresholds, the identification of new im-
possibilities for link removal, and the discovery of impossible event sequences
spanning multiple connections. A method for assessing the likelihood of a link
based on a recursive calculation of the likelihood of its adjacent links is also
being considered.

A Passive External Web Surveillance Technique for Private Networks 103

It is believed that evolved versions of the technique will take advantage of
these small improvements to enable the uncomplicated passive external surveil-
lance of private networks — despite the anonymizing effects of NATs and HTTP
proxies.

References

1. Clarke, F., Ekeland, I.: Nonlinear oscillations and boundary-value proeblems for
Hamiltonian systems. Arch. Rat. Mech. Anal. 78 (1982) 315–333

2. Clinton Wong: HTTP Pocket Reference. O’Reilly, July 30 (2000)
3. Gourley, David et al.: HTTP: The Definitive Guide. O’Reilly, Cambridge, September

(2002)
4. Bellovin, S.M.: A Technique for Counting NATed Hosts. www.research.att.com/

smb/papers/fnat.pdf, AT&T Labs Reseach (2003)
5. Berendt, B., Mobasher, B., Spiliopoulou, M.: Web Usage Mining for E-Business

Applications. ECML/PKDD-2002, 19 August (2002)
6. Snort IDS. http://www.snort.org/about.html
7. MySQL. http://www.mysql.com/
8. MySQL++. http://tangentsoft.net/mysql++/
9. TCPdump. http://tcpdump.org/

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 104 – 118, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Secure Way to Combine IPsec, NAT & DHCP

Jacques Demerjian1, Ibrahim Hajjeh2, Mohamad Badra3, and Salim Ferraz4

1 GET-Télécom Paris, 46 Rue Barrault 75013 Paris, France
demerjia@enst.fr

2 ESRGroups, 17-19 Rue Barrault 75013 Paris, France
ibrahim.hajjeh@esrgroups.org

3 UQAM, H3C 3P8 Montréal, Canada
mohamad.badra@uqam.ca

4 LIP6, 8 Rue du Capitaine Scott 75015 Paris, France
salim.ferraz@etu.upmc.fr

Abstract. This paper examines the use of NAT with IPsec as a transparent se-
curity mechanism. It discusses the security needs and solutions that define how
to combine IPsec and NAT. Because of the inherent limitations of current pro-
posed solutions, this paper proposes an end-to-end security architecture using
IPsec in the NAT/DHCP environment with a formal validation to the proposed
architecture using an automatic protocol analyser called Hermes. This paper is
builds upon works previously published.

1 Introduction

NAT (Network Address Translation) [30] is widely used in security architectures. It
was originally developed as an interim solution to combat IPv4 [27] address depletion
by allowing globally registered IP addresses to be re-used or shared by several hosts
[24]. NAT provides transparent routing mechanism to end hosts trying to communi-
cate from disparate address realms, by modifying IP and transport headers en-route.
By providing this mechanism, NAT has become of vital importance in the implemen-
tation of network security.

The use of NAT has been the savior as well as the doom-maker for IP network de-
ployment. At the same time that it solved address space issues and enabled the de-
ployment of private IP networks, favoring address reuse, it has introduced major is-
sues, breaking some of Internet's protocols and applications. IPsec (IP Security) [18]
might be considered one of the main protocols that NAT has broken, even if there are
currently solutions in order to "make" IPsec work when NAT devices are in place, the
truth is, IPsec deployment is seriously hindered. However, IP security end-to-end
from any host to any other host in the Internet is yet far from a reality.

In this paper, we propose a solution for assuring the end-to-end security using IP-
sec in the NAT/DHCP [8] environment. This solution is built upon [6, 7] and [32],
works previously published.

The remainder of this paper is structured as follows: Section 2 describes known in-
compatibilities between NAT and IPsec, section 3 explores some existing solutions
that define how to combine IPsec and NAT, and exposes their limits. Section 4 illus-

 A Secure Way to Combine IPsec, NAT & DHCP 105

trates our proposed solution for assuring the end-to-end security using IPsec in the
NAT/DHCP environment and validates it using an automatic protocol analyser called
Hermes. Section 5 presents some security consideration related to our solution. Sec-
tion 6 concludes this paper and gives directions for future work.

2 IPSEC/NAT Incompatibilities

This section describes known incompatibilities between NAT and IPsec. The use of
IPsec, or any other security protocol with "NAT" which uses IP addresses as part of a
SA (Security Association), for communications that span multiple routing realms is
problematic. NATs clearly limit the scope where IPsec could be applicable (or vice
versa, IPsec could limit the scope where NATs could be applicable). IPsec techniques
which are intended to preserve the endpoint addresses of an IP packet will not work
with NAT enroute for most applications in practice [29]. Techniques such as AH
(Authentication Header) [19] and ESP in tunnel mode (Encapsulation Security Pay-
load) [20] protect the contents of the IP headers (including the source and destination
addresses) from modification. Yet, NAT's fundamental role is to alter the addresses in
the IP header of a packet. IPsec supports two "modes". Transport mode provides end-
to-end security between hosts, while tunnel mode protects encapsulated IP packets
between security gateways.

In IPsec transport mode, both AH and ESP have an integrity check covering the
entire payload. When the payload is TCP [26] or UDP [25], the TCP/UDP checksum
is covered by the integrity check. When a NAT device modifies an address the check-
sum is no longer valid with respect to the new address. Normally, NAT also updates
the checksum, but this is ineffective when AH and ESP are used. Consequently, re-
ceivers will discard a packet either because it fails the IPsec integrity check (if the
NAT device updates the checksum), or because the checksum is invalid (if the NAT
device leaves the checksum unmodified).

Note that IPsec tunnel mode ESP is permissible so long as the embedded packet
contents are unaffected by the outer IP header translation. If the transport endpoint is
under our control, we might be able to turn off checksum verification. In other words,
ESP can pass through NAT in tunnel mode, or in transport mode with TCP check-
sums disabled or ignored by the receiver. IPsec tunnel mode AH doesn't suite NAT
because whole packet is authenticated (including header) hence leaving no space for
NAT to modify the IP header. Thus, co-existence of NAT and IPsec (using AH) in
either of the operational modes is not feasible due to functional architecture of AH. If
we stick to ESP in tunnel mode or turn off checksums, there's still another obstacle:
the IKE (Internet Key Exchange) [14].

IPsec-based VPNs (Virtual Private Networks) use IKE to automate security asso-
ciation setup and authenticate endpoints. The most basic and common method of
authentication in use today is preshared key. Unfortunately, this method depends upon
the source IP address of the packet. If NAT is inserted between endpoints, the outer
source IP address will be translated into the address of the NAT router, and no longer
identify the originating security gateway. To avoid this problem, it is possible to use

106 J. Demerjian et al.

another IKE "main mode" and "quick mode" identifier (for example, user ID or fully
qualified domain name).

It may be of interest to note that IKE is a UDP based session layer protocol and is
not protected by network based IPsec security. Only a portion of the individual pay-
loads within IKE are protected. As a result, IKE sessions are permissible across NAT,
so long as IKE payload does not contain addresses and/or transport IDs specific to
one realm and not the other. Given that IKE is used to setup dynamic IPsec associa-
tions, the majority of current solutions propose a ways of making IPsec work through
a NAT function.

In the next section we explore some of those solutions that define how to combine
IPsec and NAT, and expose their limits.

3 Existing Solutions

End-to-end network layer security via IPsec cannot operate with an intervening NAT
device. One simple solution is to have a single device for performing NAT and IPsec
tunnelling. [28] is a useful resource that describes a security model with tunnel-mode
IPsec for NAT domains.

There are a variety of solutions being proposed for the NAT-IPsec compatibility
problem [1]. A number of them recommended as intermediate solutions pending the
wide-spread adoption of IPv6. Those solutions [1] are:

3.1 IPsec Tunnel Mode

In a limited set of circumstances, it is possible for an IPsec tunnel mode implementa-
tion, such as that described in [8], to traverse NA(P)T successfully [28]. However, the
requirements for successful traversal are sufficiently limited so that more general
solution must meet the following requirements [1]:

1. IPsec ESP. IPsec ESP tunnels do not cover the outer IP header within the message
integrity check, and so will not suffer Authentication Data invalidation due to ad-
dress translation. IPsec tunnels also need not be concerned about checksum invali-
dation.

2. No address validation. Most current IPsec tunnel mode implementations do not
perform source address validation so that incompatibilities between IKE identifiers
and source addresses will not be detected.

3. "Any to Any" SPD (Security Policy Database) entries. IPsec tunnel mode clients
can negotiate "any to any" SPDs, which are not invalidated by address translation.
This effectively precludes use of SPDs for the filtering of allowed tunnel traffic.

4. Single client operation. With only a single client behind a NAT, there is no risk of
overlapping SPDs. Since the NAT will not need to arbitrate between competing
clients, there is also no risk of re-key mis-translation, or improper incoming SPI or
cookie de-multiplexing.

5. Active sessions. Most VPN sessions typically maintain ongoing traffic flow during
their lifetime so that UDP port mappings are less likely be removed due to inactiv-
ity.

 A Secure Way to Combine IPsec, NAT & DHCP 107

3.2 RSIP

Described in [3] and [4], includes mechanisms for IPsec traversal, as described in
[23]. By enabling host-NA(P)T communication, RSIP addresses issues of IPsec SPI
de-multiplexing, as well as SPD overlap. By enabling hosts behind a NAT to share
the external IP address of the NA(P)T (the RSIP gateway), this approach is compati-
ble with protocols including embedded IP addresses. By tunnelling IKE and IPsec
packets, RSIP avoids changes to the IKE and IPsec protocols, although major changes
are required to host IKE and IPsec implementations to retrofit them for RSIP-
compatibility. It is thus compatible with all existing protocols (AH/ESP) and modes
(transport and tunnel). In order to handle de-multiplexing of IKE re-keys, RSIP re-
quires floating of the IKE source port, as well as re-keying to the floated port. As a
result, interoperability with existing IPsec implementations is not assured. RSIP does
not satisfy the deployment requirements for an IPsec-NAT compatibility solution
because an RSIP-enabled host requires a corresponding RSIP-enabled gateway in
order to establish an IPsec SA with another host. Since RSIP requires changes only to
clients and routers and not to servers, it is less difficult to deploy than IPv6 [1].

3.3 6to4

6to4, as described in [5] can form the basis for an IPsec-NAT traversal solution. In
this approach, the NAT provides IPv6 hosts with an IPv6 prefix derived from the
NAT external IPv4 address, and encapsulates IPv6 packets in IPv4 for transmission to
other 6to4 hosts or 6to4 relays. This enables an IPv6 host using IPsec to communicate
freely to other hosts within the IPv6 or 6to4 clouds. While 6to4 is an elegant and
robust solution where a single NA(P)T separates a client and VPN gateway, it is not
universally applicable. Since 6to4 requires the assignment of a routable IPv4 address
to the NA(P)T in order to allow formation of an IPv6 prefix, it is not usable where
multiple NA(P)Ts exist between the client and VPN gateway. For example, NA(P)T
with a private address on its external interface cannot be used by clients behind it to
obtain an IPv6 prefix via 6to4. While 6to4 requires little additional support from hosts
that already support IPv6, it does require changes to NATs, which need to be up-
graded to support 6to4. As a result, 6to4 may not be suitable for deployment in the
short term [1].

3.4 NAT-Traversal in the IKE

[21] describes how to detect one or more Network Address Translation devices
(NATs) between IPsec hosts, and how to negotiate the use of UDP encapsulation of
IPsec packets [16] through NAT boxes in IKE.

For NAT Traversal to work properly, two things must occur. First, the communi-
cating VPN devices must support the same method of UDP encapsulation. Second, all
NAT devices along the communication path must be identified.

According to [21], IPsec devices will exchange a specific, known value to deter-
mine whether or not they both support NAT Traversal. If the two VPN devices agree
on NAT Traversal, they next determine whether or not NAT or NAPT occurs any-
where on the communications path between them.

108 J. Demerjian et al.

NAT devices are determined by sending NAT-D (NAT Discovery) packets. Both
end points send hashes of the source and destination IP addresses and ports they are
aware of. If these hashes do not match, indicating that the IP address and ports are not
the same, then the VPN devices know a NAT device exists somewhere in between.

All NAT Traversal communications occur over UDP port 500. This works great
because port 500 is already open for IKE communications in IPsec VPNs, so new
holes do not need to be opened in the corporate firewall.

NAT Traversal is the long-awaited solution to one of the major issues with IPsec
VPNs, but it does not solve everyone's problems.

NAT-T (NAT Traversal) has the following limitations:

1. NAT-T imposes approximately 200 bytes of overhead during IKE negotiation and
about 20 bytes of additional overhead for each packet. Depending on the amount of
available bandwidth and processing power, the difference in throughput may in
some instances be measurable.
Because AH transforms actually authenticate packet header as well as packet pay-
loads, and because NAT Traversal provides a mechanism by which packet headers
can be modified in transit, AH and NAT-T do not function together; NAT-T oper-
ates only on ESP-transformed packets.
Because of this authentication deficiency, the trust level between hosts using NAT-
T is greatly reduced; NAT-T should not be used when the greatest level of host-
based authentication is required.

2. NAT-T works only when the IKE initiator is the system behind the NAT box. An
IKE responder cannot be behind a NAT box unless the box has been programmed
to forward IKE packets to the appropriate individual system behind the box [31].

3. The NAT box does not use special processing rules. A NAT box with special IPsec
processing rules might interfere with the implementation of NAT-T [31].

Next, we shall present our solution for assuring the end-to-end security using IPsec
in the NAT/DHCP environment.

4 Proposed Solution

Because of the inherent limitations of current solutions proposed for the NAT-IPsec
compatibility problem, it proves to be necessary to find solution answering effectively
this legitimate security preoccupation.

Given that IKE can be used to setup dynamic IPsec associations, we propose a new
way of making IPsec work through a NAT function. This solution is built upon [6, 32]
and [8], works previously published.

Before developing our proposition, the following section starts with an overview of
E-DHCP (Extended-Dynamic Host Configuration Protocol) solution then the IKE
protocol issue at NAT environment.

4.1 Overview of E-DHCP

The DHCP (Dynamic Host Configuration Protocol) [8] provides a framework for
passing configuration information to hosts on a TCP/IP network.

 A Secure Way to Combine IPsec, NAT & DHCP 109

DHCP itself does support neither an access control for a proper user nor the
mechanism with which clients and servers authenticate each other.

In [6] we have proposed an extension to DHCP protocol called E-DHCP (Ex-
tended-Dynamic Host Configuration Protocol) in order to allow a strict control on the
equipments and users through a strong authentication process. [6] defines a new
DHCP option (fig.1) based on the use of certificates.

The definition of new DHCP options [11] is possible because the options field en-
visages the implementation of new options [10].

This option provides simultaneously the authentication of entities (DHCP client
and server) and DHCP messages. The technique used by this option is based on the
use of public key cryptography [17], X.509 identity certificates [15] and AC (Attrib-
ute Certificates) [12]. On the other hand, E-DHCP allows an improved access control
to the DHCP system by using AC.

Code Length Flag URIIdentityCertificate URIAttributeCertificate

AuthenticationInformation

Bits :
0 1 2…. 7 8 9 …....15 16 .. .

Fig. 1. Authentication option structure

In E-DHCP proposal (fig. 2), DHCP server is leaned on an AA (Attribute Author-
ity) server [12] that creates a client Attribute Certificate (client AC), which ensures
the link between the client identity certificate and the allocated IP address. Therefore,
the use of AC confirms client's ownership of the allocated IP address.

E-DHCP Server Attribute AuthorityDHCP Server

Fig. 2. E-DHCP Server

In a typical E-DHCP scenario (fig.3), the client broadcasts a DHCPDiscover mes-
sage on its local physical subnet. This message includes the proposed authentication
option.

The client specifies its identity certificate URI (Uniform Resource Identifiers) [2]
in DHCPDiscover message, then in response, the server specifies its identity certifi-
cate URI in DHCPOffer message.

In all the transactions, on one side the sender (client/server) encapsulates the value
of the encrypted signature of DHCP message, and on the other side, the corresponding
receiver (server/client) checks signature's authenticity.

110 J. Demerjian et al.

Fig. 3. E-DHCP Scenario

Information included in X.509 identity certificates will be used by the client and
the server in signature validation for the rest of the transaction. When the server re-
ceives the DHCPRequest message, it will create the client's AC and save it in a data-
base. The server specifies the AC URI in the DHCPACK message. This URI is used
by the client to extract its AC from the database.

4.2 IKE Protocol issue at NAT Environment

4.2.1 IKE Protocol Overview
The Internet Key Exchange Protocol version 1 allows two entities (i.e. network hosts
or gateways) to derive session keys for secure communication via a series of mes-
sages. These exchanges provide authentication and/or encryption for some messages,
and various degrees of protection against flooding, replay, and spoofing attacks.

Currently, the IETF is developing a new version of the IKE protocol that is coming
up in more simplified and efficient way than the existing IKE protocol.

The Internet Key Exchange Protocol version 2 presents a greatly simplified IKE
protocol. IKE v2 is an attempt to simplify the standard, remove the un-needed re-
quirements, and incorporate new standard IPsec functionalities currently contained
within other documents. Unlike IKE v1, which is documented within three separate
documents, IKE v2 is completely described within a single document.

The important difference between IKE v1 and IKE v2 is the reduced number of
round trips required to implement identity protection, the number of possible Phase 1
exchanges is reduced from eight to one. IKE v1 aggressive mode is no longer sup-

E-DHCP Server E-DHCP Server Client

 A Secure Way to Combine IPsec, NAT & DHCP 111

ported. In addition, the establishment of SA (Security Association) for other security
protocols (IPsec) can be piggybacked on the Phase 1 IKE exchange.

From authentication’s schemes point of difference, digital signature is the only
supported mechanism for certificate based authentication. Shared secret authentica-
tion is still supported.

Thus, IKE v1 and v2 relies on the same mechanisms that power most network se-
curity systems: public and private key cryptography, and keyed hash functions. They
also allow the use of AC (Attribute Certificate) within a Public Key and a Privilege
Management Infrastructures (PKI/PMI).

Even that version 2 of IKE does not interoperate with version 1, but it has enough
of the header format in common that both versions can unambiguously run over the
same UDP port.

4.2.2 IKE v1 Negotiation Issue at NAT and E-DHCP Environment
Generic IPsec process starts with the IKE negotiation which establishes SA and key
agreement (fig.4). The main mode of IKE continues with the negotiation of NONCE
values in the IKE nonce payloads and the DH (Diffie-Hellman) public parameters in
the KE payloads. Now both initiator and responder create the master secret and its
derived keys.

At this point, all payloads (without the HDR payload) will be encrypted with the
derived key protecting ID authentication against ID spoofing attack. The two entities
can exchange identity information using a digital signature algorithm to authenticate
themselves.

The digital signature is not applied to the IKE message. Instead it is applied to a
hash on all information available to both entities. All this information is carried in an
identity payload, authentication payload and a certificate payload.

The second phase of IKE establishes the SA agreement for IPsec treatment for the
IP payloads. Using the SA and key information agreed through the IKE negotiation,
IPsec ESP or AH modes are applied to support confidentiality or integrity of the IP
datagrams.

In the NAT environments, however, applying IPsec transport mode causes a prob-
lem due to the datagram conversion at the NAT server on route to the destination
node. The problem happens at the first phase of the IKE negotiation and at the mode
of IPsec AH operation. In fact, at the fifth and sixth steps of the main mode operations
of IKE (fig.4), both nodes exchange the ID information and hash values (HASH_I and
HASH_R) verifying some information including the ID values. The IP addresses are
usually used as the ID values in this procedure.

The IP translation at the NAT server causes the ID authentication to fail, because
the IP node at the destination is ignorant of the IP translation at the NAT server, and
the verification of the hash value (HASH_I) based on the translated IP address fails.
Thus, the whole IKE negotiation procedure fails.

To inform the responder of the IP address masked behind the IP translation, we
propose to correlate the masked IP address and the IP translated address through an
AC generated by the E-DHCP server. AC was integrated in the ISAKMP (Internet

112 J. Demerjian et al.

Fig. 4. IKE v1 main mode

Security Association and Key Management Protocol) [22] and the IKE v1 standards
and now in the IKE v2 proposition allowing access control and service delegation. In
addition, the flexibility of this type of certificate is what motivate us to use it with
current IPsec implementation and in particular with NAT. We have developed
X.509/XML AC with its PMI (Privilege Management Infrastructure) in E-DHCP
proposition. In the last IKE v1 exchange, the node behind the NAT Server can send
its AC in the authentication phases. The X.509/XML AC is signed through the E-
DHCP server and contains both:

1. The Identity (IP address) of the "client or node" which was allocated by the E-
DHCP Server.

2. The Identity (IP address) of the NAT Server. This will allow end entity to verify
that the NAT Server which he negotiates is the pretending NAT that hides the
original IP address of the client.

Upon receiving this certificate from the responder (an end entity node or even a
NAT server), this entity verifies the authentication message and the AC by verifying
the digital signature of the PKI/PMI certificate authority. Once verified, the responder
can verify all IPsec Packets by replacing the NAT address by the masked IP address
send in the AC. The following lines present an example of the XML AC.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE AttributeCertificate SYSTEM "Applica-
tion1.dtd">
<AttributeCertificate Version="1">
 <Issuer>....</ Issuer >
 <ApplicationName>Application1
 </ApplicationName >
 <NetworkConnexion>
 <NetworkName>VPNdialer</NetworkName>
 <NetworkConnexionType>Unlimited
 </NetworkConnexionType >
 <NATaddress>137.194.192.2-137.194.192.50

HDR, SA

HDR, SA

HDR,K NCE

HDR*, IDii, [CERT,] [ATTCERT,] AUTH

ResponderInitiator

HDR, KE, ONCE

HDR*, IDir, [CERT,] [ATTCERT,] AUTH

 A Secure Way to Combine IPsec, NAT & DHCP 113

 </NATaddress >
 <Bandwidth>2 Mbits/s</Bandwidth>
 </NetworkConnexion>
 <PersonnalInfo>
 <Holder>… DN + SN ….</ Holder >
 <PrivateIPaddress>137.194.192.2
 </PrivateIPaddress >
 <DNS>serveraix.ftcom.com</DNS> …
</PersonnalInfo>
 <Validity>
 <From>2004.12.12.12.12</From>
 <To>2005.12.12.12.12</To>
 </Validity>
 <SerialNumber>1012313281</ SerialNumber >
</ AttributeCertificate>

4.2.3 IKE v2 Negotiation Issue at NAT and E-DHCP Environment
The IKEv2 is very similar to IKEv1 in performing mutual authentication and estab-
lishing security associations. IKEv2 first replaces the eight possible phase 1 ex-
changes with a single exchange that provides identity protection and is based on either
public signature or shared secret keys. In addition, IKEv2 is the only proposal that
was conceived to be simply extensible. In a simple manner, IKEv2 proposes adapting
a simple hash function over all payloads, no matter which authentication methods is
used [13]. As shown in (fig.5), and Like IKEv1, IKEv2 allow authentication throw
AC that can be used to negotiation all NAT parameters.

Fig. 5. IKE v2 negotiation

In the first exchange, the two entities negotiate a list of proposed cryptographic al-
gorithm in the SA payload, their DH public values (KE) and random nonces (Ni, Nr).
At this point, the two endpoints begin generating the master secret SKEYSEED and
the derived keys SK_e, SK_a and SK_d. Now, all messages in the second round trip
(except the HDR payload) will be encrypted using the encryption key. The initiator
can now send his identity with the ID (Identity) payload, and a hash of the first round
trip messages using the Authentication (AUTH) payload. The initiator can now send
his X509 identity certificate containing his public key that proves his real identity and

1

2

3

4

Initiator

HDR, SAi1, KE, Ni

HDR, SAr1, KE, Nr, [CERTREQ]

HDR*, IDi, [CERT,] [ATTCERT,]
[CERTREQ,] [IDr,] AUTH, SAi2, TSi, TSr

HDR*, IDi, [CERT,] [ATTCERT,] AUTH,
SAr2, TSr C

h
ild

-S
A

Responder

114 J. Demerjian et al.

his X.509/XML AC that proves his real IP address masked with the NAT server. The
initiator can also send a certificate request and the identity of the responder that can
host multiple services. The second exchange contains also the SA2 that can serve for
the child-SA negotiation and the TS (Traffic Selector) payloads. In the last message
the responder will assert his identity in the IDr (IDentity Responder) payload, his
CERT (Certificate) payload that contain his public key, hash the 3 messages in AUTH
payload to assure an integrity protection and complete the negotiation of a child SA.
TSi and TSr are used to assure the description of traffic to be sent.

4.3 IKE Validation with Hermes

In this section, we propose a formal validation of our proposed protocol using a model
checking tool, called Hermes [33] [36]. Hermes computes an invariant of the intruder
knowledge to check whether the defined secrets within a protocol may be revealed.
The result is obtained without any restriction on the number of parallel sessions, the
number of participants and the size of exchanged messages. The research around
Hermes has also been supported by the EVA RNTL project [35] that aims at provid-
ing a toolbox for verifying cryptographic protocols using a protocol specification
language called LEAVA [36].

Presenting EVA abstract model is out of the scope of this paper [33]; we only pro-
vide here a high level specification of our protocol in LEVA language. This specifica-
tion is then automatically translated to an intermediate representation used as an entry
point to Hermes which compiles and verifies our proposition.

We illustrate our scenarios as a negotiation between two principals A, B that repre-
sent respectively the IPSec initiator and responder. Our goal is to open an IKE v1
phase 1 negotiation with identity protection based on X.509 identity and attribute
certificates.

IKEv1_Identity_Protection_Signature
alg : asym_algo
everybody knows alg
 A, B,CA,EDHCP: principal
 basetype key
 keypair^alg SK, PK (principal)
 SAi,SAr,Ca,Cb,Na,Nb,certreq: number
 //Ks(number, number, number) : number
 p, g, Xa, Xb: number // valeur publique DH éphémère
 Ks: key // clé dérivée des valeurs DH et des autres
paramètres.
 alias certB = { CA, B, PK(B) }_SK(CA)^alg
 alias certA = { CA, A, PK(A) }_SK(CA)^alg
 alias Attcert = { A, EDHCP }_SK(EDHCP)^alg
// Inital Knowledge
everybody knows alg
 A knows A, SK(A), PK(A), PK(CA), certA, Ks,
EDHCP,PK(EDHCP),Attcert
 B knows B, CA, SK(B), PK(B), PK(CA),certB,
Ks,EDHCP,PK(EDHCP)
//Message Knowledge

 A Secure Way to Combine IPsec, NAT & DHCP 115

 {
 1. A -> B : Ca,SAi
 2. B -> A : Cb,SAr
 3. A -> B : Ca, Cb, p,g,Xa, Na, certreq
 4. B -> A : Ca, Cb,p,g,Xb, Nb, certreq
 5. A -> B : Ca,Cb, {{A,certA,Attcert,
Na,Nb,p,g,Xa,Xb, certreq}_(SK(A))^alg}_Ks
 6. B -> A : Ca,Cb, {{B,certB,Nb,Na,p,g,Xa,Xb, cer-
treq}_(SK(B))^alg}_Ks
 }
//Sessions and properties
 s. session* {Ca,Cb,Na,Nb,p,g,Xa,Xb,Ks} A=A, B=B
 assume secret (SK(B)@s.B),
 secret (SK(A)@s.A),
 secret(Ks@s.A),
 secret(Ks@s.B)

We can divide the first phase of IKE v1 protocol into five parts. In the first part,

Principals (A, B, EDHCP for Attribute Authority and CA for Certificate Authority)
and variables (called numbers, algo and, key) are explicitly declared. It contains the
definition of all necessary Diffie Hellman parameters like n, g and the public DH
values Xa,Xb, are for the principals A, and B respectively. The two principals A and
B will be authenticated using their two constructors PK and SK that represent respec-
tively the public and private key of each principal.

The X.509 certificates of A and B concatenate the identity and the public key of
each principal under a signature. The signature is done using the private key SK(CA)
of a trusted certificate Authority (CA). The attribute certificate of the principal A is
signed with the private key of the E-DHCP attribute certificate.

The second part (commented by initial knowledge) specifies the initial knowledge
of each principal. It indicates also that some variables could be defined as public val-
ues under the ‘everybody knows’ syntax.

In the third part (describing the messages to be exchanged) comes a sequence of
message that is exchanged between the two principals. A message in the sequence is
expressed in the form A -> B: M, meaning that entity A sends the message M to entity
B. Typically cryptographic algorithms with special representation are required to
construct the messages that are exchanged. For example, {M}_SK(H) means that the
message M is signed with the private Key of H but {M}_K means that the message M
is encrypted with the secret key K.

The extended IKE protocol is represented with six steps providing a protection
against replay attacks, message authentication, secure session negotiation and dual
entity authentication. In the first four messages, the two entities A and B exchange
cookies (Ca, Cb), nonces (Na and Nb), security associations (SAa and SAb) and their
ephemeral public DH values n, g, Xa and Xb) that represents the group module of
DH. The two entities send also the message certreq forcing the use of certificates in
authentication. In the last exchange the two entities will authenticate each other with a
signature on all exchanged data. A should also send his attribute certificate explained
previously that contains all its attributes. All data except the cookie messages will be
encrypted using an encryption Key (Ks) derived from the DH and Nonces.

116 J. Demerjian et al.

The fourth part (assumptions and claims) considers an unbounded number of ses-
sions in parallel, and the final part provides the secrecy hypothesis that is exploited in
the Hermes’s reasoning [33]. It defines keys unknown to the intruder which can be
used to safely encrypt messages. secret (K@s.H) means that the key K in session s
should be treated as a secret from H’s point of view.

Table 1. Result of IKE phase 1 with digital signature

Secrets: SK(h);Ks; (h represent a Principal)

GoodPatterns: {xs}_PK(h);
{xs}_Ks

BadPatterns:
 Vide

Using the Online Hermes’s tool [34], our specification was correctly compiled and
verified regarding secrecy properties. As output, Hermes provides the sequence of
rules leading to each new secret or bad pattern.

The previous table summarizes the result obtained on the first phase of IKE proto-
col with digital signature. In table 1, “GoodPatterns” means that, all message en-
crypted with one of the three secrets (Ka, shr and SK) can be securely exchanged
[33]. No attack was identified with “BadPatterns”. Moreover, Hermes provides
online, a graphical tree proof that can be exploited for understanding attacks and pro-
tocol certification.

5 Security Consideration

This paper describes how to solve IPsec security issue at NAT/DHCP environment.
Since this proposition does not change or discard any of the IPsec security itself, the
security of this paper is exactly the same as that of the IPsec functionality.

However, the use of this proposition will be limited to the presence of a PKI infra-
structure. This is due to the fact that this proposition is based on the use of attribute
certificate in correlation with X.509 certificate in IKE authentication schemes.

6 Conclusion and Future Work

NAT removes the end-to-end significance of an IP address. Therefore, end-to-end
network layer security via IPsec cannot operate with an intervening NAT device. This
is significant problem with NAT, particularly considering the increase in demand for
IPsec and VPN-based solutions.

This paper has presented the incompatibilities between NAT/IPsec, exposed some
existing solutions that define how to combine NAT/IPsec and illustrated the limits of
those solutions. We have proposed a safely new way of making IPsec work through a
NAT function. Our proposed solution assures end-to-end security using IPsec in the
NAT/DHCP environment. We point out that this solution is built upon [6] and [8],

 A Secure Way to Combine IPsec, NAT & DHCP 117

works previously published. This proposition has several advantages compared to
alternative solutions:

1. The integration of AC (Attribute Certificate) in IKE protocols for access control
will allow all IPsec entities to bypass NAT servers without any change in the cur-
rent IPsec functionalities. These ACs are always protected against identity spoof-
ing attacks under a secured tunnel.

2. Use the IKE standards UDP ports (500 or 4500 for IKE v2). Doing so, avoids pok-
ing new holes in firewall rules and packet filters.

3. Transparently to IPv4 or IPv6 networks.
A future direction of this research is to validate this proposition through the devel-

opment and the establishment of real scale tests.

References

1. Aboda. B., Dixon, W.: IPsec-Network Address Translation (NAT) Compatibility Re-
quirements, IETF, RFC 3715 (2004)

2. Berners-Lee, T., Fielding, R., Masinter, L.: Uniform Resource Identifiers (URI): Generic
Syntax, IETF, RFC 3986 (2005)

3. Borella, M., Lo., J., Grabelsky, D., Montenegro, G.: Realm Specific IP: Framework, IETF,
RFC 3102 (2001)

4. Borella, M., Lo., J., Grabelsky, D., Taniguchi, K.: Realm Specific IP: Protocol Specifica-
tion, IETF, RFC 3103 (2001)

5. Carpenter, B., Moore, K.: Connection of IPv6 Domains via IPv4 Clouds, IETF, RFC 3056
(2001)

6. Demerjian, J., Serhrouchni, A., Achemlal, M.: E-DHCP: Extended Dynamic Host
Configuration Protocol, IETF, Internet Draft (2004)

7. Demerjian, J., Serhrouchni, A., Achemlal, M.: Certificate-based Access Control and
Authentication for DHCP. In ACM/IEEE ICETE'04. International Conference on E-
Business and Telecommunication Networks. ICETE Conference, Setúbal, Portugal (2004)

8. Demerjian, J., Serhrouchni, A.: DHCP authentication using certificates. In SEC’04, 19th
IFIP International Information Security Conference. SEC Conference, Toulouse, France
(2004)

9. Droms, R.: Dynamic Host Configuration Protocol, IETF, RFC 2131 (1997)
10. Droms, R., Alexander, S.: DHCP Options and BOOTP Vendor Extensions, IETF, RFC

2132 (1997)
11. Droms, R.: Procedure for Defining New DHCP Options, IETF, RFC 2489 (1999)
12. Farrell, S., Housley, R.: An Internet Attribute Certificate Profile for Authorization, IETF,

RFC 3281 (2002)
13. Hajjeh, I., Serhrouchni, A., Tastet, F.: New Key Management Protocol for SSL/TLS. In

IEEE-IFIP NETCOM'03. Network Control and Engineering for QoS, Security and Mobil-
ity. NETCOM Conference, Muscat, Oman (2003)

14. Harkins, D., Carrel, D.: The Internet Key Exchange (IKE), IETF, RFC 2409 (1998)
15. Housley, R., Polk, W., Ford, W., Solo, D.: Internet X.509 Public Key Infrastructure Cer-

tificate and Certificate Revocation List (CRL) Profile, IETF, RFC 3280 (2002)
16. Huttunen & al.: UDP Encapsulation of IPsec ESP Packets, IETF, RFC 3948 (2005)
17. Jonsson, J., Kaliski, B.: Public-Key Cryptography Standards (PKCS) #1: RSA Cryptogra-

phy Specifications Version 2.1, IETF, RFC 3447 (2003)

118 J. Demerjian et al.

18. Kent, S., Atkinson, R.: Security Architecture for the Internet Protocol, IETF, RFC 2401
(1998a)

19. Kent, S., Atkinson. R.: IP Authentication Header (AH), IETF, RFC 2402 (1998)
20. Kent, S., Atkinson. R.: IP Encapsulating Security Payload (ESP), IETF, RFC 2406 (1998)
21. Kivinen, T., Swander, B. Huttunen, A., Volpe, V.: Negotiation of NAT-Traversal in the

IKE, IETF, RFC 3947 (2005)
22. Maughan, D. Schertler, M., Schneider, M., Turner, J.: Internet Security Association and

Key Management Protocol (ISAKMP), IETF, RFC 2408 (1998)
23. Montenegro, G., Borella, M.: RSIP Support for End-to-end IPsec, IETF, RFC 3104 (2001)
24. Phifer, L.: IP Security and NAT: Oil and Water?, ISP-Planet (2000)
25. Postel, J.: User Datagram Protocol, IETF, RFC 768 (1980)
26. Postel, J.: Transmission Control Protocol, IETF, RFC 793 (1981)
27. Postel, J.: INTERNET PROTOCOL, IETF, RFC 791 (1981)
28. Srisureh, P.: Security Model with Tunnel-mode IPsec for NAT Domains. IETF, RFC 2709

(1999)
29. Srisureh, P., Holdrege. M.: IP Network Address Translator (NAT) Terminology and Con-

siderations, IETF, RFC 2663 (1999)
30. Srisureh, P., Egevang. K.: Traditional IP Network Address Translator (traditional NAT),

IETF, RFC 3022 (2001)
31. Sun Microsystems: System Administration Guide: IP Services [Electronic version],

Part No: 816-4554-10. Retrieved from docs.sun.com, Web site:
http://docs.sun.com/app/docs/doc/816-4554/6maoq020v?a=view (2005)

32. Demerjian, J., Hajjeh, I., Serhrouchni, A., Badra, M.: Network security using E-DHCP
over NAT/IPsec, In WTAS'05. International Conference on Web Technologies,
Applications and Services. IASTED Conference, Alberta, Canada (2005)

33. Bozga, L., Lakhnech, Y., Périn, M.. Hermes: A tool verifying secrecy properties of un-
bounded security protocols. In CAV’03. 15th International Conference on Computer-
Aided Verification. Lecture Notes in Computer Science, Springer Verlag, July 2003
(2003)

34. Herme’s tool, url: www-verimag.imag.fr/~Liana.Bozga/eva/hermes.php
35. French National Projet EVA (Explication et Vérification Automatique pour les Protocoles

Cryptographiques). url : www-eva.imag.fr
36. Le Metayer, D., Jacquemard, F. : Langage de spécification de protocoles cryptographiques

de EVA : syntaxe concrète. Technical Report EVA-1-v3.17, Trusted Logic, November
2001. Available from http://www-eva.imag.fr

A Generic Model
for Analyzing Security Protocols�

Yonggen Gu, Yuxi Fu, Farong Zhong, and Han Zhu

BASICS, Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200030, China

{gyg68, fu-yx, zhong-fr, zhu-h}@sjtu.edu.cn

Abstract. Formal methods have proved useful in the analysis of secu-
rity protocols. The paper proposes a generic model for the analysis of
the security protocols (GSPM for short) that supports message passing
semantics and constructs for modelling the behavior of agents. GSPM is
simple, but it is expressive enough to express security protocols and prop-
erties in a precise and faithful manner. Using GSPM it is shown how se-
curity properties such as confidentiality, authentication, non-repudiation,
fairness, and anonymity can be described. Finally an example of formal
verification is illustrated.

1 Introduction

Security protocols are playing an increasingly important role and have become
an essential ingredient of communication infrastructures. They are designed to
provide properties such as confidentiality, authentication, non-repudiation, fair-
ness, and anonymity for users who wish to exchange messages through a medium
over which they have little control. However the design of a security protocol is a
difficult and error-prone task. Many popular and widely used security protocols
have been shown to have flaws. For this reason, the use of formal methods for
the verification of security protocols has received increasing attention.

Since the security protocols themselves often contain a great deal of com-
binatorial complexity, it is extremely difficult to model them and verify their
properties. Over the past few years various modelling languages, for instance
logics and process algebras, have been proposed for the systematic and tool-
supported analysis of the security protocols. Formal methods have proved useful
in the analysis of the security protocols. A popular approach is to model a proto-
col as a system of concurrent processes, described using an appropriate language
like CSP [9]. In [10] Lowe found a new attack to Needham-Schroeder public-
key protocol [13] by encoding and analysing it in CSP. Following this initial
work, numerous other calculi have been studied for the purpose of modelling
and analyzing security protocols. For example, VSPA [8] is a value passing vari-
ant of CCS [11] extended to incorporate two security levels; The spi calculus [2]
� The work is supported by The Young Scientist Research Fund (60225012),The Nat-

ural Science Fund (60473006) and The National 973 Project (2003CB316905).

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 119–128, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

120 Y. Gu et al.

extends the pi calculus [12] with cryptographic primitives [3]; The applied pi
calculus [1] extends the pi calculus with a general notion of terms; LY SA [4]
is a variant of the spi calculus with pattern matching. An obvious strength of
process calculus approach is their inherent mechanism for handling concurrency
and communication.

Since there is no general formal framework for the analysis of security pro-
tocols, we intend to devise the GSPM to state various security properties, as
expressed explicitly in a formal specification, and model the protocols in a pre-
cise and faithful manner. GSPM stems from concepts well established in the field
of process calculi (such as CSP, pi calculus and ambient [5] etc.). We discard the
notion of channel and don’t explicitly model the intruder, yet our simple model
is powerful.

The next section presents GSPM. Section 3 defines formally some security
properties such as confidentiality, authentication, non-repudiation, fairness, and
anonymity based on our model. Section 4 illustrates an example. Section 5 dis-
cusses our future work and concludes.

2 GSPM

In this section we present the main aspects of our model. The motivation for the
model is to be more explicit about the activities of the participants in a protocol
and those of possible attackers, and to express various security properties in a
formal specification.

2.1 The Abstract System Model of Security Protocols

In this subsection we outline how the abstract system model of the security
protocols are constructed in GSPM. Our approach provides a GSPM description
of the Dolev-Yao assumption [7]: the communication medium is entirely under
the control of the enemy, who can block, re-address, duplicate, and fake messages.
In [16], the roles of the passive medium and of the active intruder are described
using different processes. In our framework we see the combination of the intruder
and the medium as a single entity (we call it active environment). Let Idi stand
for the ith participant of a security protocol. The resulting system model of the
protocol is shown in the Figure 1.

Active Environment

�
�

Id1

�
�

Id2 � � � � � �

�
�

Idn

Fig. 1. The abstract system model of security protocols

A Generic Model for Analyzing Security Protocols 121

The rest of this subsection will give a deeper insight into the abstract system
model.

Message space. The message space we used for the analysis of security pro-
tocols is as follows:

k ::= Public key | Private key | Symmetric key Keys
a ::= k | Nonces | Plaintext Atomic messages
M ::= a | M.M | {M}k | Hash(M) Messages

Plaintexts, nonces and keys are atomic messages. The other messages are com-
posite. Like in [16] we have rules defining how messages may be generated from
existing ones. We write M � M to mean that the message M may be derived
from the finite set of messages M. The following rules define the generated
relation �:

M ∈ M =⇒M � M (1)
M � M1 ∧M � M2 =⇒M � M1.M2 (2)

M � M1.M2 =⇒M � M1 ∧M � M2 (3)
M� M ∧M � k =⇒M � {M}k (4)

M � {M}Publickey ∧M � privatekey =⇒M � M (5)
M � {M}Symmetrickey ∧M � Symmetrickey =⇒M � M (6)

M � M =⇒M � Hash(M) (7)

Let el(M) be the set of the elements of the message base M. We can obtain
the el(M) by iteration as follows:

Do while M is not empty, we get a message M from M
(1) When M is atomic message, we put M into el(M);
(2) When M = M1.M2, we put M1 and M2 into M;
(3) When M = {M1}k, if k−1 �∈ M and k−1 �∈ el(M) (k−1 is the k’s correspond-
ing key) then we put M into el(M) else we put M1 into M.

Enddo.

Theorem 1. Let M is a message base, and M is a message, then M � M is
decidable.

Proof. It can be proved by induction on the structure of message.
(1) If M is atomic message or hash message, then M � M only when M ∈

el(M);
(2) If M = M1.M2, then M � M only when el(M) � M1 and el(M) � M2.
(3) If M = {M1}k, then M � M only when M ∈ el(M) or M � k and

el(M) � M1.

Protocol participants . For each protocol participant there are a set of pro-
cesses and a message base IM . Each process of a participant corresponds to
an instance of the participant involved in a particular execution of the proto-
col. All the processes work asynchronously and concurrently. The concurrency
is simulated by non-deterministic interleaving of process running.

122 Y. Gu et al.

Active environment . The active environment also is an intruder. It reads all
message outputs of protocol participants, and can output any message which it
generates to any protocol participant that allows for honest message passing,
redirecting messages, replaying messages, and inventing new messages. The in-
truder can also be a legitimate protocol participant. In our model we are only
interested in the active environment’s message capability, and describe the mes-
sages the active environment posses as EM . We let EM0 stand for the active
environment’s initial messages.

2.2 The Syntax of GSPM

In order define GSPM we need the syntactic sets defined below:

– N : an infinite set of names, ranged over by n, m, k, Id, Id1 · · · , x, x1, · · ·. A
name is plaintext, participant’s name, nonce, key, or atomic name variable
etc.; A key k is either public key (PubN), or a private key (PrvN), or a
shared/secret key (SecKey).

– Variables over messages ϕ, ψ, ψ′, ψ1, · · ·.
– {.}k represents symmetric encryption, {.}+k represents asymmetric encryp-

tion, {.}−k represents asymmetric decryption.

M ::= N | ϕ | (M1, M2) | {M}k | {M}+k | H(M) Message expr.
Patt ::= M | ?x | ?ϕ | (Patt1, Patt2) | {Patt}k | {Patt}−k Pattern expr.

The grammar for processes is similar to that of the pi calculus, except that
here messages may contain terms (rather than only names) and that the notion
of channel is absent:

P, Q, R ::= process
0 null process
in(patt(x̃ϕ̃)).P message input
out(newx̃M).P message output
P |Q parallel composition

In the above definition x̃ for example abbreviates some possibly empty list
x1, · · · , xl. An informal explanation of the GSPM is similar to the one in [6].
The null process 0 does nothing; in(patt(x̃ϕ̃)).P awaits an input that matches
the pattern for some binding of the pattern variables x̃ϕ̃ and resumes as P under
this binding. Here patt(x̃ϕ̃) represents that there may be some variables x̃ϕ̃ in
the pattern. out(newx̃M).P chooses fresh, distinct names ñ = n1, · · · , nl and
binds them to the variables x̃ = x1, · · · , xl. Then the message M [ñ/x̃] is output
to the network and the process resumes as P [ñ/x̃]. The communication is asyn-
chronous in the sense that the action of output does not await input. The new
construct is like that of Pitts and Stark [15] and abstracts out an important
property of a value chosen randomly from some large set.

Furthermore we extend processes with the location to agent:

A, B, C ::= Agents
Id[P, IM] Agent Id performs P with IM
A‖B parallel composition

A Generic Model for Analyzing Security Protocols 123

We take fv(M), fv(patt(x̃ϕ̃)), fv(IM) to be the set of variables appeared
free in M , patt(x̃ϕ̃), IM . The free variables of process terms are defined as
follows:

fv(out(newx̃M).P) = (fv(P) ∪ fv(M))\{x̃}
fv(in(patt(x̃ϕ̃)).P) = (fv(P) ∪ fv(patt(x̃ϕ̃)))\{x̃, ϕ̃}

fv(P |Q) = fv(P) ∪ fv(Q)
fv(Id[P, IM]) = fv(P) ∪ fv(IM)

fv(A|B) = fv(A) ∪ fv(B)

2.3 A Transition Semantics

The semantics of the GSPM is given in terms of a transition relation −→.
Similar to the approach in [3], we model the state of the protocol system as
a pair 〈s, System〉, where s records the current environment’s message base
EM (Because the environment has ‘seen’ the sequence of messages traveling on
the network up to the moment), and System is the protocol agent composed
of some agents. An action is a term of the form Id[in(M)](input action) or
Id[out(M)](output action), which means a participant Id inputs or outputs a
message M . The set of actions A is ranged over by α, β, · · ·, while the set A∗

of strings of actions is ranged over by s, s′, · · · . String concatenation operator is
written as ‘·’. We denote by act(s) and msg(s) the set of actions and messages,
respectively, appearing in s. A string s is closed if fv(s) is nil. In what follows,
we write s � M for EM � M (EM = msg(s) ∪ EM0).

We now define paths, sequences of actions that may result from the inter-
action between an agent and its environment. In paths, each message received
by a agent can be synthesized from the knowledge the environment has previ-
ously acquired. A path is a closed string s ∈ (A)∗ such that for each s1, s2 and
Id[in(M)], if s = s1 · Id[in(M)] · s2, then s1 �M .

A configuration, written as 〈s, system〉, is a pair consisting of a path s and
a system. Configurations are ranged over by C, C′, · · ·, and C0 stands for the
initial configuration. The transition relation on configuration is defined by the
following rules:

(input)
EM � patt(ñM̃)

〈s, Id[in(patt(x̃ϕ̃)).P, IM]〉 in(patt(ñM̃))−→
〈s · Id[in(patt(ñM̃))], Id[P [ñ/x̃, M̃/ϕ̃], IM ∪ patt(ñM̃)]〉

(output)
IM � M [ñ/x̃] (ñ are fresh in s)

〈s, Id[out(newx̃M).P, IM]〉 out(M [ñ/x̃])−→
〈s · Id[out(M [ñ/x̃])], Id[P [ñ/x̃], IM ∪ ñ]〉

(internal par)
〈s, Id[P, IM]〉 α−→ 〈s′, Id[P ′, IM ′]〉

〈s, Id[P |Q, IM]〉 α−→ 〈s′, Id[P ′|Q, IM ′]〉

124 Y. Gu et al.

(external par)
〈s, A〉 α−→ 〈s′, A′〉

〈s, A‖B〉 α−→ 〈s′, A′‖B〉
The symmetric rules have all been omitted.

3 Properties of Security Protocols

Properties of security protocols, such as confidentiality and authenticity, are
the very objects which security protocols want to guarantee. GSPM provides a
suitable language in which they can be formally addressed and it is easy to verify
whether a security protocol has them as it is supposed to.

3.1 Confidentiality

Confidentiality means that a secret will not leak to those who are not designed
to know it while the protocol is running. Since we use message base to describe a
participant’s knowledge, it is natural for us to useM �m to express the meaning
that a participant with message baseM “knows” m. Usually the secret is shared
between proper participants of the protocol, so a violation of confidentiality can
be seen as the leakage of a secret to the active environment, which leads to the
following definition:

Definition 1. Let C0 be the initial configuration, if for all paths s generated
from C0, s �� m, then the system satisfies the confidentiality of m.

3.2 Authenticity and Integrity

What authenticity guarantees is that a message supposed to be from a certain
participant is indeed originated by that participant. According to correspondence
assertion, participant A has sent a relevant message desired by participant B
before B receives it, we say that B authenticates A. In order to define it more
precisely, we need some auxiliary definitions:

Definition 2. Let α and β be two actions and s a path. We say that α occurs
prior to β in s if we have α ∈ act(s1) whenever s = s1 · β · s2, and denote it by
s |= α←↩ β.

Definition 3. Let C0 be the initial configuration, if all paths s generated from
C0, we have α←↩ β, then we say that the configuration C0 satisfies s |= α ←↩ β,
and denote it by C0 |= α←↩ β.

Now we can express authenticity as follows: (note that out(B auth. A by m)
is an auxiliary action for B to make authenticity more explicit)

Definition 4. If C0 |= A[out(F (m))] ←↩ B[out(B auth. A by m)] (here F (m)
is a composite message generated by A who is the only one to know m), then B
authenticates A.

A Generic Model for Analyzing Security Protocols 125

Integrity also can be easily expressed by the notion of α ←↩ β. Since it
usually requires that data cannot be corrupted or at least that any corruption
will always be detected. In other words, the input message should match the
output message.

Definition 5. Integrity means that for all M , C0 |= [out(M)]←↩ [in(M)].

There is no participant ID before the action for we don’t care about who is
the actor.

3.3 Non-repudiation and Fairness

Non-repudiation and fairness mainly concern electronic commerce protocol,
which provides services among participants that don’t trust each other [17].
In [16] Schneider discusses the non-repudiation in his CSP model.

Firstly, we give the definitions of two evidences used in analysis: NRO and
NRR. Non-Repudiation of Origin (NRO) is an evidence intended to protect
the receiver from the deliberate denial of the other participant of having sent
a message; Non-Repudiation of Receipt (NRR) is another evidence intended to
protect the sender from the deliberate denial of the other participant of having
received a message.

Definition 6. Let C0 be the initial configuration, if for all paths s generated
from C0, (msg(s)∪EM0∪IMR) � NRO (i.e. the receiver IdR possesses NRO),
then the protocol is said to have the sender non-repudiation property; (msg(s)∪
EM0 ∪ IMO) � NRR (i.e. the sender IdO possesses NRR), then the protocol is
said to have the receiver non-repudiation property.

Fairness can be seen as the combination of two non-repudiation properties,
for at no point in a protocol’s run one participant will have any advantage over
another. In other words, none of the participants can get his or her evidence
while the other cannot.

Definition 7. Let C0 be the initial configuration, if for all paths s generated
from C0, (msg(s) ∪EM0 ∪ IMR) � NRO ∧ (msg(s) ∪EM0 ∪ IMO) � NRR or
((msg(s) ∪ EM0 ∪ IMR) �� NRO) ∧ ((msg(s) ∪ EM0 ∪ IMO) �� NRR) always
holds, the protocol is fair.

3.4 Anonymity

Anonymity is another property that mainly concerns electronic commerce pro-
tocol and it seems to have been hardly explored from a formal point of view.
Intuitively a system is anonymous over some set of events E means that even
though an observer can deduce that an event from E has occurred but he or she
should not be able to identify which.

Definition 8. Let C0 be the initial configuration, if for all paths s generated
from C0, (msg(s) ∪ EM0 ∪ IMA) �� m, we say that the protocol has anonymity
over message m for participant A.

126 Y. Gu et al.

4 An Example

We consider the Needham-Schroeder public-key protocol. This protocol aims
to establish mutual authentication between an initiator A and a responder B,
and share with the secret nonces. Every participant Id has a private key PrvId

and a corresponding public key PubId. We will write {m}k for the message m
encrypted with the key k. Any participant can encrypt a message m using A’s
public key PubA to produce {m}PubA ; only A can decrypt this message. The
protocol also uses nonces: random numbers generated with the purpose of being
used in a single run of the protocol. We denote nonces by NAX and NBY : the
subscripts are intended to denote that the nonces were generated by A and B are
sent to X and Y , respectively. The complete protocol involves seven steps. Here
we consider a simplified version with only three steps. This version is related to
the assumption that each agent initially has the other’s public key. The simplified
protocol can be described as:

1. A −→ B: {NAB, A}PubB

2. B −→ A: {NAB, NBA}PubA

3. A −→ B: {NBA}PubB

The three protocol participants are named A, B, I. Here I is a malicious insider:
in other words, the hostile environment has registered itself as a legitimate par-
ticipant having name I, private key PrvI and public key PubI . We add an action
‘out({X auth. Y by m})’ that the participant X performs when he believes to
have successfully authenticated the participant Y by message m. The formal
description of the protocol is as follows:

A
def= A[ΠX∈{I,B}(out(newNAX{NAX , A}PubX).in({NAX , ?Nx}PubA)

.out({A auth. X by NAX}).out({Nx}PubX), {PubA, PubB, PubI , P rvA}]
B

def= B[ΠY ∈{I,A}(in({?Ny, Y }PubB).out(newNBY ({Ny, NBY }PubY))
.in({NBY }PubB).out({B auth. Y by NBY }), {PubA, PubB, PubI , P rvB}]

System
def= A‖B

In order to make the description more readable some obvious meta-notation is
used. In particular we have abbreviated ‘P1| · · · |Pn’ to ‘Πi∈1,···,nPi’.

This version of the protocol is subject to a subtle form attack [10]. In this
protocol, the initiator A and the responder B authenticates each other by ex-
changing nonce, and only A and B know the exchanging nonces. Formally the
authentication goal is that

C0 |= B[out({NAB, NBA}PubA)]←↩ A[out({A auth. B by NAB})]
and

C0 |= A[out({NBY }PubB)]←↩ B[out({B auth. A byNBY })]
hold. But this is not that case for the latter. The attack is that, A tries to
establish a session with the intruder I, while I impersonates A to establish

A Generic Model for Analyzing Security Protocols 127

a false session with B. The attack involves two interleaved executions of the
protocol, one in which the intruder I acts as the responder and one in which it
acts as the initiator.

Theorem 2. The NSPK protocol does not satisfy the authentication and Con-
fidentiality properties. There exists a path s don’t such that

A[out({NBA}PubB)] ←↩ B[out({B auth. A by NBA})]

thus
C0 |= A[out({NBY }PubB)]←↩ B[out({B auth. A byNBY })]

don’t hold. i.e. B can not authenticate A by the correspondence assertion; and
s � NBA, i.e. the protocol does not satisfy the confidentiality property.

Proof. We know EM0 = {PubA, PubB, PubI , P rvI}. C0 generates the path s =
α1 · · ·α8, where :

α1 = A[out({NAI , A}PubI)]
α2 = B[in({NAI , A}PubB)]
α3 = B[out({NAI , NBA}PubA)]
α4 = A[in({NAI , NBA}PubA)]
α5 = A[out({A auth. I by NAI})]
α6 = A[out({NBA}PubI)]
α7 = B[in({NBA}PubB)]
α8 = B[out({B auth. A by NBA})]

It is clearly that the path s do not satisfy A[out({NBA}PubB)]←↩ B[out({B
auth. A by NBA})], and (msg(s) ∪ EM0) � NBA. Thus the protocol does not
satisfy the authentication and Confidentiality properties.

5 Conclusion and Further Work

In this paper we present a generic model (GSPM) for security protocols that
allows one to reason about formal definitions of a variety of security properties.
In GSPM one does not explicitly model intruders. We have formulated security
properties such as confidentiality, authentication, non-repudiation, fairness, and
anonymity in GSPM. We have taken the Needham-Schroeder public-key proto-
col as a case study to demonstrate the expressive power of GSPM. We plan to
construct an automatic tool to help analyzing the security protocol using GSPM.
However we have to consider the following questions:

1. The active environment possesses infinite messages. Since the protocol
participant must receive the matched messages, we are ready to take into account
the symbolic method.

128 Y. Gu et al.

2. There are infinite sessions between the participants. Because the LTS se-
mantics of our model is based on structural induction, we’ll adopt the approach
similar to Paulson’s inductive method [14].

As for future work, we plan to define formally other security properties based
on our model, and analyze the protocols such as Kerberos, SET etc.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and seucre communication. Pro-
ceedings of the 28th ACM Symposium on Principles of Programming Languages.
ACM Press (2001) 104-115

2. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation. 148(1) (1999) 1-70

3. Boreale, M.: Symbolic trace analysis of cryptographic protocols. Proceedings of the
28th International Colloquium on Automata, Languages and Programming. LNCS
2076, Springer-Verlag (2001) 667-681

4. Bodei, C., Buchholtz, M., Degano, P., Nielson, F., Nielson, H.R: Automatic valida-
tion of protocol narration. Proceedings of the 16th Computer Security Foundations
workshop. IEEE Computer Society Press, (2003) 126-140

5. Cardelli, L., Gordon, A.D: Mobile ambients. Foundations of Software Science and
Computational Structures. LNCS 1378, Springer-Verlag, (1998) 140-155

6. Crazzolara, F., Winskel, G.: Events in security protocols. Proceedings of the 8th
ACM conference on Computer and Communications Security. ACM Press (2001)
96-105

7. Dolev, D., Yao, A.C: On the security of the public key protocols. IEEE Transcations
on Information Theroy. 29(2) (1983) 198-208

8. Focardi, R., Gorrieri, R.: The compositional security checker: A tool for the ver-
ification of information flow security properties. IEEE Transactions on Software
Engineering. 23(9) (1997) 550-571

9. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (1985)
10. Lowe, G.: Breaking and fixing the Needham-Schroeder Public-key protocol using

FDR. Proceedings of Tools and Algorithms for the Construction and Analysis of
Systems. LNCS 1055, Springer-Verlag (1996) 147-166

11. Milner, R.: Communication and Concurrency. Prentice Hall (1989)
12. Milner, R., Parrow, J., Walker, D.: A calculus of moblie processes(I and II). Infor-

mation and Computation. 100(1) (1992) 1-77
13. Needham, R., Schroeder, M.: Using encryption authentication in large networks of

computers. Communications of the ACM. 21(12) (1978) 993-999
14. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Jour-

nal of Computer Security. 6, (1998) 85-128
15. Pitts, A.M., Stark,I.: Observable properties of higher order functions that dy-

namically create local names, or: What’s new? Proceedings of the 18th Interna-
tional Symposium on Mathematical Foundations of Computer Science. LNCS 711,
Springer-Verlag (1993) 122-141

16. Schneider, S.A.: Security properties and CSP. Proceedings of the IEEE Symposium
on Security and Privacy. IEEE Computer Society (1996) 174-187

17. Zhou, J., Gollmann, D.: Towards verification of non-repudiation protocols. Pro-
ceedings of the International Refinerment Workshop and Formal Methods Pacific.
Springer-Verlag (1998) 370-380

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 129 – 135, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Networks, Markov Lie Monoids, and
Generalized Entropy

Joseph E. Johnson

University of South Carolina,
Department of Physics,

Columbia, South Carolina 29208
jjohnson@sc.edu

Abstract. The continuous general linear group in n dimensions can be
decomposed into two Lie groups: (1) an n(n-1) dimensional ‘Markov type’ Lie
group that is defined by preserving the sum of the components of a vector, and
(2) the n dimensional Abelian Lie group, A(n), of scaling transformations of the
coordinates. With the restriction of the first Lie algebra parameters to non-
negative values, one obtains exactly all Markov transformations in n
dimensions that are continuously connected to the identity. In this work we
show that every network, as defined by its C matrix, is in one to one
correspondence to one element of the Markov monoid of the same
dimensionality. It follows that any network matrix, C, is the generator of a
continuous Markov transformation that can be interpreted as producing an
irreversible flow among the nodes of the corresponding network.

1 Introduction

There is a broad spectrum of mathematical problems that involve the general theory
of networks and the associated classification, optimization, and potentially even their
dynamical evolution. By a network we mean a set of n nodes (points), some pairs of
which are connected with a representative non-negative weight or strength of
connection. Such a network can be represented by a connection (or connectivity, or
adjancy) matrix Cij whose off-diagonal elements give the non-negative ‘strength’ of
the connection between nodes i and j in the network. Often that ‘strength’ or ‘weight’
is as simple as a ‘1’ for a connection and a ‘0’ otherwise. A network can be
‘undirected’ or ‘directed’ depending upon whether Cij is symmetric or not thus
indicating respectively a symmetric or asymmetrical connection between i and j.
There may or may not exist a well defined ‘metric distance’ between the nodes or,
equivalently, positions for the points in a metric space of some dimensionality, such
as airports for airline networks, or substations for power or utility distribution
networks. It is well known that the classification of different network topologies
cannot be accomplished with just the eigenvalue spectra of the connectivity matrix as
there are topologically different networks with as few as five nodes that have the
same eigenvalue spectra. One root of the network problem is that although the
network is exactly defined by the C matrix, there are n! different C matrices that
correspond to the same topology because different C matrices result from different

 J.E. Johnson et al.

130

nodal numbering orders. Most network problems become computationally intractable
for more than a few hundred nodes.

We are interested in seeking useful metrics (functions of the C matrix) for the
description of the topology of large networks such as sub-nets of the internet which
might have from a hundred to a million nodes, and thus perhaps a trillion connection
matrix values. To be useful, the metrics must be (a) rapidly computable, (b)
intuitively meaningful, (c) should holistically summarize the underlying topology
with a few variables, and (d) ideally would offer meaningful expansions that would
provide increasing levels of topological detail. Mathematically, they should be (e)
invariant under the permutation group on node numbering. We are specifically
interested in the information flows of which originating node sends email or data to
which destination node; and we are not initially interested in the underlying physical
connectivity nor the path which the information traverses. Internet transmissions are
extremely dynamic and thus to achieve some form of continuity, we envision
constructing the C matrix with the summation of information transfers, over some
time window δ, surrounding a time t for C(t, δ) thus representing the time evolution of
the connection matrix. Given the number of connections, this problem resembles the
representation of a physical gas in terms of thermo dynamical variables (such as
temperature, volume, pressure, heat, and entropy). Generally, in such internet
environments there is no meaningful location or position metric and distance is not
usefully defined. As such pressure and volume, do not have a clear meaning without a
distance function. Nor is it clear that what equilibrium is being approached, if any,
and thus heat and temperature do not offer clear meanings. However, we suggest that
the concept of both Shannon and generalized Renyi entropies [1, 2] can be well
defined and summarize the order and disorder in the underlying topological structure.

Initially, how to define entropy on the connection matrix is not clear since both
Shannon and Renyi entropies are defined as the log of the sum of the powers of the
components of a vector, xi, representing probabilities: S = c log2 (b(Σxi

a)) where Σ xi =
1 and where a, b, and c are constants. As such these entropies represent the disorder in
the underlying probability distribution. The disorder is a maximum with an even
probability distribution and is a minimum when all the probability is in one cell with
others having a value of zero. But the connection matrix columns or rows cannot be
used as probability distributions since the diagonal of C is totally arbitrary. Even if we
make some arbitrary choice of the diagonal values of C and normalize the columns, it
is not clear what underlying topological ‘disorder’ we are measuring. In this work,
we utilize our past work on the decomposition of the general linear group in order to
answer both of these objections and to gain insight into how one might define these
entropy metrics in useful ways that satisfy the requirements a-e above.

2 Background on Markov Lie Groups and Monoids

We had previously shown [3] that the transformations in the general linear group in n
dimensions, that are continuously connected to the identity, can be decomposed into
two Lie groups: (1) an n(n-1) dimensional ‘Markov type’ Lie group that is defined by
preserving the sum of the components of a vector, and (2) the n dimensional Abelian
Lie group, A(n), of scaling transformations of the coordinates. To construct the
Markov type Lie group, consider the k,l matrix element of a matrix Lij as a basis for n

Networks, Markov Lie Monoids, and Generalized Entropy

131

x n matrices, with off-diagonal elements, as Lij

kl = δi

k δ
j

l - δ
j

k δ
j

l with i =/= j. Thus the ij
basis matrix has a ‘1’ in position ij with a ‘-1’ in position jj on the diagonal. These
n(n-1) matrices form a basis for the Lie algebra of all transformations that preserve
the sum of the components of vector. With this particular choice of basis, we then
showed that by restricting the parameter space to non-negative values, λij >=0, one
obtains exactly all Markov transformations in n dimensions that were continuously
connected to the identity as M = exp (s λij Lij) where we summarize over repeated
indices and where s is a real parameter separated from λij to parameterize the
continuous evolution of the transformation. In other words λij Lij consists of non-
negative coefficients in a linear combination of Lij matrices. This non-negativity
restriction on the parameter space removed the group inverses and resulted in a
continuous Markov monoid, a group without an inverse, in n dimensions, MM(n).
The basis elements for the MM algebra are a complete basis for n x n matrices that are
defined by their off-diagonal terms. The n dimensional Abelian scaling Lie algebra
can be defined by Lii

kl = δi

k δi

l thus consisting of a ‘1’ on the i,i diagonal position.
When exponentiated, A(s) = exp (s λii Lii), this simply multiplies that coordinate by es
giving a scaling transformation. In what follows, we will show that all networks
exactly correspond (one to one) to a combination of this Abelian transformation group
and the Markov monoid transformations.

3 Connecting Markov Monoids to Network Metrics

The essence of this paper is the simple observation that (1) since the non-negative off
diagonal elements of an n x n matrix exactly define a network (via C) and its topology
with that node numbering, and (2) since a Markov monoid basis is complete in
spanning all off-diagonal n ½ n matrices, then it follows that such networks are in one
to one correspondence with the elements of the Markov monoids. Thus each
connection matrix is the infinitesimal generator of a continuous Markov
transformation and conversely. This observation connects networks and their
topology with the Lie groups and algebras and Markov transformations in a well
defined way. Since the Markov generators must have the diagonal elements set to the
negative of the t sum of the other elements in that column, this requirement fixes the
otherwise arbitrary diagonal of the connection matrix to that value also (sometimes
referred to as the Lagrangian).

It now follows that this diagonal setting of C generates a Markov transformation
by M= eλC . One recalls that the action of a Markov matrix on a vector of probabilities
(an n-dimensional set of non-negative real values whose sum is unity), will map that
vector again into such a vector (non-negative values with unit sum). The next
observation is that by taking λ as infinitesimal, than one can write M = I + λC by
ignoring order l2 and higher order infinitesimals. Here one sees that the bandwidth of
the connection matrix between two nodes, now give that M matrix element as the
relative transition rate between those two components of the vector. Thus it follows
that given a probability distribution xi distributed over the n nodes of a network, then
M gives the Markov transition (flow) rates of each probability from one node to
another. Thus it follows that the connection matrix gives the infinitesimal transition
rates between nodes with the bandwidth reflecting that exact topology.

 J.E. Johnson et al.

132

Specifically, if the hypothetical probability vector is xi =(1,0,0,0…0) then the first
column of the M matrix will give the concentration of probability at the ith node after
that infinitesimal time period. Thus the first column of M is the probability
distribution after an infinitesimal time of that part of the probability that began on
node 1 and likewise for all other nodes thus giving a probability interpretation to each
of the columns of M. Thus each column of M can be treated as a probability
distribution associated with the topology connected to that associated node and
supporting an associated entropy function that reflects the inherent disorder (or order)
after a flow λ. Thus the columns of M support a meaningful definition of Renyi
entropies which in turn reflect the Markov transformation to disorder of the topology
near the node for that column. Thus this Renyi entropy on this column can be said to
summarize the disorder of the topology of the connections to that node. It follows that
the spectra of all nodes reflects in some sense the disorder of the entire network.
When sorted in descending order, it represents a spectral curve independent of nodal
ordering and thus independent of the permutations on nodal numbering. That spectral
curve can be summarized by the total value for the entropy of all columns (since
entropy is additive and the column values are totally independent). The structure of
the spectra can also be summarized by the entropy of the entropies in the spectra thus
giving a second variable summarizing the entire topology.

If the connection matrix is symmetric then the graph (network) is said to be
undirected, but if there is some asymmetry, then the graph is at least partially directed
where the flow from i to j is less or greater than the converse flow. If the connection
matrix is not symmetrized then one can capture this asymmetry by resetting the
diagonal values of C to be equal to the negative of all other row values in that row.
Then upon expansion of M = I + λC, the rows are automatically normalized
probabilities that in turn support entropy functions for each row. These row entropy
values form a spectrum which could be sorted by the same nodal values (in order) that
is used to order the column values. This will result in a different spectral curve that is
not necessarily in non-decreasing order for the row entropies. One also can compute
the total row entropy and the entropy if these row entropies as we have done from
columns. If two columns have the same entropy then one can sometimes partially
remove this degeneracy by the values of the associated row entropies.

Thus we suggest that the column and row spectral entropy curves, and the column
and row total entropy and entropy of entropy values, distil essential disorder and order
from the network topology – from n2 values down to 2n (spectral) values, and finally
to 4 values for the entire network – constitute a set of entropy metrics for the network,
all of which are independent of the nodal ordering (numbering) in the network and
thus indicative of the underlying topology. This analysis is expansive in two ways: (1)
These two spectra and four values can be computed to higher order in λ thus
including higher orders of the C matrix approximation for M and thereby
incorporating connections of connections into the metric values. It is with higher
powers of C via larger values of λ that we unfold more complex aspects of the
network topology. (2) One can also compute these metric values for each of the Renyi
entropy values. Work by V. Gudkov [4] has found that the order of the Renyi entropy
is equivalent to the Hausdorf dimensionality equation. This opens the possibility that
higher order entropy reveals connections of a ‘higher dimensionality’ in the network
structure [4, 5].

Networks, Markov Lie Monoids, and Generalized Entropy

133

4 Expansion of Second Order Renyi Entropy as a Taylor Series

Let us assume that C is symmetric (an undirected graph) thus C = CT. If one considers
the expansion of a vector of probabilities from state λ=0, |x(0)>, to another vector at a
later state λ, |x(λ)> by the continuous Markov transformation M = eλC then |x(λ)> =
eλC |x(0)> and thus the entropy is given by:

S = log2(nΣxi

2) = log2(n<x(λ)|x(λ)>)= log2(n<x(0)|(eλC)T (eλC)|x(0)>)

or rearranging and defining R we get:

R(λ) = 2S/n = <x(0)| e2λC |x(0)>) since C = CT

and then expanding the exponential we get:

R(λ) = <x(0)| (I + 2λC + (2λC)/2! + …) |x(0)>

Thus this power of the second order Renyi entropy consists of two times the
diagonal values of the powers of the connection matrix, plus the unit matrix as shown.
From this one can see that as λ becomes larger and larger, one must take more and
more of the topology connections into consideration. This in fact gives a hierarchical
expansion of this entropy that gradually ‘explores and includes’ higher and higher
order connectivity. If the row and column entropies are computed to include these
higher orders, then they will begin to take into account more complex aspects of the
networks interconnectedness. When there is asymmetry a similar equation can be
obtained.

5 General Diagonal Values and Eigenvalues

The previous results can be generalized to include totally general diagonal values for
C, by utilizing the diagonal transformations available in the n-parameter Abelian
scaling group. This group simply multiplies any node value by a scaling factor via M=
eλC. There is a natural interpretation to the actions of this group in terms of network
probability flows as introducing a source or sink of probability at the node which is
acted upon. That action removes the conservation of probability that was maintained
by the Markov monoid, but since such flow was simply used to encapsulate the
topological structure of the network, we can accept this lack of conservation. Thus
one can add to any diagonal of C, any positive or negative value representing the
scaling value of that coordinate and one will still have a valid network as all off
diagonal values of C are unchanged and the M matrix will still give the indicated
flows. This allows one to see the previous arbitrary allocations of ‘1’ or ‘0’ of the C
diagonals in a new light, especially for the eigenvalue computations.

When C is diagonalized, with the values leading to the Markov transformations, or
to the more general values of the diagonals of the last paragraph, one automatically
gets a diagonalization of the M matrix. The interpretation of the eigenvectors is now
totally obvious as those linear combinations of nodal flows that give a single
eigenvalue (decrease when the transformation is Markov) of the associated
probability, for that eigenvector. This follows from the fact that all Markov
eigenvalues are less than one except the one value for equilibrium which has

 J.E. Johnson et al.

134

eigenvalue unity for equilibrium. That means that each of these eigenvalues of C
reflect the decreasing exponential rates of decrease of the associated eigenvector as
the system approaches equilibrium as λ approaches infinity in M= eλC . This insight
allows us to see that all of the Renyi entropy values are increasing as the system
approaches equilibrium, which is normally the state of all nodes having the same
value of this hypothetical probability. The use here of this ‘artificial flow of
probability under M’ provides us with more than just a method of encapsulating the
topology with generalized entropy values, it also gives an intuitive model for the
eigenvectors and eigenvalues for C and sheds light on the graph isomerism problem
(different topologies having the same eigenvalue spectra).

6 Conclusion. Potential Applications to Large Internet Networks

Based upon the arguments above, we suggest that for real networks such as the
internet, that the appropriate connection matrix be formed, from source and
destination information transfers, where both asymmetry and levels of connection are
to be maintained in the C(t) matrix values during that window of time about that time
instant. Specifically, this means that if a connection is made multiple times in that
time interval, then that C element should reflect the appropriate weight of
connectivity as this adds substantial value to the entropy functions. We then suggest
that at each instant, the column and row entropy spectra be computed along with the
total row and column entropy and entropy of entropies and that this be done for lower
order Renyi entropies as well as lower order values in the expansion of the Markov
parameter λ that includes higher order connectivity of the topology. We are currently
performing tests to see how effective these entropy metrics are in detecting abnormal
changes in topologies that could be associated with attacks, intrusions, malicious
processes, and system failures. We are performing these experiments on both
mathematical simulations of networks with changing topologies in know ways, and
also on real network data both in raw forms and in forms simulated from raw data.
The objective is to see if these metrics can be useful in the practical sense of
monitoring sections of the internet and other computer networks. In addition to the
two values of total entropy and entropy of entropy that summarize the column (or
row) spectral distribution, we are looking at other natural expansions of this function
in terms of functions or orthogonal polynomials that summarize the general behavior
in useful ways thus providing other summary metric variables for the entropy spectra.

Acknowledgements

The author benefited from extensive collaborations and conversations with Dr.
Vladimir Gudkov.

References

1. Renyi, A.: Probability Theory, North-Holland Series in Applied Mathematics and
Mechanics, North-Holland Pub. Co (1970) 670 pages.

2. Renyi, A.: Selected Papers of Alfred Renyi, Akademia Kiado, Buadapest, Vol. 2 of 3
volumes (1976)

Networks, Markov Lie Monoids, and Generalized Entropy

135

3. Johnson, J.E.: Markov-type Lie Groups in GL(n, R). Journal of Mathematical Physics 26
(1985) 252–257

4. Gudkov, V., Johnson, J.E.: Network as a complex system: information flow analysis,
arXiv:lin.CD/0110008v1 (2001) 10 pages

5. Gudkov, V., Johnson, J.E.: Chapter 1: Multidimensional network monitoring for intrusion
detection, arXiv: cs.CR/020620v1 (2002) 12 pages

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 136 – 150, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Trust by Workflow in Autonomic Communication

Mikhail I. Smirnov

Fraunhofer FOKUS,
Kaiserin-Augusta-Allee 31, 10589 Berlin, Germany
Mikhail.Smirnov@fokus.fraunhofer.de

Abstract. Autonomic network elements cooperate for media and media signal-
ling delivery; the paper demonstrates how these nodes can elaborate significant
trust and achieve self-organisation by the exchange of blueprints of their inter-
nal packet processing workflows. We outline a model of an etiquette for the
above exchange under the governance of a locally computed community fitness.
We concentrate on the etiquette design using extended protocol expressions as
the notation for behaviours, and ad hoc communication example for the demon-
stration of design steps. We show that properly defined fitness can be used as a
meta-rule modifying the etiquette towards wider or deeper trust within the
community.

1 Introduction

Current progress in the design of wired and wireless network elements demonstrates
the clear trend towards more flexible, finer grained and self-managing packet process-
ing. Self-management [1] is a top of a pyramid comprised of other self-properties:
self-awareness, self-[re]configuration, self-optimization, self-healing, self-protection,
self-adaptation, self-description, and finally self-implementation, or self-* for short.
The autonomic communication research initiative [2] intends to apply self-* to all
facets of communication.

Autonomic Communication studies the individual network element as it is affected
by and affects other elements and the often numerous groups to which it belongs as
well as network in general. The goals are to understand how desired elements behav-
iours are learned, influenced or changed, and how, in turn, these affect other elements,
groups and network. Autonomic communication intends during the design phase to
embed into a system such features that will facilitate right decision making at run-
time, likely involving cross-layer interactions between protocol stack entities. Auto-
nomic decision making will be assisted by locally perceived and processed commu-
nity state under the governance of community fitness.

Trust is the primary issue in IP communication, it is often achieved off path. Fun-
damental lack of security in the Internet is the inherent consequence of its main archi-
tectural principle, known as End-To-End [3, 4] that forbids in-network functionality
placement, thus keeping network open. As it is noted in [22], “closed networks are a
waste of public money, but open networks are a huge risk.” Facilitating end-user
creativity and rapid deployment of new application level services the E2E has created

 Trust by Workflow in Autonomic Communication 137

at the same time possibilities for multiple exploits of Internet technology that are
visible at higher levels but rooted at the bottom of its protocol stack.

The self-* properties of autonomic communication promise to change existing bal-
ance between feature rich network edges and stupid core. The hope is to eliminate
many if not all security threats found currently in IP-based networks by eliminating
possible exploits. An autonomic network element empowered by self-* capabilities
will not only able to detect an attack but also to act cooperatively with other elements
of a trusted community against the reason. The power of autonomics is in community
awareness; however community building and maintenance requires some sort of hose
keeping — in-network information exchange between lower protocol layers.

Alike routing — the dominant Internet house-keeping information exchange for
topology and connectivity awareness, we propose packet processing information
exchange between network nodes for trust awareness. Similar approaches were pro-
posed recently: forensic [5] and wafer-thin control plane [6] efforts aim at de-
anonymisation of attackers by correlating seemingly disjoint events collected from
network observations. Here we go one step further — enable network itself to support
this.

Like telephone networks are designed with Trust By Wire principle in mind, the
main principle we want to investigate is the Trust By Workflow, meaning that auto-
nomic nodes that cooperate at media delivery level can eventually elaborate signifi-
cant trust based on successful history of common work. Observing that network nodes
are performing very repetitive work, and following the routing with a clue motivation
[7] we generalise this principle for potentially any network function.

Workflow information is readily available in network nodes. Media processing in a
node uses a lot of local state data for decision making: Where to forward this data-
gram? Is this micro flow admitted to EF service class? Is this port number allowed for
the requesting host? Is this peer allowed to upload a file on another peer’s computer?
After a decision is made the result is usually dropped or at best logged.

Most challenging, yet possible is trust in ad hoc communication scenario, with no
infrastructure to host trusted third party, etc. When a pair of nodes realises that they
belong to the same path shared by significant traffic volume they start exchanging
their workflows for served traffic with the aim to agree on an optimization of a com-
mon service. This pair-wise process leads to a bootstrapping of a community (e.g. per
path) of nodes; it starts with confirmation of the obvious. Exchange of workflows
pertaining to a common media flow — information with firmly verifiable evidence,
can be advanced after trust is achieved. We propose to use content adaptation: the
more advanced is the trust the finer grained details are exchanged. Thus the amount of
data exchanged is very close to constant, subject to media traffic volumes served.

The paper is not about a trust establishment protocol, or fitness function calcula-
tion, though those are sketched as means to demonstrate our concepts; it’s rather
about a new paradigm of in-network community communication that enables trust and
immunity. The rest of the paper is organized as follows. Section two builds a model of
node’s functionality and describes the vision of autonomic network, it introduces also
the basic notation of protocol expressions that is used and extended throughout the
paper to describe behaviours. Section three starts with a example, introduces some
reasonable etiquette rules for cooperation, and picks some reasonable fitness function.
It concludes with considerations of bootstrapping and finally demonstrates self-

138 M.I. Smirnov

organisation of etiquette based on community context. Section four summarises our
main claims.

2 Functional Models

2.1 Design Considerations

We treat the self-* requirement as a meta-level non-functional one that supersedes
other, often overlooked non-functional requirements such as security, manageability,
and testing. By this we avoid partitioning of a system under design into separately
handled concerns that later might require integration. Also, possible replication of
features might be avoided. Finally, we hopefully meet all other non-functional re-
quirements within the same design paradigm.

The most benefits can be achieved at the finest possible granularity of node’s func-
tion. Following the traditional telecommunication definition of a functionality found
in [8] we model node’s function F as a triple

F= <component, resources, controls>, (1)

where component is to denote the identity of autonomic node, device or functionality
that hosts internal resources with local controls, we assume that local controls are
represented by fully specified policies (see section 3.2). Inputs for F are media and
media signalling; usually signalling inputs are destined to local controls, while media
inputs are resource requests. Both inputs might have certain safeguards, preventing
known to be unwanted inputs. An example of media safeguard is filtering of so called
Martian addresses on router interface; an example of media signalling safeguard is
filtering of attempts to contact network side signalling agents by non-authenticated
roaming signalling user agents [9]. SMTP filtering of spam messages differs from the
above examples in one important respect — it learns, but the process of learning is
typically under the governance of a human [10]. There are also two types of outputs
of F — media and its signalling, with optional safeguards on outputs, e.g. to ensure in-
profile transmission of outbound media.

Functional safeguards play paramount role in the proposed cooperative defence of
the infrastructure: locally triggered safeguard is an important source of vulnerability
information that cooperating entities learn from the workflow and use for pressing
back at potential attacker.

2.2 Node Model

Without loss of generality we model any network node media or media signalling
function as an input-output relay with possible transformation. We no longer distin-
guish between media and media signalling, the both types of payloads will be treated
as media, contrary to a new type of communication we aim to design. Thus, we can
conceptually represent all node’s functionality as a matrix (2)

Φ Fi j, i 1 n,= j; 1 m,=
=

,

(2)

 Trust by Workflow in Autonomic Communication 139

where media flows arriving at n inputs are transformed by Φ to m outputs. The inter-
pretation of model (2) to represent, for instance forwarding is straightforward — Φ is
then forwarding information base that defines in-node processing path from input i to
output j. A number of different media datagrams processing types, that are termed —
generic functions (gl) found in most advanced Internet routers is around ten [11]; they
are receiving and transmitting, forwarding, SSL processing, IPv4/IPv6 interoperabil-
ity, header compression, classification, metering, scheduling, shaping, etc. — rela-
tively small number of gl makes workflow exchange feasible.

In-node processing of a particular datagram instantiates and chains as required
these generic functions per micro flow. Note, the micro flow awareness is no longer a
scalability concern, new router designs are emerging that take advantage of flow
awareness, e.g. a truly autonomic cross-protect router by J. Roberts [12].

A workflow Wk is a chain of generic functionalities for a single micro flow; each

workflow is a sequence of functions from (2) for the k-th micro flow as shown in (3),
where a dot sign is sequential order within a k-th workflow, square brackets are for
repetition. Workflow’s sequence starts with the receiving of a datagram at the i-th
physical interface, continues with processing by function Fi j, that defines the next

function Fj p, , and so on until the datagram leaves the node’s protocol stack.

Wk F
k
i j, F

k
j p,[]•=

,
(3)

In-node datagram processing as modelled by Φ is an in-node hammock — directed
acyclic graph interconnecting physical interfaces; matrix Φ being asymmetric and
triangular. Figure 1 shows an example (adopted from [13]) of a datagram processing
hammock composed of five generic functions: g1 — receiving of a datagram from a
link; g2 — optional datagram header decompression, g3 — forwarding with optional
interoperability processing between IPv4 and IPv6, g4 — optional header compres-
sion, g5 — queuing and transmission to a link.

Receive
F

1

V4 HDec
F

1,1

V6 HDec
F

1,2

v4 Fwd
F

1,3

v6 Fwd
F

1,4

Transmit
F

7

v4 HCom
F

3,5

v6 HCom
F

4,6

g
1

g
2 g

3 g
4

g
5

v6-v4 v4-v6
F

3,4

F
4,3

g
31Input

Interface
Output
Interface

Fig. 1. In-node datagram processing hammock

A number of workflows can be instantiated from a hammock in Fig1. For example,
expression (4) outlines a workflow of a router that receives IPv4 datagrams from a
wireless link, decompresses their headers, converts to IPv6 and sends over to wireless
link with new headers compressed.

140 M.I. Smirnov

W1 F
1

1 1, F
1

1 3,• F
1
3 4,• F

1
1 4,• F

1
4 6,•=

,
(4)

Forwarding is the key to the trust by workflow — any meaningful workflow will
have forwarding in it; this ubiquity makes forwarding a universal source of informa-
tion on trustworthiness of network nodes. To speed up forwarding a routing cache
stores recently used entries, and is consulted before the forwarding tables. If the ker-
nel finds a matching entry during route cache look up, it will forward the packet im-
mediately and stop traversing the forwarding tables [14]. Fig. 2 demonstrates a case
of RC implemented as a compact binary trie data structure (only tails are shown) with
leaves, being destination IP addresses labelled by a timestamp of last usage, outgoing
port, error condition, if any was generated, and a source address of forwarded data-
gram, thus RC provides the evidence of performed forwarding. The rightmost icon
shows how a compact tree is being expanded when a new entry is cached.

FIB

Forwarding

RC

11

0000

11

1

0

11

...

$ $
.195 .203

195.37.76.195

195.37.76.203

Age OutPort Err Src

...

Fig. 2. Fast forwarding path (FIB — Forwarding Information Base; RC — Routing Cache;
Age — time to expire for an RC entry; Err- error condition; $- leaf of a trie structure)

2.3 Network Model

The Internet of today handles media and media signalling flows, orthogonal to them
management and control flows, when and if midcom infrastructure is available [15] as
well as some in-network generated and consumed house-keeping flows, e.g. routing. We
describe another house-keeping information exchange — autonomic communication.

An autonomic network is an in-lay of a media network; each node is a first-class
citizen; no distinction is being done intentionally between user, access, edge, back-
bone, etc. node types. We assume that autonomic communication is done by exchange
of messages with no visible relation between message sequences, i.e. there is no no-
tion of autonomic communication flow. Message source and destination are not nec-
essarily always applications, the model allows nodes to exchange messages on the
discretion of protocol stack entities, like it is done in ICMP [16] and IGMP [17]. This
might look similar to exchange of messages between roles as proposed in role-based
architecture [18], however we do not want to hard-code in role-specific headers
sources and destinations of our messages.

A message has a payload and a header: payload represents sender’s media behav-
iour, expressed in workflows, header has message source and indirects the destination
by what is called here a concern — a predicate on the behaviour — to a concerned

 Trust by Workflow in Autonomic Communication 141

community. Messages do not disclose to communicating peers sender’s internal struc-
ture and algorithms, but only behaviour choices.

Community behaviours are observed locally through message boxes. Processing of
messages in autonomic nodes is FCFS, it follows the arrivals of messages in node’s
message box. We assume that a node is able to create a message box per concern; this
message box shall contain both sent and received messages pertaining to the concern.
There are no assumptions on reliability of message delivery.

To represent contents of message boxes and consequently behaviours reflected in
these messages we shall use and extend the notation of protocol expressions following
the seminal work on protocol validation by G. Holzmann [19]. Small Latin characters
represent received messages; characters, written as denominators of a fraction repre-
sent own sent messages; a dot represents FCFS ordering of messages; a plus sign
between two messages represents alternatives; bracketed message sequence taken to
the power of N represents N or more repetitions of the same message sequence; 1
stands for empty box, and — for a deadlock.

A cross operation (B1[] B2 …[]⊗) applied to one or more message boxes verifies
the soundness of message exchange; the exchange is sound if it is deadlock free and
there are no residuals in message box[es]. As axiomatically suggested in [19] the
properties (re-write rules) of protocol expression as in (5) should hold.

a a
1
--- a 1

b
---• a

b

1
a b•----------- 1

a

1
b
---• a b+

c

a
c---

b
c

a
b c+

a
b---

a
c---+=;+=;=;=;=

,

(5)

3 Autonomic Communication Models

3.1 An Example of Etiquette

Using the above models we show how autonomic node behaviours are induced by
certain rules reflecting common community concern. To distinguish these rules from
other rules (policies) we shall term them etiquette rules (e-rules), where etiquette is a
complete ruleset reflecting the concern in question. As an example of a shared con-
cern we consider trust establishment in ad hoc communication environment, where
nodes use/ donate each other’s resources to relay media datagrams with no infrastruc-
ture. Etiquette can be used in parallel with e.g. reputation schemes [20], or with infer-
ring trust from control exchange, e.g. routing [21].

Consider the set of workflows (6) implemented by three nodes A, B, and C, and
expressed in terms of functionalities (3) as introduced in Fig. 1.

a W→ a F1 3,=
;

b Wb→ F1 4,=
 ;

c W→ c F1 3, F3 4, F1 4,••=
;

d W→ d F1 4, F4 3, F1 3,••=
,

(6)

Semantics of (6) and their distribution between nodes A, B, and C is represented in
Fig. 3, where dotted line is a boundary between IPv4 and IPv6.

142 M.I. Smirnov

A

A2

B

C

A1

A3 B1

B2

B3

B4

C1

C2

C3
IPv6

IPv4
a

c

d

B5

C1

Nodes A, B, C implement the six workflows (WF)

WF(A) = { A.a }

WF(B) = { B.a, B.b, B.c }

WF(C) = { C.b, C.d}

b

F
1,3

IPv4 forwarding
F

1,4
IPv6 forwarding

F
1,3

, F
3,4

, F
1,4

IPv4/IPv6 interop.

F
1,4

, F
4,3

, F
1,3

IPv6/IPv4 interop.

Name Workflow Description

Fig. 3. Sample communication scenario

Let all the nodes having trust establishment as a common concern to have the fol-
lowing etiquette rules, refined from the purpose of community communication:

• E0: autonomic communication message heard by a node is consumed if message
header represents actual node’s concern;

• E1: each active workflow is advertised to the concerned community;
• E2: every heard advertisement of a remote workflow that is locally active is con-

sumed and notified; every consumption notification is consumed (by remote peer);
• E3: the trust per workflow is considered to be established between peers after a

certain number of notifications (Nn) is exchanged;
• E4: trust relationships are to be evaluated and progressed in the direction of in-

creasing community fitness.

Consumption of messages is caching and processing of messages per concern. For
the concern of trust the processing of messages is applying the cross operator to each
node’s message box; this hides sound behaviours. We extend the notation by overly-
ing consumed message: a denotes consumption of a and 1 a⁄ is the notification to the
sender. We reserve to mean: z -no trust, t — established trust, x — trust in progress.

A1 A B B2
Dgram

Dgram
DgramNextHop

NextHop
NextHop

FIB

Forwarding

RC RC
Auditor

(a) (b)

Routing Input

Co-work

Request

C
O

M
M

U
N

IT
Y

Fig. 4. Examples of auditing

Etiquette creates prerequisites for auditable trust. Relaying of a micro flow from
Fig. 3 that is presented in Fig. 4 (a) is accompanied by sending back a NextHop

 Trust by Workflow in Autonomic Communication 143

notification, optionally forwarded to the source. Every receiver of a NextHop notifica-
tion will be in the position to audit the delivery and eventually to discover any black
or grey hole [21] along the path.Auditing is just inspecting contents of routing cache
of other members, as in Fig. 4 (b) to see whether datagrams have been really relayed.
This kind of auditing is a natural step in community collaboration: recall that FIB is
being computed by a node based on routing information offered by community mem-
bers. Of course access to private parts of RC can be protected by access control rules.

Following etiquette rules the nodes shall exhibit their active workflows; for sim-
plicity we assume that all potential workflows from Fig. 3 are being simultaneously
active. Expressions (7) through (9) present etiquette behaviours induced by E1 — E3
as observed in message boxes. Etiquette shall eventually establish trust between A.a
and B.a within IPv4 connectivity, and between C.b and B.b within IPv6 connectivity,
as reflected in Fig. 5. The behaviours are partial in a sense that message sequences
outlined in (7)–(9) will appear in the same message box of each node due to the as-
sumption of them having one message box per concern.

Assuming that trust was established, we apply a cross operator and re-write rules
(5) to each node’s message box that results in certain residuals as in (10). The (10)
shows that certain workflows due to their incompatibility cannot be used to establish a
trust based on the proposed etiquette; for example there is no trust between nodes A
and C. However as it is obvious from Fig. 2 it might be possible for A and C to use
node B as a trusted third party.

A.a B.a

C.b B.b

C.d B.c

a
A

a
B

b
C

b
B

d
C

d
C

c
B

b
B

Legend:

- Trusted exchange
- In-node workflow

- Trust in progress

A.a - workflow a in node A

a
A

- advertisement of A.a

- node boundary

- workflow process

Fig. 5. Sample etiquette communication graph

This will require modification of etiquette rules, i.e. introducing a new e-rule al-
lowing trust delegation or trust transfer, which might be regarded in general as a non-
desired feature from security viewpoint. In case one of the nodes is a malicious one,
e.g. acting as a black hole the cross operator applied to message boxes of the nodes
whose media datagrams would have been dropped will result in more residuals and no
trust.

144 M.I. Smirnov

AE1 1 a⁄ A aB dC+()•→
;

BE1 1 a⁄ B 1 cB⁄• 1 bB⁄• aA dC bC+ +()•→
;

CE1 1 d⁄ C 1 bC⁄• bB cB aA+ +()•→
.

(7)

AE2 aB 1 aB⁄• aA+→
;

BE2 aA 1 aA⁄• bC 1• bC⁄ dC aB bB+ + + +→
;

CE2 bB 1 bB⁄• cB bC+ +→
.

(8)

AE3 aB 1 aB 1 xB⁄•⁄•()
Nn

1 tB⁄• xA tA+ +→
;

BE3 aA 1 aA 1 xA⁄•⁄•()
Nn

1 tA⁄• …+→

… bC 1• bC 1 xC⁄•⁄()
Nn

1 tC⁄• xB tB+ + +
;

CE3 bB 1 bB⁄• 1 xB⁄•()
Nn

1 tB⁄• xC tC+ +→
.

(9)

AE1 AE2 AE3 dC tB+=⊗ ⊗
;

BE1 BE2 BE3 1 cB⁄ d+
C

tA tC++=⊗ ⊗
;

CE1 CE2 CE3 1 dC⁄ c+
B

tB+=⊗ ⊗

(10)

3.2 Fitness Function

We consider e-rule E4 together with node’s fitness as a meta-rule that can be used to
modify etiquette rules to safely adapt to network situation or context, how the trust
establishment etiquette itself can be modified to progress trust. The rationale behind is
that of community leadership expressed in local preferences for decision making; if the
community is active, stable (conflict-free), and mutually trusted then the behaviour
choices of every node can be streamlined, and, on contrary, when community is inac-
tive, unstable or disappears, the behaviour choices of every node should follow largely
the principles of self-protection, survivability, etc. Natural metrics of community’s
activity are the number of served workflows and the number of trusted or trust-in-
progress node pairs within the community. On the other hand, an autonomic node
should preserve certain balance between the amount of served workflows and the rela-
tive amount of community members producing/consuming these workflows. The ra-
tionale for this is to avoid DoS and DDoS scenarios, where relatively small fraction of
community is generating unrealitsically high volumes of workflows destined for a node.

We claim that an optimal fitness function can be found for a given communication
scenario, and given community, sets of etiquette rules, and concerns. Our goal is not
to find an optimal fitness function but to demonstrate how a fitness function can be
used as a mean for self-adaptation, in particular in autonomic adaptation of etiquette
rules to situation changes. For demonstration purposes only we shall use (11)

 Trust by Workflow in Autonomic Communication 145

Fϕ i()
Nt i() ω Nx i()⋅+

N--
nw i()

nw

-------------⋅=

,

(11)

where Fϕ i() — fitness function value computed by the i-th autonomic node; Nt i()

and Nx i() are respectively the number of nodes, with which node i has trust, including

i itself, or trust in progress relation per advertised workflow, N — total amount of

community nodes the i-th node is aware of, including i itself; ω ω 0 1,[]∈, — relative

importance of trust as compared to trust in progress; nw i() nw, — the number of work-
flows advertised by the i-th node and the total number of community workflows the i-
th node is aware of, including i-th own workflows. Note, that for the example in sec-
tion 3.1 in the state reflected by (10) nodes would have computed their fitness as in
the second column of Table 1.

This sample calculation demonstrates an interesting property, node fitness is a
function of community awareness. Just two nodes having established trust for all
advertised workflows will have maximum fitness 0,50. The (11) shows that the fittest
node should have some community information beyond current communication sce-
nario; this information can be treated as community context, as degrees of freedom
that can be used for adaptation. For example, as shown in (10) and (11) nodes B and C
are fit not only because they have more trust relationships with other nodes than node
A but also because they have more residuals in (10).

Community fitness (12) is a generalisation of (11). Maximal community fitness is
always higher than that of a single node. The function (12) for a community (Co) is
non-linear (see table below) with regard to contributions of community members.
Thus we propose that nodes compute their weighted fitness as (13); this computation
for the situation (10) is presented in Table 1, last column.

Fϕ C
o()

Nt i() ω Nx i()⋅+[] N–

nw i() --=

; i 1 N,= ;
Fϕ 0 1,[]∈

 (12)

Fϕ w, i() 1 Fϕ C
o~

 –

 Fϕ i()⋅=
; i C

o~⊄

 (13)

Table 1. Weighted fitness for situation (10)

Node Node
Fitness

Community Fitness Node Fit-
ness Weight

Weighted Node
Fitness

 All nodes Without
A 0,22 0,67 0,40 kA=0,60 0,13
B 0,50 0,00 kB=1,00 0,50
C 0,50 0,50 kC=0,50 0,25

Fitness function must be evaluated continuously, starting from a boot process; at
boot the only etiquette behaviour that a node can complete is the one defined by E1, it
returns initially zero fitness. Evaluation of a local fitness function (that is easy to

146 M.I. Smirnov

associate with the processing of local etiquette message box) might be programmed to
generate fitness function events — either reaching threshold values, or every change.
We shall now demonstrate, starting with node’s bootsrapping how fitness function
can help to modify e-rules towards increasing fitness of a node and a community.

3.3 Bootstrapping

On boot a node is assigned default role[s] and a purpose, this is done by enforcing
locally the two rule sets — policy and etiquette. Policy set is node’s role refined into a
set of fully specified policies — rules defining node’s functional behaviour choices.
Etiquette is the refinement of node’s purpose with regard to autonomic communica-
tion; the purpose is enforced by a set of etiquette rules defining choices in node’s
community behaviour. Role and purpose are local names persistently identifying boot
configuration of a node; these names unambiguously point to node’s storage areas
where fully parametrised policy set and yet behaviour-independent etiquette rule sets
are stored.

The boot manager keeps the values of role (Role) and purpose (Purpose), passes
them for kernel initialisation and writes in a bootstrap log file the two values. After
kernel initialisation is done, the log file is appended by the refinement of role — pol-
icy and by the refinement of purpose — etiquette. There is no assumption that boot
configuration is conflict free, especially with regard to the agreement between Pur-
pose and Role; it is assumed however that role-defined Policy rules have higher prior-
ity than purpose-defined Etiquette. The assumption is motivated by the fact that Eti-
quette might need to be further refined (constrained) by policies depending on a situa-
tion in concern; the result of this refinement process is a set of e-rules — fully speci-
fied etiquette rules. Thus, e-rules and policy rules form a consistent and locally con-
flict-free set of rules, however only until the need for further refinement is identified.

Consider node D with a bootsrap purpose defined by E0 – E3, it is refined to a
bootsrap etiquette (14), with square brackets to denote optional extensions

DE1 1 y⁄ D 1, 1 y⁄ D 2,[]•→
;

DE2 yD 1, 1 yD 1,⁄• yD 2, 1 yD 2,⁄•[] …[] yY 1, yY 2,[]+ + + +→
;

DE3 yD 1, 1 yD 1,⁄• 1 xY⁄•()
Nn

1 tY⁄• …[]+→
,

(14)

where yD 1, yD 2, …,, are variables to be instantiated with D’s workflows as defined by
policies, note that these variables are generic functionalities (g1, g2,... in Fig. 1);
yY 1, yY 2, …,, are variables to be instantiated by similar workflows of not yet known

community member Y.
Each policy from a policy set is represented as <event: condition, action>, where

action is one of the node’s functions, as in (6). A mapping from the policy set to the
set of workflows returns a list of workflow identifiers that are the values that instanti-
ate all variables in (14), thus the etiquette is refined by the mapping into a fully speci-
fied set of e-rules. In other words, the mapping function identifies for e-rules all
workflows that are managed by policies, i.e that are potentially changeable by con-
text.

 Trust by Workflow in Autonomic Communication 147

We consider the two types of boot behaviour: normal boot and soft boot. In normal
boot a node completely suspends all its operations on media, media signalling and
community communication; it drops all previously accommodated soft state and starts
anew. On soft boot a node suspends only etiquette defined behaviour and drops only
etiquette related state. Immediately after a normal boot a network element does not
have any active workflow; it needs to receive either media or media signalling to
launch one. However, etiquette behaviours are fully specified by the refinement proc-
ess above and can be used right after any type of boot, for example to collect commu-
nity context. On soft boot a network element has no memory on trust establishment,
all even on-going workflows are considered as fresh, i.e. the e-rules within a policy
set consider these workflows as just being started. In both boot cases we are interested
in booting of the etiquette behaviour only, thus we no longer distinguish between the
two types of bootstrapping. We introduced soft boot to reflect the process of a new
node joining a community, thus soft boot can also be regarded as booting to a com-
munity.

Community communication that can be done for a number of concerns must be
performant and scalable. Our approach is to use progressive communication patterns
that will gradually evolve to serve more complex tasks by morphing under already
achieved progress within the concerns of interest. Trust establishment is a primary
concern on boot, should follow easy to discover, or standard patterns like those
sketched in E0 – E3. However, after initial trust is established, community peers
could launch etiquette communication for other concerns (QoS, interoperability, auto-
configuration, etc.) using trusted peers — this substitution of etiquette messages (7) –
(9) by messages of another concern we dub etiquette progression. Progression can be
continued with deeper or wider trust establishment itself using fitness function events
to modify etiquette messages as in the next section.

3.4 Evolving to Fit the Community

Situation outlined by (10) will be noted by each community member as stability of
their message boxes and existing etiquette will be perceived as no longer productive.
While trust is the permanent concern the peers will attempt to use progression as
situative re-refinement of e-rules using basic etiquette and fitness function. Figure 6
summarises a possible internal organisation of an autonomic node.

After initial trust as in (10) is established between pairs of community peers the
rule E4 — progression of the etiquette — will be triggered by the local fitness func-
tion event Fϕ i() const τ= , meaning that node’s fitness is unchanged during time

interval τ . Natural etiquette progression suggested here is the exchange between
trusted peers of summaries of established trust relations together with summaries per
workflows. This way, trusted peers can compute [sub-]community fitness and distrib-
ute back to peers their trust connectivity. There is no need to make any additional
computation for this, sufficient will be to distribute to peers residuals as in (10).

The re-refined etiquette is the exchange of residuals from cross operation on local
message boxes between trusted nodes that results in a new state, e.g. (15)

148 M.I. Smirnov

Role Purpose

ASSIGNED ON
BOOT SOFT BOOT

Policy Etiquette

Behaviour e-rules

REFINE

ENFORCE INITIATE

DEFINEDEFINE

CONSTRAIN

Concern [Workflow] Messages

PRODUCECONSUME

Function Function
Fitness

Community Context

Autonomic
Network
Element

Fig. 6. Autonomic Node Architecture

A dC tB+() 1 cB⁄ d+
C

tA tC++()
B

•→
;

B 1 cB⁄ d+
C

tA tC++() dC tB+()
A

1 dC⁄ c+
B

tB+()
C

+•→
;

C 1 dC⁄ c+
B

tB+() 1 cB⁄ d+
C

tA tC++()
B

•→
,

(15)

where …()
i denotes a residual received from the i-th trusted peer. After (15) all

trusted nodes share trusted sub-community state information including weighted node
fitness values (Table 1, last column), and in accordance with the purpose shall try to
increase their fitness and, consequently the fitness of the community. Each node ac-
cording to E4 shall attempt to achieve wider trusted connectivity based on the con-
tents of its message box. In our example only A succeeds: A that previously was
aware of node C (because of dC() advertisement) concludes from (15) that its trusted

peer node B is in trust with node C, it’s only possibility to enhance its fitness. Node A
re-refines its E1 induced etiquette AE1 1 a⁄ A aB dC+()•→ to advertise to the commu-

nity the following intended behaviour

AE1' 1 a⁄ A dC•() 1 cB 1 bB⁄•⁄()
B

bC dC•()|| ||→
,

 (16)

where || is the intended concatenation of local behaviours of community members.
Expression (16) is a payload of etiquette message, its concern is yet improved trust in
the community, with message header signalling to community members that node A is
proposing certain behaviour. Basically, (16) suggests trusted concatenation of local
workflows: IPv4 forwarding from A to B, IPv4 to IPv6 interoperability at B and IPv6
forwarding from B to C; reverse IPv6 to IPv4 interoperability at C. Though this sam-

 Trust by Workflow in Autonomic Communication 149

ple scenario might look artificial, it shows that community concerns taken locally and
opportunistically may yield improvements to community fitness.

4 Conclusions

Design of autonomic communication systems and their elements is complicated by a
large number of interdependencies between different concerns and requirements. The
real challenge is not to attempt to solve associated problems at system design phase
but to embed such features into a system that will facilitate solutions at run-time. We
demonstrate this with soft-boot, run-time, local and context sensitive etiquette refine-
ment approaches. Autonomic network elements will likely to be much more flexible
than current hosts and routers in cross-layer interactions between entities of their
protocol stack; we try to capture this feature by the notion of a workflow — chromo-
some characterisation of node’s behaviour — the payload of proposed etiquette com-
munication.

Etiquette is a mechanism for community building and community self-
management that is achieved through locally perceived and processed community
state under the governance of community fitness. We select trust establishment in ad
hoc networking as an example of non-functional requirement to be able to demon-
strate throughout the paper abstract concepts with examples; despite this demonstra-
tion purpose the future work will address more realistic scenarios for trust and intru-
sion detection based on the principles of autonomic communication.

References

1. Autonomic Computing Overview, IBM, on line at http://www.research.ibm.com/
autonomic/overview/elements.html

2. Autonomic Communication: Research Agenda for a New Communication Paradigm,
white paper, Fraunhofer FOKUS on-line at http://www.autonomiccommunication.org/
publications/doc/WP_v02.pdf (2003)

3. Blumenthal, M.S., Clark, D. D.: Rethinking the design of the Internet: The end to end ar-
guments vs.the brave new world, ACM Transactions on Internet Technology 1(1) (2001)

4. Kempf, J., Austein, R. (Eds.): The Rise of the Middle and the Future of End-to-End: Re-
flections on the Evolution of the Internet Architecture, IAB. http://www.ietf.org/
rfc/rfc3724.txt (2004)

5. Sekar, V., Xie, Y. Maltz, D., Reiter, M., Zhang, H.: Toward a Framework for Internet Fo-
rensic Analysis, HotNets-III (2004)

6. Rexford, J., Greenberg,A., Hjalmtysson,G., Maltz,D., Myers,A., Xie,G., Zhan,J., Zhang,
H.: Network-Wide Decision Making: Toward A Wafer-Thin Control Plane, HotNets-III
(2004)

7. Afek, Y., Bremler-Barr, A., Har-Peled, S.: Routing with a Clue, Proceedings of ACM
SIGCOMM’99 (1999)

8. ATIS Telecom Glossary 2000. T1.523-2001, ATIS Committee T1A1 Performance and
Signal Processing, on-line at http://www.atis.org/tg2k/ (2000)

9. Kroeselberg, D.: SIP security requirements from 3G wireless networks, Internet Engineer-
ing Task Force, work in progress <draft-kroeselberg-sip-3g-security-req-00.txt> (2001)

150 M.I. Smirnov

10. Guardian Digital Secure Mail Suite, User Guide. Guardian Digital, Inc.
http://infocenter.guardiandigital.com/manuals/SecureMail/EnGarde-MAIL-1.0.html
(2004)

11. Hegde, H.: Building an IPv6 Router. Proceedings of 2002 Communications Design Con-
ference, Network Processing Forum, on-line at http://www.npforum.org/pressroom/
Building_an_IPv6_Router.ppt (2002))

12. Roberts, J.: Towards a Traffic Theory Friendly Internet: the Cross-Protect Router, invited
talk at QofIS 2003, Stockholm, Sweden. http://www.imit.kth.se/info/LCN/qofis2003/
slides/WelcomeANDkeynote/QofIS_Roberts. pdf (2003)

13. Kokku, R., Riche, T., Kunze, A., Mudigonda, J., Jason, J., Vin, H.: A Case for Run-time
Adaptation in Packet Processing Systems, ACM SIGCOMM Computer Communication
Review, Volume 34, Issue 1 (2004)

14. Brown, M.A.: Guide to IP Layer Network Administration with Linux, Version 0.4.4, on-
line at http://linux-ip.net/html/routing-cache.html

15. Srisuresh, P., Kuthan, J., Rosenberg, J., Molitor, A., Rayhan, A.: Middlebox communica-
tion architecture and framework, IETF Request for Comments: 3303 (2002)

16. Postel, J.: Internet Control Message Protocol. IETF Request for Comments: 792 (1981)
17. Deering, S.: Host Extensions for IP Multicasting, IETF Request for Comments: 1112

(1989)
18. Braden, R., Faber, T., Handley, M.: From Protocol Stack to Protocol Heap -- Role-Based

Architecture, HotNets-I, Princeton, NJ (2002)
19. Holzmann, G. J.: A Theory for Protocol Validation, IEEE Trans. on Computers. Vol C31,

No 8 (1982) 730–738
20. Garg, A., Battiti, R., Costanzi, G.: Dynamic Self-management of Autonomic Systems: The

Reputation, Quality and Credibility (RQC) Scheme, Proceedings of WAC 2004, LNCS
3457 (2004) 165–179

21. Pirzada, A. A., McDonald, C.: Establishing Trust In Pure Ad-hoc Networks, Proc. 27th
Australian Computer Science Conference, New Zealand (2004)

22. Hutchison, D., Bhatti, S., Wakeman, I., Crowcroft, J., et al: Communications Research
Challenges for the 21st Century, unpublished memo, on-line at http://www.cl.cam.
ac.uk/~jac22/out/crc.txt

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 151 – 164, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Ontology-Based Approach to Information Systems
Security Management

Bill Tsoumas, Stelios Dritsas, and Dimitris Gritzalis*

Dept. of Informatics, Athens University of Economics and Business,
76 Patission Ave., Athens GR-10434, Greece
{bts, sdritsas, dgrit}@aueb.gr

Abstract. Complexity of modern information systems (IS), impose novel secu-
rity requirements. On the other hand, the ontology paradigm aims to support
knowledge sharing and reuse in an explicit and mutually agreed manner. There-
fore, in this paper we set the foundations for establishing a knowledge-based,
ontology-centric framework with respect to the security management of an arbi-
trary IS. We demonstrate that the linking between high-level policy statements
and deployable security controls is possible and the implementation is achiev-
able. This framework may support critical security expert activities with respect
to security requirements identification and selection of certain controls and
countermeasures. In addition, we present a structured approach for establishing
a security management framework and identify its critical parts. Our security
ontology is being represented in a neutral manner, based on well-known secu-
rity standards, extending widely used information systems modeling ap-
proaches.

Keywords: Security Management, Security Policy, IS Security, Security
Ontology.

1 Introduction

Modern information systems offer organizations and individuals a lot of benefits. The
advances in information and communication technologies (ICT) offer dramatic cost
savings and can introduce new capabilities in order to support new and diverse ser-
vices to organizations and/or end users. A combination of conventional networks and
wireless- and sensor-aware devices with traditional installations such as mainframes,
becomes more and more popular. The dynamic character of IS exacerbates the secu-
rity risks innate in any IS; the lack of effective security requirements inclusion during
the system development is the most important reason, which is further stressed by the
rush of commercial competition. In addition, new technologies face several categories
of risks; a number of these risks are similar to those of a conventional IS, while others
are introduced by the new technologies’ immaturity and the lack of efficient integra-
tion with conventional ones. As an example, we might consider the vulnerabilities
introduced by wireless where the use of the airwave as the underlying communication
medium it might be an easy target to malicious users.

* Corresponding author.

152 B. Tsoumas, S. Dritsas, and D. Gritzalis

In this context, the organizations should be aware of the risks introduced by the
dynamic nature of information systems which support the business functions; thus, the
maintenance, management and administration of such network infrastructures should
be a continuing process, which requires greater effort compared to conventional net-
works [1], [2]. IS security requirements might stem from the stakeholders and the envi-
ronment of the organization (market trends, data protection acts). Therefore, there is a
need for the identification and implementation of robust security controls to ensure that
information resources are protected against potential threats. By the term “Security
Control” we mean the applicable, low-level technical countermeasures, which can be
applied directly to the IS devices. Traditionally, the requirements of such controls
come up as a result of an Information System (IS) Risk Analysis (RA) study, given the
thorough intervention of a (possibly group of) security expert(s). Furthermore, the
formulation of a generic security policy, which is linked with and exploits the RA
results, is a usual addition to the RA process. In all cases such a process, either assisted
through computerized tools or not, renders the security expert(s) responsible for the
following tasks: a) capturing the security control requirements of the IS, b) translating
organizational input to a set of semiformal security rules, c) transforming the security
rules into an effective set of security controls, d) deploying and managing the security
controls over the IS and, e) establish a risk management process over the effectiveness
and efficiency of the security controls in place (optional).

To accomplish the above tasks, security experts usually deal with high-level state-
ments from various sources (e.g. output of RA tools, policy statements expressed in a
managerial level, Service Level Agreements), combined with IS technical informati-
on. This is often an effort-consuming intervention – especially for large organizations
– which has not yet been properly assisted by automated processes. We argue that we
may employ a structured approach to support the process leading from informal, high-
level statements found in policy and RA documents to deployable technical controls.
The outcome of this process will be a knowledge-based, ontology-centric security ma-
nagement system, eventually bridging the IS risk assessment and organizational secu-
rity policies with security management.

This paper aims to provide the foundations of a framework for supporting the
above procedure. More specifically, the proposed framework will encapsulate IS secu-
rity management through the linking between high-level policy statements and explicit,
low-level security controls adaptable and applicable in the IS environment. Addition-
ally, in the specific paper we propose an architecture that will facilitate the implemen-
tation of the above framework (scheme). Our overall approach is outlined as follows;

1. Identify and define the necessary components and mechanisms of the frame-
work.

2. Gather the security requirements that stem from the policy statements and ex-
press them in an information-rich manner.

3. Associate security requirements with appropriate risk mitigation actions (i.e.
specific countermeasures).

4. Provide deployment mechanisms to the IS infrastructure.
5. Define an architecture for security management of the IS.

It should be noted that the paper deals with the description of the total framework
and respective architecture, and as such, does not research into implementation details

 An Ontology-Based Approach to Information Systems Security Management 153

of certain parts of the architecture; in addition, its’ modular structure permits inde-
pendence of implementation, provided that the interfaces between the architecture
modules are well-defined.

The rest of this paper is organized as follows: the next section gives an overview
of the prerequisite information about IS management standards and the ontological
paradigm, which will be the enablers for our approach. In section 3 we define an
architecture and its components, while in section 4 we present the IS security man-
agement framework. In section 5 we present related work to our research and, finally,
our conclusions and further work in section 6.

2 Background

2.1 Common Information Model

The Common Information Model (CIM) [3] is a conceptual information model, which
developed by Distributed Management Task Force (DMTF) for describing computing
and business entities in Internet, enterprise and service provider environments. The
CIM is a hierarchical, object-oriented architecture that makes it comparatively straight-
forward to track, and depict the complex interdependencies and associations among
different managed objects. Such interdependencies may include those between logical
network connections and underlying physical devices, or those of an e-commerce
transaction and the web and database servers on which it depends. The CIM does not
require any particular instrumentation or repository format, attempting to unify and
extend the existing instrumentation and management standards (SNMP, DMI, CMIP,
etc.) using object-oriented constructs and design. While CIM is an evolving standard,
there are several commercial implementations from vendors like HP and Dell [3].

Management schemas are the building blocks for management platforms and ma-
nagement applications, such as device configuration, performance management, and
change management. The CIM Schema supplies a set of classes with properties and
associations that provide a well-understood conceptual framework, within which it is
possible to organize the available information about the managed environment. The
CIM Schema is the combination of the Core and Common Models.

Core Model: The core model captures notions that are applicable to all areas of mana-
gement. The core model is a set of classes, associations, and properties that provide a
basic vocabulary for describing managed systems, representing a starting point for de-
termining how to extend the common schema.

Common Models: The Common Models are information models that capture notions
that are common to particular management areas, but independent of any particular
technology or implementation. Examples of common models include systems, appli-
cations, networks and devices. The classes, properties, associations and methods in
the common models are intended to provide a view of the area that is detailed enough
to use as a basis for program design and, in some cases, implementation.

Extension Schema: Extension schemas represent extensions of the common models. It
is expected that the common models will evolve as a result of the promotion of ob-
jects and properties defined in the extension schemas [3].

154 B. Tsoumas, S. Dritsas, and D. Gritzalis

CIM is advantageous for our approach in that the model can be mapped to struc-
tured specifications such as OWL [4].

2.2 Ontologies: Their Use in Knowledge Modeling

An ontology is “an explicit specification of a conceptualization” [5]. Ontologies are
discussed in the literature as means to support knowledge sharing and reuse [6]. This
reusability approach is based on the assumption that if a modeling scheme - i.e. on-
tology - is explicitly specified and mutually agreed by the parties involved, then it is
possible to share, reuse and extend knowledge. It is obvious that there is no “silver-
bullet” ontology - in other words, it is unlikely that there will be a single, common on-
tology for all domains of human activity. This led to the concept of newsgroup metap-
hor or domain specific ontology, in order to define the terminology for a group of pe-
ople that share a common view on a specific domain [6]. Ontologies can be used to
describe structurally heterogeneous information sources of different levels of abstrac-
tion, such as found on security policy documents and RA outputs, helping both people
and machines to communicate in a concise manner, a manner which is based not only
on the syntax of security requirements, but on their semantics as well.

An ontology is comprised by three major building blocks: concepts, relationships
and constraints. Concepts are abstract terms, which are typically organized in taxono-
mies. Hierarchical concepts are linked with an “is-a” relationship. Furthermore, con-
cepts can have properties (or attributes), which help establishing relationships betwe-
en non-hierarchical concepts. Attributes may have a specific type like STRING, IN-
TEGER, BOOLEAN, etc. Axioms are rules that are valid in the modeled domain, fi-
nally constraining the possible (i.e. meaningful) interpretations for the defined con-
cepts. There are simple symmetric, inverse or transitive axioms and complex rules
consisting of several relations. Ontologies provide for inheritance in an object-orient-
ed manner, with instances being concrete occurrences of abstract concepts.

Ontologies are a vital part of our framework, which is described next.

3 Proposed Security Architecture

In the following paragraphs we present a generic architecture for IS security manage-
ment based on an ontology-centric approach. The main idea is to associate the secu-
rity requirements (“what”) stemming from the security knowledge sources with the
appropriate actions (“how”) and eventually deploy them to the IS. To accomplish
these tasks, four main phases exist: a) building the SO in order to simulate the under-
lying IS, b) capturing the IS security requirements (“what”) from high-level policy
statements into appropriate instances of the SO concepts, c) matching every security
requirement with the appropriate technical security control (“how”) that effectively
produces a population of (what, how) pairs for every IS device instance, and d) the
actual deployment of the identified actions to the IS, which can be accomplished by
piping the necessary data to a policy-based management platform, such as Ponder [7].
Figure 1 depicts the architecture under consideration, whereas a detailed description
of required steps is given in section 4.

Our approach is modular enough, in such a way that enhancements in any given
component(s) can be applied with a minimal overhead to the architecture. The propos-
ed security architecture is based on the combination of several methods, techniques

 An Ontology-Based Approach to Information Systems Security Management 155

and enablers such as knowledge representation, information extraction, IS manage-
ment standards, and best practices from wide accepted security standards. The (vague)
security knowledge that is present to high-level policy statements is transformed thro-
ugh successive steps into applicable security countermeasures. For simplicity, with
the term “policy statements” hereafter we refer to RA outputs, lists of security cont-
rols requirements, organization policy statements and SLA requirements.

In the next sections we present the components of our architecture, as well as the
necessary steps that demonstrate the framework establishment.

3.1 Sources of Security Knowledge

A number of security-related knowledge information sources exist that influence in a
direct or indirect way the security expert so as to implement the security controls.
Direct sources are bound to the specific IS and include organization policies and
SLAs, RA outputs and IS infrastructure information. Indirect sources are implicitly
associated with the given IS and include security and risk management standards [8]
[9], technical best practices [10], security advisories from vendors [11] and security
portals [12], security mailing lists [13] and vulnerability catalogues such as CVE [14].

S ec urity &
A ssu ra n ce
S tan d ard s
D a ta ba se

S ta keh o ld ers /
M an ag e m en t

H ig h-L ev el
S tm ts

(P olicy, R A
o u tp u t)

S e rve r F arm
W eb S erve r

C lie n t

D atab a se

W irele ss LA N
P rin te r

R o u ter

C lie n t

C lien t

In fras tru c tu re L e vel
In fo rm atio n

H ig h-L eve l
S ecu rity

In fo rm ation

M an a ge ria l L e vel
In fo rm atio n

B est P ra ctice

S e cu rity O n to log y

S tru ctu red
S ec u rity

In fo rm atio n

In fo rm a tio n
E x tra ctio n

T e ch n ica l
C o n tro ls
D atab a se

S ec urity
R eq u irem en ts

(“W h at”)

“W h a t” &
“H o w ”

M atch in g

T e ch n ica l
C o n tro ls
(“H o w ”)

P on der
Fram ew ork

D ep lo ya b le
Te ch n ica l
C o ntro ls

P o n de r R ules
D e plo y m en t

Fig. 1. An ontology-centric architecture for IS security management

156 B. Tsoumas, S. Dritsas, and D. Gritzalis

An indirect source of security information, usually neglected by the experts is bu-
siness decisions made by the organization stakeholders (e.g. “Company’s IT systems
should support the Sales process”). This may raise certain IS security considerations
(e.g. “the sales application must be accessible by the salesmen with wireless laptops
during business hours”).

Furthermore, these sources of security knowledge can be classified among a
number of criteria: the ambiguity of contained information, the relevance to the speci-
fic IS environment, the nature of the information therein - e.g. requirement (“what”)
or implementation (“how”) - the target of appliance (e.g. applies to all IS assets or to
a subset of them), etc. Figure 2 depicts a classification of certain security knowledge
sources against the first two points of view, namely: ambiguity of contained infor-
mation, and relevance to the specific IS environment. The depicted sources of secu-
rity knowledge that span from high to low relevance reflect the existence of specific,
still irrelevant information to the IS under question, due to diversity of technologies
present in some knowledge sources such as mailing lists.

Fig. 2. A classification of IS security knowledge sources

In conclusion, it is evident that the complexity, the different way of representation
and the diverse nature of abovementioned sources turns the work of security expert(s)
into a challenging and time-consuming task. The modeling and extraction of security-
related information from different information sources can be addressed with stan-
dardization initiatives such as OVAL [15] and CVE [14], with separate information
extraction modules for each definition [16] [17], etc; our knowledge-based system
which will exploit this vast, but still unstructured wealth of security information is a
valuable tool in the arsenal of security experts.

IS Relevance

A
m

b
ig

u
it

y

High

HighLow

Low

Organization
Policy

SLARisk Analysis
(RA) output

Infrastructure Information

Stakeholders’
Decisions

Security and Risk
Management

Standards

Technical Best Practices, Security Mailing Lists, Security Advisories

Vulnerability Catalogues (CVE)

 An Ontology-Based Approach to Information Systems Security Management 157

3.2 Security Ontology

In this section, we define a generic Security Ontology (SO), as “an ontology that ela-
borates on the security aspects of a system”. In the sequel, the terms “Security Onto-
logy” and “Ontology” will be used interchangeably.

Ontology languages such as OWL [18] provide for formal logic support like De-
scription Logics, a particular decidable fragment of first order logic (i.e. OWL DL
version), which has desirable computational properties for reasoning systems. It is true
that, OWL comparing to pure formal logic models expressing security issues may lack
in expressiveness (issue which is expected to be supported with the evolution of tools
compliant with OWL Full version), but ontologies have several advantages: a) ontolo-
gies are more close to human mentality expressing a world model, in contradiction
with formal languages which are difficult to understand and use by humans, b) the
formal models deal with access control issues mainly which can be expressed mathe-
matically and they lack support for more soft actions such as countermeasure selection,
c) comparing to formal languages, ontologies are more well-suited for expressing ap-
proximations and decision support systems via semantic support and inferencing
mechanisms, d) the query mechanisms which can be applied to OWL ontologies.

Our SO extends CIM meta-model in order to capture the security requirements of
an arbitrary IS. The SO is formulated as a CIM extension schema enriched with onto-
logical semantics, modeling the security management information; in addition, it is
linked with the legacy CIM concepts in order to access the already modeled informa-
tion for the IS resources. The SO acts as a container for the IS security requirements
(“What”), as they will be extracted from the available information sources. While
there is no standard method for ontology development [19], we followed the col-
laborative approach for ontology design described in [20]. The idea is to build an on-
tology by a group of people in an iterative way, improving the ontology in every
round. During design, well-known security standards and the design criteria in [5] we-
re taken into account. SO development is achieved through the following steps:

Step 1 - Consideration of ontology design criteria [1] as a framework for the deve-
lopment process;

Step 2 – Identification of core security concepts from security standards and best
practice; from a literature review of wide-accepted standards such as ISO/IEC
17799 [8], British Standard 7799 Part 2 [21], Australian Standard Handbook of
Information Security Risk Management (AS/NZS 4360) [22], and Common
Criteria framework [23], follows that there are recurrent and common used
concepts including threats, vulnerabilities, risks, controls, assets, and impacts.

Step 3 – Normalization of security vocabulary; although recurrent and common used
entities and concepts exist in all standards, the vocabulary of risk and security
concepts in several cases is not identical (or even corresponding). Further-
more, different relationships between similar concepts exist, e.g. in AS/NZS
4360 vulnerabilities are linked directly to assets, whereas in CC vulnerabili-
ties are linked to assets through risks. Thus, focusing to provide a common
model for these informally recurrent concepts, a common vocabulary is estab-
lished which will be used for the SO definition.

Step 4 – Development of concept-centric partial ontologies; in this step, in order to
facilitate understanding, we developed partial ontologies which include a cen-

158 B. Tsoumas, S. Dritsas, and D. Gritzalis

tral security concept and relations with its direct neighbors so as to be able to
approach the IS security concepts from different views and perspectives.

Step 5 – Integration of the partial ontologies in a SO prototype; in this step we integ-
rate each partial ontology perspective into a wider ontology and extend the
model with additional attributes and rules, if any.

Step 6 – Refinement of vocabulary and normalization of the SO prototype; we revise
the vocabulary and adjust accordingly concept attributes and relationships in
order to avoid redundancies.

Step 7 – Evaluation and feedback; the integrated model representing the SO is evalu-
ated qualitatively through discussion and interaction among the participating
individuals.

If the developed SO is not satisfactory, then the process is repeated from Step 2.

3.3 Knowledge Extraction Mechanisms

As analyzed in section 3.1, a variety of diverse sources concerning security knowled-
ge is available to the security expert. The security knowledge can be acquired through
several sources, namely:

 From high-level policy statements, which express the view of organization ma-
nagement on risk avoidance and mitigation issues, ideally aligned with busi-
ness objectives and goals; for this task, information extraction tools with onto-
logical support is used. Such information may be gathered through the use of
tools and techniques such as [16] [17].

 From widely accepted standards on security and assurance that act as a refer-
ence model and provide a best practice perspective; a container database for
security requirements according to these standards is used (“Security and As-
surance Standards Database”).

 From system-specific information from the organization domain, thereby fa-
cilitating the linkage of the model with the real world. Such information will
be gathered twofold:
o From the infrastructure level through the use of system- and network-au-

diting tools and techniques such as Nmap [24] and NetStumbler [25].
These tools provide useful information for network mapping, identifica-
tion of platforms and operating systems, available services and open ports;

o From the managerial level through dialog-based interfaces from the hu-
man owners of the system (e.g. justification of policy decisions in order to
achieve the business objectives). In this case, the responsible individual
enters the information through specific forms to provide the desired data.
Typically, this kind of information refers to business applications’ facts
such as custom services / open ports etc.

The security knowledge extraction process is depicted in Figure.3. Although the
detailed techniques of extracting the information from the aforesaid sources, as well
as the process of the ontology concepts instantiation are beyond the scope of this pa-
per, an overview is provided in section 4.

 An Ontology-Based Approach to Information Systems Security Management 159

3.4 Database of Technical Controls

This component is the counterpart of the SO, and describes the technical actions
(“How”) in order to fulfill the security requirements identified in the SO (“What”),
being actually a collection of security controls in a technical level; examples include
executable programs and scripts, tools, secure configuration settings and security
patches. These controls address, among others, the specific threats and vulnerabilities
of IS and are highly technology- and platform-dependent. For instance, a script con-
figuring a certain access device in order to enforce a given access control policy, may
be inappropriate for different versions of the device software.

The idea is to provide customized, focused solutions in the technical level that
address given security requirements of IS. These controls are organized in a relational
database for easy retrieval and query support. Metadata of these security controls in-
clude, among others, the following attributes: target platform, operating system name
and version, target domain, authorization level required, action performed, time con-
straints, prerequisite conditions for successful execution, clean-up actions, etc. The
database of technical controls is by no means complete and/or static ; it should be up-
dated in regular periods with the latest technical controls. The database schema defini-
tion, as well as the database management itself, is out of scope of this paper.

4 Security Management Framework

In this section we present a brief description of the necessary steps in order to esta-
blish the IS security management framework under examination. Four major phases
can be identified throughout the process, namely: a) Building of Security Ontology, b)
Security Requirements Collection, c) Security Actions Definition, and d) Security
Actions Deployment and Monitoring. The steps in each phase are as follows:

1. Building of Security Ontology

I. Get IS infrastructure data; in this initial step, vital data concerning the network
topology, technologies used, servers, wireless access points, services and a-
ctive ports are located through the use of network scanning tools such as Nmap
[24] and NetStumbler [25];

II. Justify with organization managers and discuss business decisions; manage-
ment input entered into the knowledge system via dialog-based interfaces may
influence dramatically the security of the IS, since it might affect network to-
pologies, active services and open ports.

III. Generate ontology concepts’ instances from infrastructure data; in this step
there is enough information in order to generate instances from the correct
concepts of the SO. Populate the instances with information from step I. The
management of concepts’ instances and population may be performed via on-
tology environments and tools, such as Protégé [26].

2. Security Requirements Collection

IV. Extract security knowledge from the IS policy document; perform information
extraction work from the policy statements and populate the ontology concept
instances with the extracted information, using tools such as GATE [16].
Eventually fill the gaps (if possible) in the instances from step II.

160 B. Tsoumas, S. Dritsas, and D. Gritzalis

Fig. 3. SO population process with security knowledge

V. Present the security requirements to management and security expert(s) for e-
valuation; if necessary, perform adjustments and/or corrections to security re-
quirements. This step will help towards to the refinement and training of the
information extraction process. The database of security and assurance stan-
dards may be used for enriching the security requirements, in case the informa-
tion contained in the policy documents is deemed insufficient.

3. Security Actions Definition

VI. Associate the security requirements with specific security controls; this step
performs the linking of requirements with deployable security controls (Data-
base of Technical Controls), customized for the concept instance under ques-
tion. In this task, valuable help will be utilized from the infrastructure data col-
lected during step I.

VII. Transform the controls identified into a Ponder-compatible input; this step in-
volves the transformation of the controls (actions) specified in step VI into a
form that can be piped into Ponder rules. The Database of Technical Controls
is not a part of Ponder or CIM framework, but rather an enabling repository of

 An Ontology-Based Approach to Information Systems Security Management 161

deployable security measures. The transformation to Ponder can be realized
through an appropriate interface. The CIM-Ponder transformation/mapping is
already discussed in [27] [28] [29].

4. Security Actions Deployment and Monitoring

VIII. Deploy the Ponder rules over the IS infrastructure; employ Ponder manage-
ment framework in order to realize the security requirements (enforcing the
policy statements that apply to technical controls) over the IS devices.

IX. Iterate from step I in a timely basis; in order to keep up with the changes in
the IS environment and policy modifications, the whole process should be
employed over certain periods of time.

Furthermore, reporting facilities should be in place so as to be able to monitor every step
of the process. Additional capabilities, such as storage of the ontology in a suitable manner
so as to be able to perform queries upon the ontology, are highly preferable. Moreover, the
representation of the ontology should be available in a semantic web language, such as
OWL [18], so as to promote reusability and exchange of security knowledge.

5 Related Work

Regarding previous work, two main directions exist: policy specification and (partial)
security-related ontologies.

There is a research effort on different approaches to policy specification [7];
IETF/DMTF and the network component manufacturers are concentrating on infor-
mation models [3] and condition-action rules focusing on the management of Quality
of Service (QoS) in networks [30]. The security community has developed a number
of models with respect to specification of mandatory and discretionary access control
policies (e.g. such as Clark-Wilson), further evolving into work on role based access
control (RBAC) and role based management where a role may be considered as a
group of related policies pertaining to a position in an organization [31]. Finally, con-
siderable work within the greater scope of management has already resulted in archi-
tectures and technologies that provide the basic infrastructure required to implement
policy-based management solutions [32].

Although the need for a security ontology has been recognized by the research
community [33] [34] [35], only partial attention has been drawn for a common solu-
tion. A loosely related to our work [34] [35] deal mainly with access control issues;
Standards discussed include XML Signatures and integration with Security Assertions
Markup Language (SAML), an XML-based security standard for exchanging authen-
tication and authorization information [36]. Furthermore, work on KAON [37] focus-
es mostly on the managing infrastructure of generic ontologies and metadata, whereas
in [38] authors present a policy ontology based on deontic logic, elaborating, among
others, on delegation of actions.

Raskin et al. presented an ontology-driven approach to information security [39].
They argue that a security ontology could organize and systematize all the security
phenomena such as computer attacks. Furthermore, the inherent ontology modularity
could support the reaction in attacks by relating certain controls with specific attack
characteristics, and finally, support attack prediction.

In general, we should mention that the policy languages which are represented
using Semantic Web languages are, usually, defined in terms of ontologies. In this

162 B. Tsoumas, S. Dritsas, and D. Gritzalis

context the design of the KAoS [40, 41] policy ontology suggests the use of a descrip-
tion logic inference engine to analyze policy rules. The Rei [38] policy ontology re-
quires the use of an F-Logic based interpreter to compute the defined policy restric-
tions and constraints. The policy analysis mechanism in the e-Wallet system [42]
exploits the XSLT technology to translate policy rules from RDF to JESS rules and
uses a JESS rule engine to compute policy restrictions. Furthermore, the SOUPA [43]
policy language is similar to Rei in modeling a policy as a set of rules that defines
restrictions on actions but the specific policy ontology has limited support for meta-
policy reasoning and speech-acts (for a detailed description and comparison of policy
representation and reasoning languages at the semantic level see [41]).

The legacy DMTF approach (i.e. the root of our SO), lacks a) the security manage-
ment aspect (which we define as an Extension Schema), b) the centralized management
of security management information, and c) the domain knowledge perspective, which
we incorporate into our model enriching the Extension Schema with ontological support.

In addition, most of these approaches are related with specific aspects of security
and particularly to specific application domains; our approach is generic enough to be
applied in every information system, incorporating security knowledge from various
sources. Furthermore, all aforementioned approaches lack the security standards sup-
port, which we use for modeling the security requirements.

6 Conclusions and Further Research

In this paper we set the foundations for establishing a knowledge-based, ontology-
centric framework with respect to the security management of an arbitrary IS. We
demonstrated that the linking between high-level policy statements and deployable
security controls is possible and the implementation is achievable. This framework
may support critical security expert activities with respect to security requirements
identification and selection of certain controls that apply to a certain IS. In addition,
we presented a structured approach for establishing a security management frame-
work and identified its critical parts. Our security ontology is represented in a neutral
manner, based on well-known security standards and can be used for security knowl-
edge reusability and exchange.

Moreover, a reference representation for SO in OWL is underway, examining in
parallel the possibility of integrations with other security standards, such as [44]. The
combination of formal methods and an ontology-based semantic reference model is a
very interesting direction and is under consideration. The standardization of security
requirements in order to implement a standards-based, security requirements database
(Security & Assurance Standards Database) is also investigated. Further steps of our
work will include the practical implementation of the framework; a comprehensive set
of attributes, relationships and constraints for the security ontology is under investiga-
tion. Additionally, we investigate ways of extracting security information from high-
level documents (e.g. security policy and risk analysis documents) and from the infra-
structure level of the organizational domain, as well.

Finally, open issues include conflict resolution on security requirements, comp-
liance checking against desirable IS policy, automated development of IS audit pro-
grams; integration of the approach into a security/risk management framework;
evaluation metrics of produced security controls; definition of a comprehensive matc-
hing algorithm between countermeasures in security ontology instances and technical

 An Ontology-Based Approach to Information Systems Security Management 163

security controls database. Other issues include storage and retrieval issues of security
requirements, as well as development of a query-based system.

References

[1] Karygiannis ., Owens L., Wireless Network Security: 802.11, Bluetooth and Handheld
Devices, NIST Special Publication no. 800-48, US Dept. of Commerce, USA 2002.

[2] PAMPAS (“Pioneering Advanced Mobile Privacy and Security”) Project, EU-IST-2001-
37763, Final Roadmap, Deliverable D4, www.pampas.eu.org/, May 2003.

[3] DMTF CIM Policy Model v. 2.81, available at
http://www.dmtf.org/standards/published_documents.php (Feb. 2005).

[4] Clemente F., Perez G., Blaya J., Skarmeta A., Representing Security Policies in Web In-
formation Systems, Policy Management for the Web - WWW2005 Workshop, 14th In-
ternational World Wide Web Conference, May 2005, Chiba, Japan.

[5] Gruber T., “Toward principles for the design of ontologies used for knowledge sharing”.
In Formal Ontology in Conceptual Analysis and Knowledge Representation, Kluwer A-
cademic Publishers, 1993.

[6] Decker S., et al., “Ontobroker: Ontology based access to distributed and semi-structured
information”. In R. Meersman et al. (Eds.), DS-8: Semantic Issues in Multimedia Sys-
tems. Kluwer Academic Publishers, 1999.

[7] Damianou N. et al., “The Ponder Policy Specification Language”. In Workshop on Poli-
cies for Distributed Systems and Networks, Springer-Verlag LNCS 1995, 2001, pp. 18-39.

[8] ISO/IEC 17799 (2000-12-01), Information technology - Code of practice for information
security management, ISO.

[9] COBIT 3rd Edition Control Objectives, IT Governance Institute, 2000.
[10] BSI, IT Baseline Protection Manual, Germany available at

http://www.bsi.bund.de/english/index.htm (Mar. 2005).
[11] Cisco Security Advisories, http://www.cisco.com/go/psirt/ (Mar. 2005).
[12] SecurityFocus security portal, (http://www.securityfocus.com (Mar. 2005).
[13] Seclists. Org Security Mailing List Archive (http://seclists.org (Mar. 2005).
[14] Common Vulnerabilities and Exposures (http://www.cve.mitre.org/ (Mar. 2005).
[15] OVAL--Open Vulnerability Assessment Language (http://oval.mitre.org/) (Mar. 2005)
[16] Cunningham H., et al., “GATE: A Framework and Graphical Development Environment

for Robust NLP Tools and Applications”. Proc. of the 40th meeting of the Association for
Computational Linguistics (ACL'02). USA, July 2002.

[17] Bontcheva K., et al., Evolving GATE to Meet New Challenges in Language Engineering.
Natural Language Engineering (to appear).

[18] Dean M., et al., OWL Web Ontology Language Reference W3C Recommendation,
http://www.w3.org/TR/owl-ref/ (Mar. 2005)

[19] Noy N., McGuiness D., “Ontology Development 101: A Guide to Creating Your First
Ontology”, Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and
Stanford Medical Informatics Technical Report SMI-2001-0880, March 2001.

[20] Holsapple C., Joshi K., “A collaborative approach to ontology design”, Com. of the
ACM, 45(2):42-47, 2002.

[21] British Standard 7799, Part 2 (1999), Information Technology - Specification for Infor-
mation Security Management System, BSI.

[22] Standards Australia and Standards New Zealand, Australian/New Zealand Standard for
Risk Management 4360 (1999).

164 B. Tsoumas, S. Dritsas, and D. Gritzalis

[23] ISO/IEC 15408-1, 2, 3:1999 Information technology - Security techniques - Evaluation
criteria for IT security - Part 1: Introduction and general model, Part 2: Security functio-
nal requirements, Part 3: Security assurance requirements.

[24] Nmap scanner, available at http://www.insecure.org/nmap (Mar. 2005).
[25] Netstumbler 802.11 network scanner, available at http://www.stumbler.net (Mar. 2005).
[26] Protégé Ontology Development Environment, at http://protege.stanford.edu/ (Mar. 2005)
[27] Andrea Westerinen, Julie Schott “Implementation of the CIM Policy Model Using

PONDER”, 5th IEEE International Workshop on Policies for Distributed Systems and
Networks (POLICY 2004), 7-9 June 2004, Yorktown Heights, NY, USA. IEEE Com-
puter Society 2004, ISBN 0-7695-2141-X

[28] L. Lymberopoulos, E. C. Lupu, M. S. Sloman “Ponder Policy Implementation and Vali-
dation in a CIM and Differentiated Services Framework”. Presented at NOMS 2004,
Seoul, April 2004.

[29] Oscar Diaz Alcantara, Morris Sloman, "QoS policy specification - A mapping from Pon-
der to the IETF", Department of Computing, Imperial College, 180 Queen's Gate, Lon-
don SW7 2BZ,

[30] Hewlett-Packard, A Primer on Policy-based Network Management, September 14, 1999.
[31] ANSI INCITS 359-2004, “Information Technology - Role Based Access Control”, 2004.
[32] Hegering H.-G., Abeck S., Neumair B., Integrated Management of Network Systems:

Concepts, Architectures and Their Operational Application, 1999: Kaufmann Publ.
[33] Donner M., “Toward a Security Ontology”, In IEEE Security and Privacy, Vol. 1, No. 3,

pp. 6-7, May 2003.
[34] Denker G., Access Control and Data Integrity for DAML+OIL and DAML-S, SRI In-

ternational, USA, 2002.
[35] Denker G., Security Mark-up and Rules, SRI International, CAIn: Dagstuhl Seminar on

Rule Markup Techniques, 2002.
[36] OASIS Security Service TC. Security Assertion Markup Language (SAML),

http://www.oasis-open.org/committees/security/ (Mar. 2005)
[37] Bozsak E., Ehrig M., Handschub S., Hotho J., “KAON – Towards a Large Scale Seman-

tic Web”, in: Bauknecht, K., et al. (Eds.): Proc. of the 3rd International Conference on e-
Commerce and Web Technologies, EC-WEB-2002, 2002, pp. 304-313.

[38] Kagal L., et al., “A policy language for a pervasive computing environment”. In 4th IEEE
International Workshop on Policies for Distributed Systems and Networks, 2003.

[39] Raskin V., et al., “Ontology in Information Security: A Useful Theoretical Foundation
and Methodological Tool”. In V. Raskin, et al. (Eds.), Proc. of the New Security Para-
digms Workshop, ACM, USA, 2001.

[40] Uszok A., et al., “KAoS: A Policy and Domain Services Framework for Grid Computing
and Semantic Web Services”, Proc. of the Second International Conference on Trust
Management, 2004.

[41] Tonti G., et al., “Semantic Web Languages for Policy Representation and Reasoning: A
Comparison of KAoS, Rei and Ponder”, Proc. of the 2nd International Semantic Web
Conference, 2003.

[42] Gandon F. L., Sadeh M. N., “Semantic web technologies to reconcile privacy and context
awareness”. Web Semantics Journal, 1 (3), 2004.

[43] Chen H., et al., “SOUPA: Standard ontology for ubiquitous and pervasive applications”,
Proc. of the First International Conference on Mobile and Ubiquitous Systems: Network-
ing and Services, 2004.

[44] XACML Specification (2003), eXtensible Access Control Markup Language, v. 1.1,
available at http://www.oasis-open.org (Mar. 2005).

Safety Problems in Access Control with
Temporal Constraints

Philippe Balbiani and Fahima Cheikh

Université Paul Sabatier,
Institut de recherche en informatique de Toulouse,

31062 Toulouse Cedex 09, France
Philippe.Balbiani@irit.fr

Abstract. Most of access control mechanisms use the matrix model to
represent protection states of computer systems. We present a variant
of the access control matrix model obtained by incorporating temporal
constraints saying that “subject s has right r on object o since at least
duration d”. In connection with this enriched model, we also discuss the
decidable and undecidable cases of one of the major themes of computer
security, namely the classical safety problem for access control matrices.

1 Introduction

The need for protection arises in any computer system where several users share
multifarious data and resources. The protection state of a computer system is
the set of all values of memory locations of the computer system that deal with
protection. Protection models provide a foundation for the representation of pro-
tection states of computer systems. They are usually defined in terms of subjects,
objects, and rights between subjects and objects. In the matrix model introduced
by Lampson [9], rows represent subjects and columns represent objects. Each el-
ement of the matrix is a set of rights. On most computer systems, “subject s has
right r on object o” if and only if r belongs to the element (s, o) of the matrix.
The access control model formalized by Harrison, Ruzzo, and Ullman [8] was
the first model to propose a language for administrating protection in terms of
propagation of rights. Within the HRU model, a protection system consists of a
set of commands. As commands are executed, the protection state of the com-
puter system, i.e. its access control matrix, changes. Protection models based on
the HRU language must consider the well-known safety problem: given a right
r, a protection system Π , and a protection state Δ, is there a protection state
containing r and reachable from Δ in a finite number of Π-steps? The safety
problem is undecidable for generic protection systems but it becomes decidable
if protection systems are restricted in some way. Can the borderline between
decidable and undecidable cases of the safety problem be drawn sharply and on
the basis of which criteria? This matter is analysed in [7,8]. See also [2] in this
connection.

Additional topics related to the HRU model include results concerning a
number of interesting variants obtained by extending HRU in various ways. Re-

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 165–178, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

166 P. Balbiani and F. Cheikh

visiting the results obtained so far, Sandhu [11] and Soshi [14] expanded the
HRU model by typing subjects and objects. The papers [3,5,12] formulated role-
based access control, RBAC, a model within which the right for a subject to
have access to an object depends both on the roles assigned to the subject and
on the permissions allocated to the object. In this connection see also [4]. RBAC
has recently attracted a great deal of attention. However, nothing is known
about role-based protection systems for which the safety problem is decidable.
An interesting extensions of HRU is HRU with explicit prohibitions saying that
“subject s has not right r on object o”. The essential ingredients of this variant of
the HRU model have been introduced by Sandhu and Ganta [13]. Nevertheless,
nothing is known about protection systems with explicit prohibitions for which
the safety problem is decidable. In [10], an access control mechanism based on
Boolean expression evaluation, BEE, is presented. This mechanism defines ele-
ments of the matrix to be sets of pairs of the form (r, B) where r is a right and B
is a Boolean expression. Whenever subject s attempts to r-access object o, the
Boolean expression associated with r in element (s, o) of the matrix is evaluated:
if it is true, access is allowed. Yet, nothing is known about protection systems
with Boolean expression evaluation for which the safety problem is decidable.

In practice, computer systems provide primitives such as “date” which cor-
responds to the current date and “time” which corresponds to the current time.
Incorporating them into access decisions based on BEE would afford an excel-
lent example of an access control matrix whose elements depend on temporal
requirements. Since temporal requirements are involved in every aspect of human
activity and computing, it becomes essential to develop protection systems which
can take temporal constraints into account. The temporal role-based access con-
trol model proposed by Bertino, Bonatti, and Ferrari [1] provides support for
periodic role enabling and disabling whereas the temporal data authorization
model proposed by Gal and Atluri [6] is able to express access control poli-
cies based on the temporal characteristics of data. In this paper we investigate
the description of a HRU model incorporating temporal constraints saying that
“subject s has right r on object o since at least duration d”. The bulk of this
paper is devoted to the problem of trying to characterize the borderline between
decidable and undecidable cases of the safety problem for HRU with temporal
constraints. Before we proceed with the next sections, let us briefly describe
their contents. Section 2 presents the concept of protection state in matrix form
and defines a set of primitive operations that alter the access control matrix of
computer systems. Section 3 deals with HRU protection systems and examines
under what conditions the classical safety problem for access control matrices
becomes decidable. Section 4 expands the HRU model by incorporating tem-
poral constraints and extends the concept of safety defined within the context
of HRU protection systems to the concept of timed safety. Section 5 considers
under what conditions the timed safety problems defined within the context of
timed protection systems become decidable.

Safety Problems in Access Control with Temporal Constraints 167

Table 1. Protection state Δ

A o0 o1

s0 {r1, r2} {r0, r1, r2}
s1 {r0, r1, r2} {r1, r2}
s2 {r1, r2} {r1, r2}

2 Protection States

Let R be a finite set with typical member denoted r, r′ etc, possibly with sub-
scripts. Its elements are called rights. The rights of our abstract model corre-
spond, for instance, to those of the Unix system: read, write, etc. Let SC be a
countable set of individuals of type subject with typical member denoted s, s′

etc, possibly with subscripts, and OC be a countable set of individuals of type
object with typical member denoted o, o′ etc, possibly with subscripts. Indi-
viduals will also be denoted by the letters a, a′, etc, possibly with subscripts.
Elements of SC will also be called subjects and elements of OC will also be called
objects. The set of subjects is the set of active entities, such as human beings.
The set of objects is the set of passive entities, such as files. To characterize the
connection between subjects and objects, we present the concept of protection
state. A protection state (S, O, A) has three components: a finite subset S of
SC, a finite subset O of OC, and a function A assigning to each subject s in
S and each object o in O a subset A(s, o) of R. With each finite subset S or O
we associate its cardinality, denoted by |S| or |O|. Let |R| be the cardinality of
the finite set R. For subject s in S and object o in O, the relationship “r is in
A(s, o)” means that subject s has right r on object o. Protection states will be
denoted by the letters Δ, Δ′, etc, possibly with subscripts. Table 1 illustrates a
simple protection state Δ presented in a matrix form. The entries in the matrix
specify the rights that each subject has on each object. Seeing that entities such
as processes can be treated as both subjects and objects, we will assume that for
all protection states (S, O, A), S is included in O. Let SV be a countable set of
variables of type subject with typical member denoted σ, σ′ etc, possibly with
subscripts, and OV be a countable set of variables of type object with typical
member denoted ω, ω′ etc, possibly with subscripts. Variables will also be de-
noted by the letters X , X ′, etc, possibly with subscripts. There are 6 primitive
operations which are used to modify protection states:

– “create subject σ” and “destroy subject σ”,
– “create object ω” and “destroy object ω”,
– “enter r into A(σ, ω)” and “delete r from A(σ, ω)”.

Primitive operations will be denoted by the letters π, π′, etc, possibly with
subscripts. Substitutions replace individuals for variables. Hence they are finite
sets of the form {X1/a1, . . . , Xn/an} where each Xi is a variable, each ai is an
individual, and the variables X1, . . ., Xn are pairwise distinct. We will always
consider that substitutions are balanced, i.e. for all i in {1, . . . , n}, Xi and ai are
of the same type. Substitutions will be denoted by the letters θ, θ′, etc, possibly

168 P. Balbiani and F. Cheikh

with subscripts. Each primitive operation modifies the current protection state
in a way which is peculiar to what its name implicitly means. To make things
perfectly clear, it is convenient to consider the concept of state derivability. Let
θ be a substitution and π be a primitive operation. Suppose there is no variable
in θ(π), i.e. every variable in π is replaced by an individual through the use of
θ. If Δ = (S, O, A) and Δ′ = (S′, O′, A′) are protection states then we shall say
that Δ′ is derivable from Δ in one step using θ and π, in symbols Δ −→θ

π Δ′,
iff one of the following conditions is satisfied:

– π is “create subject σ”, θ(σ) is not in S, and the only difference between Δ
and Δ′ is that S′ = S ∪ {θ(σ)},

– π is “destroy subject σ”, θ(σ) is in S, and the only difference between Δ and
Δ′ is that S′ = S \ {θ(σ)},

– π is “create object ω”, θ(ω) is not in O, and the only difference between Δ
and Δ′ is that O′ = O ∪ {θ(ω)},

– π is “destroy object ω”, θ(ω) is in O, and the only difference between Δ and
Δ′ is that O′ = O \ {θ(ω)},

– π is “enter r into A(σ, ω)”, θ(σ) is in S, θ(ω) is in O, and the only difference
between Δ and Δ′ is that A′(θ(σ), θ(ω)) = A(θ(σ), θ(ω)) ∪ {r},

– π is “delete r from A(σ, ω)”, θ(σ) is in S, θ(ω) is in O, and the only difference
between Δ and Δ′ is that A′(θ(σ), θ(ω)) = A(θ(σ), θ(ω)) \ {r}.

Consider again the protection state Δ shown in table 1. If primitive operations
π1, π2, π3, and π4 are “create object ω”, “enter r0 into A(σ, ω)”, “enter r1 into
A(σ, ω)”, and “enter r2 into A(σ, ω)” and substitution θ is {σ/s2, ω/o2} then
Δ −→θ

π1
◦ −→θ

π2
◦ −→θ

π3
◦ −→θ

π4
Δ′, where Δ′ is the protection state defined by

table 2. If primitive operation π5 is “enter r3 into A(σ′, ω)” and substitution θ
is {σ′/s0, ω/o2} then Δ′ −→θ

π5
Δ′′, where Δ′′ is the protection state defined by

table 3. If primitive operation π6 is “enter r4 into A(σ′, ω)” and substitution θ is
{σ′/s1, ω/o2} then Δ′′ −→θ

π6
Δ′′′, where Δ′′′ is the protection state defined by

table 4. If primitive operation π7 is “enter r5 into A(σ′′, ω)” and substitution θ
is {σ′′/s2, ω/o2} then Δ′′′ −→θ

π7
Δ(4), where Δ(4) is the protection state defined

by table 5.

3 HRU Protection Systems

Within the context of HRU protection systems, primitive operations can be
invoked indirectly via HRU commands of the form:

Table 2. Protection state Δ′

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} ∅
s1 {r0, r1, r2} {r1, r2} ∅
s2 {r1, r2} {r1, r2} {r0, r1, r2}

Safety Problems in Access Control with Temporal Constraints 169

Table 3. Protection state Δ′′

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} {r3}
s1 {r0, r1, r2} {r1, r2} ∅
s2 {r1, r2} {r1, r2} {r0, r1, r2}

– “if C1 and . . . and Ci then begin π1; . . .; πj end”,

where C1, . . ., Ci are elementary conditions like:

– “r is in A(σ, ω)”,

and π1, . . ., πj are primitive operations. The number of elementary conditions
is i, a non-negative integer, and the number of primitive operations is j, a pos-
itive integer. A HRU command is invoked by replacing all variables in it with
individuals of the appropriate types. After that, if the elementary conditions C1,
. . ., Ci are evaluated to true in terms of the current protection state then the
primitive operations π1, . . ., πj are executed. HRU commands will be denoted
by the letters α, α′, etc, possibly with subscripts. By a HRU protection system,
we simply mean a finite set {α1, . . . , αk} of HRU commands. We shall say that
a command is conditional iff it contains at least 1 elementary condition. A HRU
protection system is monotonic iff none of its HRU commands contain a prim-
itive operation of the form “destroy” or “delete”. It is monoconditional iff none
of its HRU commands contain more that 1 elementary condition whereas it is
mono-operational iff none of its HRU commands contain more that 1 primitive
operation. HRU protection systems will be denoted by the letters Π , Π ′, etc,
possibly with subscripts. For all i ∈ {0, 1, 2, ∞} and for all j ∈ {1, 2, ∞}, let
CHRU (i, j) be the class of all HRU protection systems such that none of their
HRU commands contain more than i elementary condition or more than j prim-
itive operations and C+

HRU (i, j) be the class of all monotonic HRU protection
systems in CHRU (i, j). For example, the HRU protection system Π shown in
table 6 is in the class C+

HRU (2, ∞). Let θ be a substitution and C be an elemen-
tary condition. Suppose there is no variable in θ(C), i.e. every variable in C is

Table 4. Protection state Δ′′′

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} {r3}
s1 {r0, r1, r2} {r1, r2} {r4}
s2 {r1, r2} {r1, r2} {r0, r1, r2}

Table 5. Protection state Δ(4)

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} {r3}
s1 {r0, r1, r2} {r1, r2} {r4}
s2 {r1, r2} {r1, r2} {r0, r1, r2, r5}

170 P. Balbiani and F. Cheikh

Table 6. HRU protection system Π

begin create object ω; enter r0 into A(σ,ω); enter r1 into
A(σ,ω); enter r2 into A(σ, ω) end
if r0 is in A(σ, ω) then enter r3 into A(σ′, ω)
if r0 is in A(σ, ω) then enter r4 into A(σ′, ω)
if r3 is in A(σ, ω) and r4 is in A(σ′, ω) then enter r5 into
A(σ′′, ω)

replaced by an individual through the use of θ. If Δ = (S, O, A) is a protection
state then we shall say that θ makes C true at Δ, in symbols Δ |=θ C, iff the
following condition is satisfied:

– C is “r is in A(σ, ω)”, θ(σ) is in S, θ(ω) is in O, and r is in A(θ(σ), θ(ω)).

It follows from the definition that if substitution θ is {σ/s2, ω/o2} and elementary
condition C is “r0 is in A(σ, ω)” then Δ′ |=θ C, where Δ′ is the protection state
defined by table 2. As well, if substitution θ is {σ/s0, σ

′/s1, ω/o2} and elementary
conditions C′ and C′′ are “r3 is in A(σ, ω)” and “r4 is in A(σ′, ω)” then Δ′′′ |=θ C′

and Δ′′′ |=θ C′′, where Δ′′′ is the protection state defined by table 4. Let Π be
a HRU protection system. If Δ = (S, O, A) and Δ′ = (S′, O′, A′) are protection
states then we shall say that Δ′ is derivable from Δ in one step using Π , in
symbols Δ −→Π Δ′, iff there exists a substitution θ and a HRU command
α ∈ Π with elementary conditions C1, . . ., Ci and primitive operations π1, . . .,
πj such that:

– Δ |=θ C1, . . ., Δ |=θ Ci,
– Δ −→θ

π1
◦ . . . ◦ −→θ

πj
Δ′.

It is obvious from the definition that Δ −→Π Δ′ −→Π Δ′′ −→Π Δ′′′ −→Π Δ(4)

where Δ, Δ′, Δ′′, Δ′′′, and Δ(4) are the protection states defined by tables 1,
2, 3, 4, and 5 and Π is the HRU protection system defined by table 6. Let
Π be a HRU protection system and Δ be a protection state. Π is said to be
unsafe for r with respect to Δ iff there exists a sequence Δ0 = (S0, O0, A0), . . .,
Δn = (Sn, On, An), Δn+1 = (Sn+1, On+1, An+1) of protection states such that:

– Δ0 −→Π ◦ . . . ◦ −→Π Δn −→Π Δn+1,
– the following conditions are satisfied for some individual s ot type subject

and for some individual o of type object:
• if s is in Sn and o is in On then r is not in An(s, o),
• s is in Sn+1, o is in On+1, and r is in An+1(s, o),

– Δ0 = Δ.

We also say that the sequence Δ0 = (S0, O0, A0), . . ., Δn = (Sn, On, An),
Δn+1 = (Sn+1, On+1, An+1) leaks r with respect to Π and Δ. For example,
with respect to Δ, the HRU protection system Π defined in table 6 is unsafe for
r0, r1, r2, r3, r4, and r5, where Δ is the protection state defined by table 1. Let
CHRU be a class of HRU protection systems. The most basic problem on HRU
protection systems in CHRU is the following decision problem:

Safety Problems in Access Control with Temporal Constraints 171

Problem: SAFETY(CHRU),
Input: a right r, a HRU protection system Π ∈ CHRU , and a protection state

Δ = (S, O, A),
Output: determine if Π is unsafe for r with respect to Δ.

The above is a planning problem. Abstractly, we have an initial protection state
and certain HRU commands that can be performed in a given protection state
if it satisfies certain conditions. Performing a HRU command with respect to a
protection state brings about a new protection state. The goal is to bring about
a protection state leaking the right r and the task is to find a sequence of HRU
commands that achieves this end.

Theorem 1. 1. SAFETY(CHRU (∞, 1)) is decidable,
2. SAFETY(C+

HRU (1, ∞)) is decidable,
3. SAFETY(C+

HRU (2, ∞)) is undecidable.

Proof. See [7,8].

4 Timed Protection Systems

Within the context of HRU protection systems, the mechanism granting and
revoking access of subjects to objects is based on the execution of commands.
This mechanism tends to restrict our thinking about access control to just the
ordering between protection states in a transition Δ −→Π Δ′ rather than to the
duration that elapse between protection states in the transition Δ −→Π Δ′. At
a more sophisticated level, it is not enough that the computer system is in such
or such protection state. For some positive real number d, we must additionally
ensure either that the computer system has remained in such or such protection
state since at least duration d or that the computer system has remained in
such or such protection state since at most duration d. For instance, we might
wish to force the protection system either to wait at least d units of time before
granting access or to wait at most d units of time before revoking access. We are
primarily concerned with the temporal aspect of state derivability. The central
point of this paper is to demonstrate that adding temporal requirements to
protection systems can be achieved. For this purpose, we have developed a new
HRU model incorporating temporal constraints saying that “subject s has right
r on object o since at least duration d”, leaving aside for another paper temporal
constraints saying that “subject s has right r on object o since at most duration
d”. Hence, within the context of timed protection systems, primitive operations
can be invoked indirectly via timed commands of the form:

– “if C1 and . . . and Ci then begin π1; . . .; πj end”,

where C1, . . ., Ci are now elementary conditions like:

– “r is in A(σ, ω) since at least duration d” where d is a positive real number.

172 P. Balbiani and F. Cheikh

Table 7. Timed protection system Π ′

begin create object ω; enter r0 into A(σ,ω); enter r1 into
A(σ,ω); enter r2 into A(σ, ω) end
if r0 is in A(σ, ω) since at least duration 2 then enter r3

into A(σ′, ω)
if r0 is in A(σ, ω) since at least duration 2 then enter r4

into A(σ′, ω)
if r3 is in A(σ, ω) since at least duration 3 and r4 is
in A(σ′, ω) since at least duration 3 then enter r5 into
A(σ′′, ω)

The concept of timed protection system and the adjectives conditional, monotonic,
monoconditional, and mono-operational are defined as in section 3. For all i ∈
{0, 1, 2, ∞} and for all j ∈ {1, 2, ∞}, let Ctimed(i, j) be the class of all timed
protection systems such that none of their timed commands contain more than
i elementary condition or more than j primitive operations and C+

timed(i, j) be
the class of all monotonic timed protection systems in Ctimed(i, j). For example,
the timed protection system Π ′ shown in table 7 is in the class C+

timed(2, ∞). A
timed history is a mapping that assigns to every non-negative real number a pro-
tection state. Timed histories will be denoted by the letters h, h′, etc, possibly
with subscripts. We are interested in non-Zeno timed histories, i.e. timed histo-
ries changing at most a finite number of times in any finite interval. Hence, we
assume that for all timed histories h, there exists a strictly increasing sequence
v0, v1, . . . of real numbers such that:

– v0 = 0,
– limn→∞ vn = ∞,
– for all non-negative integers n, there exists a protection state Δn such that

h(v) = Δn for all v ∈ [vn, vn+1[.

We shall say that the sequence (v0, Δ0), (v1, Δ1), . . . is a timed sequence for h.
In such sequences, the three components of protection state Δn will be denoted
Sn, On, and An for each non-negative integer n. To gain some intuition, the
reader may easily see that the sequence (0, Δ), (1, Δ′), (2, Δ′), (3, Δ′′), (4, Δ′′′),
(5, Δ′′′), (6, Δ′′′), (7, Δ(4)), (8, Δ(4)), . . . is a timed sequence for the timed history
h shown in table 8, where Δ, Δ′, Δ′′, Δ′′′, and Δ(4) are the protection states
defined by tables 1, 2, 3, 4, and 5. Let θ be a substitution and C be an elementary
condition. Suppose there is no variable in θ(C), i.e. every variable in C is replaced
by an individual through the use of θ. If h is a timed history with timed sequence
(v0, Δ0), (v1, Δ1), . . . and v is a non-negative real number then we shall say that
θ makes C true in h at v, in symbols h, v |=θ C, iff the following condition is
satisfied:

– C is “r is in A(σ, ω) since at least duration d”, d ≤ v, and for all non-negative
integers n, if vn < v and v− d < vn+1 then θ(σ) is in Sn, θ(ω) is in On, and
r is in An(θ(σ), θ(ω)).

Safety Problems in Access Control with Temporal Constraints 173

It follows from the definition that if substitution θ is {σ/s2, ω/o2} and elemen-
tary condition C is “r0 is in A(σ, ω) since at least duration 2” then h, 3 |=θ C,
where h is the timed history defined by table 8. As well, if substitution θ is
{σ/s0, σ

′/s1, ω/o2} and elementary conditions C′ and C′′ are “r3 is in A(σ, ω)
since at least duration 3” and “r4 is in A(σ′, ω) since at least duration 3” then
h, 7 |=θ C′ and h, 7 |=θ C′′, where h is the timed history defined by table 8. The
concept of timed history is used to model the behaviour of timed protection sys-
tems. We shall say that timed history h is a model for timed protection system
Π , in symbols h |= Π , iff there exists a timed sequence (v0, Δ0), (v1, Δ1), . . . for
h such that for all non-negative integers n, there exists a substitution θn and a
timed command αn ∈ Π with elementary conditions C1

n, . . ., Cin
n and primitive

operations π1
n, . . ., πjn

n such that:

– h, vn+1 |=θn C1
n, . . ., h, vn+1 |=θn Cin

n ,
– Δn −→θn

π1
n
◦ . . . ◦ −→θn

πjn
n

Δn+1.

We shall say that the sequence (v0, Δ0, θ0, α0), (v1, Δ1, θ1, α1), . . . is a dynamic
timed sequence for h. It is obvious from the definition that the timed history
h shown in table 8 is a model for the timed protection system Π ′ of table 7.
It is now time to get more precise concerning the question of safety in timed
protection systems. Let Π be a timed protection system and Δ be a protection
state. If d is a positive real number then Π is said to be d-unsafe for r with
respect to Δ iff there exists a timed history h with dynamic timed sequence
(v0, Δ0, θ0, α0), (v1, Δ1, θ1, α1), . . . such that:

– h |= Π ,
– the following conditions are satisfied for some individual s of type subject

and some individual o of type object:
• if s is in Sn and o is in On then r is not in An(s, o),
• s is in Sn+1, o is in On+1, and r is in An+1(s, o),

– Δ0 = Δ,

for some non-negative integer n such that vn+1 ≤ d. We shall also say that d is
a waiting period of Π for r with respect to Δ. For example, with respect to Δ,
the timed protection system Π ′ defined in table 7 is 1-unsafe for r0, 1-unsafe for
r1, 1-unsafe for r2, 3-unsafe for r3, 4-unsafe for r4, and 7-unsafe for r5, where Δ
is the protection state defined by table 1.

Table 8. Timed history h

v h(v)
v ∈ [0, 1[Δ

v ∈ [1, 3[Δ′

v ∈ [3, 4[Δ′′

v ∈ [4, 7[Δ′′′

v ∈ [7,∞[Δ(4)

174 P. Balbiani and F. Cheikh

5 Some Mathematical Results

Consider a timed protection system Π . If Π ′ is a timed protection system ob-
tained from Π by modifying all or part of its timed constraints “since at least
duration d” then, obviously, Π and Π ′ leak the same rights, possibly at different
points in time. Hence, HRU(Π) denoting the HRU protection system obtained
from Π by removing all its timed constraints “since at least duration d”, the
following lemma should not come as a great surprise.

Lemma 1. Let Δ be a protection state. The following conditions are equivalent:

– there exists a positive real number d such that Π is d-unsafe for r with respect
to Δ,

– HRU(Π) is unsafe for r with respect to Δ.

Let Ctimed be a class of timed protection systems. The most basic problem on
timed protection systems in Ctimed is the following decision problem:

Problem: UNIVERSAL TIMED SAFETY(Ctimed),
Input: a right r, a timed protection system Π ∈ Ctimed, and a protection state

Δ = (S, O, A),
Output: determine if there exists a positive real number d such that Π is d-

unsafe for r with respect to Δ.

Like all decision problems, UNIVERSAL TIMED SAFETY(Ctimed) must have
a countable set of instances. As a result, hereafer, we will always assume that
for all positive real numbers d, if a timed protection system Π ∈ Ctimed contains
the timed constraint “since at least duration d” then d is rational.

Theorem 2. 1. UNIVERSAL TIMED SAFETY(Ctimed(∞, 1)) is decidable,
2. UNIVERSAL TIMED SAFETY(C+

timed(1, ∞)) is decidable,
3. UNIVERSAL TIMED SAFETY(C+

timed(2, ∞)) is undecidable.

Proof. The corresponding results for SAFETY with respect to HRU protection
systems have been proved by [7,8]. Lemma 1 now finishes the proof.

Let r be a right, Π ∈ Ctimed be a timed protection system, and Δ be a protection
state. Suppose that the set of all waiting periods of Π for r with respect to Δ
is nonempty. Hence, it has a greatest lower bound dglb. What is the crucial
observation we need to make about dglb? Simply this: in view of the fact that
the timed constraints in Π are rational, dglb must be rational. This suggests the
following optimization problem:

Problem: MIN TIMED SAFETY(Ctimed),
Input: a right r, a timed protection system Π ∈ Ctimed, and a protection state

Δ = (S, O, A),
Output: if the set of all waiting periods of Π for r with respect to Δ is nonempty

then find its greatest lower bound.

Safety Problems in Access Control with Temporal Constraints 175

Let us observe that it need not be the case that dglb is a waiting period of Π for
r with respect to Δ. To see this, let us consider the timed protection system Π ′

shown in table 7. It is easy to see that for all positive real numbers d, 5 < d iff
d is a waiting period of Π ′ for r5 with respect to the protection state Δ defined
by table 1 whereas Π ′ is not 5-unsafe for r5 with respect to Δ.
Theorem 3. 1. MIN TIMED SAFETY(Ctimed(∞, 1)) is solvable,
2. MIN TIMED SAFETY(C+

timed(1, ∞)) is solvable,
3. MIN TIMED SAFETY(C+

timed(2, ∞)) is unsolvable.

Proof. (1) To prove that MIN TIMED SAFETY(Ctimed(∞, 1)) is solvable, let
HRU(Π) be the HRU protection system obtained from Π by removing all its
timed constraints “since at least duration d”. If the sequence Δ0 = (S0, O0, A0),
. . ., Δn = (Sn, On, An), Δn+1 = (Sn+1, On+1, An+1) of protection states leaks r
with respect to HRU(Π) and Δ then following the line of reasoning suggested
by Harrison, Ruzzo, and Ullman [8], we may assume that n ≤ (|S|+ 1)× (|O|+
1)×|R|+1, where Δ = (S, O, A) is the given protection state. The corresponding
waiting period necessary if one wants to reach Δn from Δ0 by performing timed
commands in Π is computable in linear time. To finish the proof we only need
to note that the number of requisite waiting periods that we should compute
and compare is finite.
(2) To prove that MIN TIMED SAFETY(C+

timed(1, ∞)) is solvable, let HRU(Π)
be the HRU protection system obtained from Π by removing all its timed
constraints “since at least duration d”. If the sequence Δ0 = (S0, O0, A0), . . .,
Δn = (Sn, On, An), Δn+1 = (Sn+1, On+1, An+1) of protection states leaks r
with respect to HRU(Π) and Δ then following the line of reasoning suggested
by Harrison and Ruzzo [7], we may assume that n ≤ 3×|R|, where Δ = (S, O, A)
is the given protection state. The corresponding waiting period necessary if one
wants to reach Δn from Δ0 by performing timed commands in Π is computable
in linear time. To finish the proof we only need to note that the number of req-
uisite waiting periods that we should compute and compare is finite.
(3) If we had an algorithm A for solving MIN TIMED SAFETY(C+

timed(2, ∞))
then we would be able to derive an algorithm for deciding UNIVERSAL TIMED
SAFETY(C+

timed(2, ∞)): given input (r, Π, Δ), we would be able to decide whe-
ther there exists a positive real number d such that Π is d-unsafe for r with
respect to Δ by simply telling whether A(r, Π, Δ) is defined. Since UNIVER-
SAL TIMED SAFETY(C+

timed(2, ∞)) is undecidable, then MIN TIMED SAFE-
TY(C+

timed(2, ∞)) is unsolvable.

Sometimes it is less important to know the greatest lower bound of the set of
all waiting periods of timed protection system Π ∈ Ctimed for right r than to
know given a positive rational number d, that there is no history h modelling
Π and leaking r between time points 0 and d. This observation leads us to the
following decision problem:
Problem: BOUND TIMED SAFETY(Ctimed),
Input: a right r, a timed protection system Π ∈ Ctimed, a protection state

Δ = (S, O, A), and a positive rational number d,
Output: determine if Π is d-unsafe for r with respect to Δ.

176 P. Balbiani and F. Cheikh

Theorem 4. 1. BOUND TIMED SAFETY(Ctimed(∞, 1)) is decidable,
2. BOUND TIMED SAFETY(C+

timed(1, ∞)) is decidable.

Proof. (1) The proof that BOUND TIMED SAFETY(Ctimed(∞, 1)) is decidable
is an adaptation of the proof that MIN TIMED SAFETY(Ctimed(∞, 1)) is solv-
able.
(2) The proof that BOUND TIMED SAFETY(C+

timed(1, ∞)) is decidable is an
adaptation of the proof that MIN TIMED SAFETY(C+

timed(1, ∞)) is solvable.

We do not know at present whether BOUND TIMED SAFETY(C+
timed(2, ∞)) is

undecidable. However, considering regular timed protection systems in
C+

timed(∞, ∞) makes a limited variant of the BOUND TIMED SAFETY ques-
tion decidable. A timed protection system Π is regular iff there exists a positive
real number dΠ such that for all positive real numbers d, if Π contains the timed
constraint “since at least duration d” then d = dΠ . Let C⊕timed(∞, ∞) be the class
of all regular timed protection systems in C+

timed(∞, ∞).

Theorem 5. The following decision problem is decidable:

Input: a right r, a timed protection system Π ∈ C⊕timed(∞, ∞), a protection
state Δ = (S, O, A), and a positive rational number d such that d < 2× dΠ ,

Output: determine if Π is d-unsafe for r with respect to Δ.

Proof. Let r be a right, Π ∈ C⊕timed(∞, ∞) be a timed protection system, Δ =
(S, O, A) be a protection state, and d be a positive rational number such that
d < 2 × dΠ . Without loss of generality, we may assume that S �= ∅ and O �= ∅.
If Π is d-unsafe for r with respect to Δ then there exists a timed history h with
dynamic timed sequence (v0, Δ0, θ0, α0), (v1, Δ1, θ1, α1), . . . such that:

– h |= Π ,
– the following conditions are satisfied for some individual s of type subject

and some individual o of type object:
• if s is in Sn and o is in On then r is not in An(s, o),
• s is in Sn+1, o is in On+1, and r is in An+1(s, o),

– Δ0 = Δ,

for some minimal non-negative integer n such that vn+1 ≤ d. The key arguments
we need are embodied in the following lemmas.

Lemma 2. If the sequence α0, . . ., αn contains at least 1 conditional command
then the command αn is conditional.

Proof. Suppose that the sequence α0, . . ., αn contains at least 1 conditional com-
mand. If the command αn is not conditional then n ≥ 1. Moreover, there exists
a timed history h′ with dynamic timed sequence (v′0, Δ

′
0, θ

′
0, α

′
0), (v′1, Δ

′
1, θ

′
1, α

′
1),

. . . such that:

– h′ |= Π ,
– the following conditions are satisfied for some individual s′ of type subject

and some individual o′ of type object:

Safety Problems in Access Control with Temporal Constraints 177

• if s′ is in S′
0 and o′ is in O′

0 then r is not in A′
0(s

′, o′),
• s′ is in S′

1, o′ is in O′
1, and r is in A′

1(s
′, o′),

– Δ′
0 = Δ,

contradicting the minimality of n.

Lemma 3. The sequence α0, . . ., αn contains at most 1 conditional command.

Proof. If the sequence α0, . . ., αn contains at least 2 conditional commands
then the command αn is conditional and there exists a non-negative integer p in
{0, . . . , n− 1} such that the command αp is conditional. Moreover, there exists
a timed history h′ with dynamic timed sequence (v′0, Δ

′
0, θ

′
0, α

′
0), (v′1, Δ

′
1, θ

′
1, α

′
1),

. . . such that:

– h′ |= Π ,
– the following conditions are satisfied for some individual s′ of type subject

and some individual o′ of type object:
• if s′ is in S′

n−1 and o′ is in O′
n−1 then r is not in A′

n−1(s
′, o′),

• s′ is in S′
n, o′ is in O′

n, and r is in A′
n(s′, o′),

– Δ′
0 = Δ,

contradicting the minimality of n.

How do such ideas bear on theorem 5? By lemmas 2 and 3, there are two possi-
bilities:

– the commands α0, . . ., αn are not conditional,
– the commands α0, . . ., αn−1 are not conditional and the command αn is

conditional.

In the first case, n is equal to 0. In the second case, n is less than or equal to the
number of elementary conditions in αn. This completes the proof of theorem 5.

6 Conclusion

Temporal constraints allow the security administrator to clearly express the
desired temporal requirements that must satisfy the successive alterations of the
protection state of a computer system. The critical issue is the characterization
of classes of timed protection systems for which the safety problems considered in
section 5 are decidable. A key feature of access control with temporal constraints
is its extensibility. The form of elementary conditions is not fixed. We could, for
example, explore the effects of allowing testing in an access control matrix for
the presence of rights since at most duration d as opposed to testing for the
presence of rights since at least duration d which the model described in this
paper does. The intensive study of the issues relating to the support of such
conditions in our timed protection systems is still to be done.

178 P. Balbiani and F. Cheikh

Acknowledgments

Thanks to the project “Développement de systèmes informatiques par raffine-
ment des contraintes sécuritaires” of the action “Sécurité informatique” for
partly financing our research.

References

1. Bertino, E., Bonatti, P., Ferrari, E.: TRBAC: a temporal role-based access control
model. ACM Transactions on Information and System Security 4 (2001) 65–104

2. Bishop, M.: Computer Security: Art and Science. Addison-Wesley (2003)
3. Ferraiolo, D., Barkley, J., Kuhn, D.: A role-based access control model and reference

implementation within a corporate intranet. ACM Transactions on Information
And System Security 2 (1999) 34–64

4. Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role-Based Access Control. Artech
House (2003)

5. Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
And System Security 4 (2001) 224–274

6. Gal, A., Atluri, V.: An authorization model for temporal data. In: Proceedings of
the 7th ACM conference on Computer and Communications Security. ACM Press
(2000) 144–153

7. Harrison, M., Ruzzo, W.: Monotonic protection systems. In: Foundations of Secure
Computation. Academic Press (1978) 337–363

8. Harrison, M., Ruzzo, W., Ullman, J.: Protection in operating systems. Communi-
cations of the ACM 19 (1976) 461–471

9. Lampson, B.: Protection. Operating Systems Review 8 (1974) 18–24
10. Miller, D., Baldwin, R.: Access control by Boolean expression evaluation. In: Fifth

Annual Computer Security Conference. IEEE Computer Society Press (1990) 131–
139

11. Sandhu, R.: The typed access matrix model. In: 1992 IEEE Computer Society
Symposium on Research in Security and Privacy. IEEE Computer Society Press
(1992) 122–136

12. Sandhu, R., Coyne, E., Feinstein, H., Youman, C.: Role-based access control mod-
els. Computer 29 (1996) 38–47

13. Sandhu, R., Ganta, S: On testing for absence of rights in access control models. In:
The Computer Security Foundations Workshop VI. IEEE Computer Society Press
(1993) 109–118

14. Soshi, M.: Safety analysis of the dynamic-typed access matrix model. In: Computer
Security — ESORICS 2000. Springer-Verlag, Lecture Notes in Computer Science
1895 (2000) 106–121

A Modal Logic for Role-Based Access Control�

Thumrongsak Kosiyatrakul, Susan Older, and Shiu-Kai Chin

EECS Department, Syracuse University, Syracuse, New York 13244, USA
skchin@syr.edu

Abstract. Making correct access-control decisions is central to security,
which in turn requires accounting correctly for the identity, credentials,
roles, authority, and privileges of users and their agents. In networked
systems, these decisions are made more complex because of delegation
and differing access-control policies. Methods for reasoning rigorously
about access control and computer-assisted reasoning tools for verifica-
tion are effective for providing assurances of security. In this paper we
extend the access-control logic of [11,1] to also support reasoning about
role-based access control (RBAC), which is a popular technique for reduc-
ing the complexity of assigning privileges to users. The result is an access-
control logic which is simple enough for design and verification engineers
to use to assure the correctness of systems with access-control require-
ments but yet powerful enough to reason about delegations, credentials,
and trusted authorities. We explain how to describe RBAC components
such as user assignments, permission assignments, role inheritance, role
activations, and users’ requests. The logic and its extensions are proved
to be sound and implemented in the HOL (Higher Order Logic version
4) theorem prover. We also provide formal support for RBAC’s static
separation of duty and dynamic separation of duty constraints in the
HOL theorem prover. As a result, HOL can be used to verify properties
of RBAC access-control policies, credentials, authority, and delegations.

1 Introduction

The ubiquitous use of inter-networked computers makes controlled access to
information and services simultaneously essential and complex. Access is ulti-
mately granted based on establishing a relationship between a principal and her
privileges with respect to a particular object. In networked systems, requests
and authority may be delegated. This complicates the task of establishing the
identity and authority of principals behind access requests.

One interesting specialty logic for reasoning about access-control policies and
decisions is the access-control logic of Abadi and colleagues [11,1]. This modal
logic brings clarity and consistency to reasoning about access requests because it
provides a formal model of principals, statements, credentials, authority, trust,

� Partially supported by the CASE Center at Syracuse University, a New York State
Center for Advanced Technology supported by the New York State Office of Science
Technology and Academic Research.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 179–193, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

180 T. Kosiyatrakul, S. Older, and S.-K. Chin

and delegations. However, this logic lacks the capability for specifying and rea-
soning about role-based access control (RBAC) [4,6]. RBAC policies are par-
ticularly well-suited for large-scale computing systems, because they reduce the
administrative complexity of associating users with permissions by decoupling
the two: users are authorized for roles, and permissions are assigned to roles.
RBAC also supports a decentralized view of access control.

Our objective is to unify within a single logic the ability to describe and
reason about access-control requests and decisions based on the relationships
between principals, statements, and trusted authorities while accounting for cre-
dentials, delegation, and RBAC roles. We therefore extend the access-control
logic of Abadi to encompass three major RBAC components: (1) user-role asso-
ciations, (2) role-permission associations, and (3) role-inheritance relations. We
express user-role associations as delegations (roles delegate their authority to
users to act on their behalf); role-permission associations and role-inheritance
relations are expressed as relations among principals and sets of statements by
which certain statements of one principal may be attributed to another principal.
With these extensions, we can (1) model RBAC policies within the access-control
logic, and (2) reason about RBAC-based access-control decisions.

Other researchers have used modal logic for describing security policies and
properties [8,2]. Those frameworks are more general than ours, but require a
high level of sophistication on the part of users. Our objective was to identify
a simple logic accessible to engineers that nonetheless could describe a wide
variety of access-control concerns. Our experiences teaching the Abadi logic to
computer science and engineering Master’s students indicate that the logic meets
those criteria [12,13].

To verify the soundness of the access-control logic and its extensions, we
use the HOL (Higher Order Logic version 4) theorem prover [7,10]. Defining
the access-control logic within HOL serves several purposes. First, HOL is used
to verify the soundness of the access-control logic. Second, because HOL is an
open system, all of our proofs can be easily checked by third parties. Finally,
the existence of an executable and verifiable access-control logic implemented
in HOL makes both the access-control logic and a means for formal verification
available to design and verification engineers.

In addition to user-role associations, role-permission associations, and role
hierarchies, RBAC allows the specification of constraints that prevent users from
(1) being assigned to roles that are in conflict (static separation of duty), and
(2) activating certain roles simultaneously (dynamic separation of duty). These
constraints are outside the direct scope of the access-control logic, which focuses
on access-control decisions for a specific policy. In contrast, the separation of
duty constraints impose limits on what should be considered a well-defined or
consistent policy in the first place. However, like the access-control logic, these
constraints can be described and verified within the higher-order logic of HOL.
Hence, we are able to use higher-order logic to verify the consistency of a specific
RBAC policy prior to using the access-control logic to reason about access-
control decisions based on that policy.

A Modal Logic for Role-Based Access Control 181

The rest of this paper is organized as follows. Section 2 provides a brief
RBAC tutorial. Section 3 describes the syntax and and semantics of our logic,
which builds on the work of Abadi and colleagues [11,1]. Section 4 explains how
RBAC relations are described in our extended logic. Section 5 presents the HOL
definitions of static and dynamic separation of duty constraints. Finally, our
conclusions are in Section 6.

2 Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) [5,4,6] replaces direct user-permission as-
sociations in traditional access control through a combination of user-role and
role-permission associations. Rather than assigning individuals specific permis-
sions that may change as their duties and status change, an RBAC policy assigns
users to roles and grants permissions to roles. In RBAC, an access request q made
by a user U will be granted if and only if U is authorized to act in a role R that
has been granted the permission q.

RBAC policies involve three essential entities: a set of users, a set of roles,
and a set of permissions. RBAC also defines a set UA of user assignments and a
set PA of permission assignments: (U, R) ∈ UA means that user U has the right
to act in role R, and (p, R) ∈ PA means that permission p is assigned to role R.

2.1 Role Inheritance

RBAC also includes a partial order over roles called role inheritance. When
role R1 inherits role R2, denoted R1 � R2, every user U explicitly assigned
to role R1 is also implicitly assigned to role R2; likewise, every permission p
explicitly associated with role R2 is implicitly associated with role R1. The sets
authorized users(R) and authorized permissions(R) define the authorized users
and authorized permissions of a role R are given respectively:

authorized users(R) =
{U ∈ USERS | ∃R′ ∈ ROLES. (R′ � R) ∧ ((U, R′) ∈ UA)}

authorized permissions(R) =
{p ∈ PRMS | ∃R′ ∈ ROLES. (R � R′) ∧ ((p, R′) ∈ PA)}.

From these definitions, it is straightforward to verify the following two properties:

1. If R1 � R2, then authorized users(R1) ⊆ authorized users(R2).
2. If R1 � R2, then authorized permissions(R2) ⊆ authorized permissions(R1).

2.2 Separation of Duty

RBAC also supports constraints such as separation of duty. Static separation of
duty provides a way to specify mutually exclusive roles (i.e., roles that should
never have authorized users in common). In RBAC, static separation of duty is

182 T. Kosiyatrakul, S. Older, and S.-K. Chin

Untenured
 Faculty

Faculty
(Fac)

(UnTen)(CE Fac)(CS Fac)

Department Chair
(Chair) (P&T VM)

CS Faculty CE Faculty
(Ten)
Faculty

Tenured

Voting Member
Promotion & Tenure

Fig. 1. Role Hierarchy Structure

represented by a set SSD of pairs (rs, n), where rs is a set of mutually exclusive
roles and n ≥ 2. When (rs, n) is in SSD, no users should be authorized to act in
n or more of the roles in rs.

Note that static separation of duty constrains the role hierarchy as well as
the user-role assignment UA. For example, if a user U is authorized to act in
role R1 and R1 inherits R2, U is also authorized to act in role R2. Thus, both
UA and � must be checked to ensure that they satisfy the SSD constraints.

Dynamic separation of duty constrains the combinations of roles that users
may activate at any given instant, and is specified by a set DSD of pairs similar
to SSD. When (rs, n) is in DSD, a user cannot have n or more roles in rs simulta-
neously activated. When a user activates a set of roles, the set of roles constitutes
a session. The function session roles(s) determines the set of activated roles as-
sociated with the session s. In an RBAC system, the role-activation monitor
denies any role-activation requests that would violate the DSD constraints.

2.3 RBAC Example

As an example of an RBAC policy, consider a hypothetical academic department
that houses both Computer Science (CS) and Computer Engineering (CE) pro-
grams. The department includes both tenured and untenured faculty, and every
faculty member is associated with at least one of the two academic programs.
In addition, the department has a chairperson and a Promotion & Tenure (P&
T) committee. Thus, there are seven relevant roles for this example:

ROLES = {Fac,Ten,UnTen,CS Fac,CE Fac,Chair,P&T VM}.

Figure 1 provides a Hasse diagram representing a plausible role-inheritance re-
lation for this scenario (e.g., the roles Chair and P&T VM both inherit Ten).

The standard academic situation is that no one can be both tenured and
untenured, and hence the roles Ten and UnTen should be mutually exclusive.
Furthermore, the department’s bylaws mandate that the chair cannot be a P&T

A Modal Logic for Role-Based Access Control 183

voting member. These constraints can be represented by the following static
separation-of-duty relation:

SSD = {({Ten,UnTen}, 2), ({P&T VM,Chair}, 2)}.

Because the roles Chair and P&T VM both inherit the Ten role, these two
constraints also prevent untenured faculty from being department chair and
from being voting members of the P&T committee.

The department’s bylaws also require the P&T Committee to contain a fixed
number of representatives from each of the CS and CE programs. Thus, for
the purposes of P&T deliberations, no faculty member can simultaneously rep-
resent both the CS and CE programs, although she may be associated with
both programs. This constraint can be represented by the following dynamic
separation-of-duty relation:

DSD = {({CS Fac,CE Fac,P&T VM}, 3)}.

Thus, no one may simultaneously act as CS faculty, CE faculty, and a P&T
voting member, although they may authorized for all three roles and may act in
any two of those roles simultaneously.

We have not explicitly given the user-role and permission-role assignments.
However, suppose that the permission read student grade reports is associated
with the faculty role Fac (i.e., (read student grade reports,Fac) ∈ PA), and that
Alice is explicitly assigned to the role Chair (i.e., (Alice,Chair) ∈ UA). First of
all, note that the SSD relation prohibits any user from being authorized for both
the Ten and UnTen roles. Thus, the role hierarchy prevents Alice from being
assigned to the UnTen role, as her assignment to Chair also implicitly authorizes
her for the Ten role. Second, the role-inheritance relation also authorizes Alice
to act in the role Fac (Alice ∈ authorized users(Fac)), and hence she is entitled
to adopt either the Fac or Chair roles to read student grade reports.

Having described the key concepts of RBAC, we now introduce a modal logic
for access control in which RBAC relationships can be described.

3 A Logic for Reasoning About Access Control

The access-control logic of Abadi and colleagues [11,1] incorporates a calculus of
principals into a standard multi-agent modal logic. The result is a set of logical
rules for manipulating formulas that provides a tool for reasoning about access
control, delegation, and trust.

Principals are entities (e.g., people, machines, encryption keys, and processes)
that make statements. Principals can be either a simple name (e.g., “Alice”) or
compound principals (e.g., “Alice and Carol”). Statements are the things that
principals say, such as “read file foo” or “Alice can read file foo.”

In this section, we extend the Abadi logic with a few constructs that will
allow us to reason about requests in the context of RBAC.

184 T. Kosiyatrakul, S. Older, and S.-K. Chin

3.1 Syntax

We start out by introducing a collection of principal expressions, ranged over by
P and Q. Letting A range over a countable set of simple principal names, the
abstract syntax of principal expressions is given as follows:

P ::= A | P & Q | P |Q | P forAQ

The principal P & Q represents a compound principal who makes exactly those
statements made by both P and Q. P |Q represents an abstract principal cor-
responding to principal P quoting principal Q. P forAQ represents a principal
P acting on behalf of principal Q: P forAQ is syntactic sugar for P |Q & A|Q,
where A is a principal that vouches for P ’s authorization to make statements on
Q’s behalf [1].

For the logic itself, we let p range over a countable collection of primitive
propositions and define the abstract syntax for the logic as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⊃ ϕ2 | ϕ1 ≡ ϕ2 | P says ϕ | P ⇒ Q

| P �T Q | P servesAT Q | P �T Q

Here, T ranges over sets of formulas that include only formulas of the forms
included on the first line (e.g., not involving �T , servesAT , or �T); the forms
involving T are our extensions.

Primitive propositions are used to represent requests and permissions, while
the formula P says ϕ represents principal P making the statement ϕ. In turn,
P ⇒ Q represents a relationship between principals P and Q through which
statements of P can also be attributed to Q. The formula P �T Q, pronounced
as “P is mimicked by Q on T ,” is our extension to the logic, inspired by Howell
and Kotz’s restricted speaks for relation T⇒ [9]. This restricted mimics formula
represents a weaker relation than P ⇒ Q, in part because only P ’s statements
from the set T can be attributed to Q. Finally, P servesAT Q (the restricted serves
relation) and P �T Q (the restricted inherits relation) are syntactic sugar for
P |Q �T A|Q and (P ⇒ Q) ∧ (Q �T P), respectively.

3.2 Semantics

The semantics of the logic is based on Kripke structures. A Kripke structure is a
triple M = 〈W, I, J〉, where W is a set of possible worlds, I is an interpretation
function that maps each primitive proposition to a set of worlds, and J is an
interpretation function that maps each primitive principal to a binary relation
over W . We extend J to a function J̃ over arbitrary principal expressions as
follows:

J̃(A) = J(A)
J̃(P & Q) = J̃(P) ∪ J̃(Q)

J̃(P |Q) = J̃(P) ◦ J̃(Q)
= {(w1, w3) | ∃w2. (w1, w2) ∈ J̃(P) ∧ (w2, w3) ∈ J̃(Q)}.

A Modal Logic for Role-Based Access Control 185

EM[[p]] = I(p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = EM[[¬ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P says ϕ]] = {w | J̃(P)(w) ⊆ EM[[ϕ]]}
= {w | {w′ | (w, w′) ∈ J̃(P)} ⊆ EM[[ϕ]]}

EM[[P ⇒ Q]] =

{
W if J̃(Q) ⊆ J̃(P)
∅ otherwise

EM[[P �T Q]] =

{
W if ∀s ∈ T. P says s ⊃ Q says s,

∅ otherwise

EM[[P servesAT Q]] = EM[[P |Q �T A|Q]]

EM[[P �T Q]] = EM[[(P ⇒ Q) ∧ (Q �T P)]].

Fig. 2. The meaning functions EM[[−]]

We then define a family (indexed by Kripke structuresM) of extended mean-
ing functions EM[[−]], which map arbitrary formulas to the sets of worlds in which
they are considered true. The definition of EM[[−]] appears in Figure 2. We write
(M, w) |= ϕ if and only if w ∈ EM[[ϕ]], and we say that M satisfies ϕ provided
that (M, w) |= ϕ for all w ∈ W . We say that ϕ is valid if every Kripke structure
M satisfies ϕ.

3.3 Logical Rules

The Kripke structures provide a precise semantics for the logic, but it is not
convenient to reason at that level. Thus, we introduce a collection of logical rules
for manipulating logical expressions. These rules, given in Figure 3, are sound
with respect to the Kripke semantics: for every formula ϕ, if ϕ is derivable (i.e.,
� ϕ), then ϕ is valid (i.e., satisfied in all Kripke structures).

3.4 Our Extensions to the Access-Control Logic

The original Abadi logic is unable to adequately describe RBAC for two reasons:
its notion of roles conflicts with the RBAC concept, and it provides no way to
express the role-permission associations. Specifically, the Abadi logic includes a
special class of principals called roles, and arbitrary principals can adopt roles to
make requests (e.g., “(Alice as Fac) says ϕ”). However, adopting roles is at the
principal’s discretion, and the effect is a reduction of privileges (e.g., Alice as Fac
has fewer privileges than Alice does). In contrast, an RBAC user is granted
privileges purely through the adoption of roles, and only when the user has been
authorized to adopt a given role. Thus, reasoning about RBAC requires us to

186 T. Kosiyatrakul, S. Older, and S.-K. Chin

� ϕ
if ϕ is an instance of a propositional-logic tautology

� ϕ � ϕ ⊃ ϕ′

� ϕ′
� ϕ

� P says ϕ
(for all P)

� (P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

� ϕ
if ϕ a valid formula of the calculus of principals

� P says (ϕ1 ∧ ϕ2) ≡ (P says ϕ) ∧ (P says ϕ)

� (P | Q) says ϕ ≡ P says Q says ϕ

� (P ⇒ Q) ⊃ ((P says ϕ) ⊃ (Q says ϕ)) (for all ϕ)

� (P �T Q) ⊃ ((P says ϕ) ⊃ (Q says ϕ)) (for all ϕ ∈ T)

Fig. 3. Logical rules for the derivability predicate �

� (P �T Q) ∧ (Q �T R) ⊃ (P �T R)
(� Trans)

� (P �T1 Q) ⊃ (P �T2 Q)
(for all T2 ⊆ T1) (� Sub)

� (P �T Q) ⊃ (R|P �T R|Q)
(� Mon)

� (P servesAT Q) ∧ (P |Q says s) ⊃ (P forAQ says s)
(for every s ∈ T) (Role Del)

� P �T P
(� Ref)

� (P �T1 Q) ∧ (Q �T2 R) ⊃ (P �T1∩T2 R)
(� Trans)

� (Q1 �T2 Q2) ∧ (P servesAT1
Q1) ⊃ (P servesAT2

Q2)
(for all T2 ⊆ T1) (Role Sub)

Fig. 4. Logical rules related to �T , servesA
T , and �T

model role-permission associations, which relate roles (principals) with sets of
permissions (sets of statements).

We can model these RBAC notions in our logic using our three extensions: the
restricted mimicked by relation, the restricted serves relation, and the restricted
inherits relation. We explain how to do so in the next section. For now, we
introduce to our logical system some additional rules related to these relations.
These rules (see Figure 4) are all sound with respect to the Kripke semantics.

4 Describing RBAC Policies in the Access-Control Logic

When a user U acts in a role R and makes a request q, a reference monitor makes
an access-control decision based on UA and PA. The request will be granted if
the user has the right to act in role R (i.e., U ∈ authorized users(R)) and q is a
permission associated with role R (i.e., q ∈ authorized permissions(R)).

A Modal Logic for Role-Based Access Control 187

For the logic to support reasoning about a specific RBAC policy, it must
provide ways to express the following components: (1) RBAC entities (e.g.,
users, roles, permissions), (2) role activation and user requests, and (3) the role-
inheritance relationship. We consider these components in turn.

4.1 Describing RBAC Entities

We represent users and roles as principals in the logic, and we represent permis-
sions as primitive propositions. UA and PA are jointly represented in the logic
as statements of the form

U servesRA
ap(R) R,

where RA represents a role authority that certifies that the user U has the right
to act in the role R, and ap(R) is the set of propositions corresponding to the
permissions in the set authorized permissions(R).1 Simply put, U servesRA

ap(R) R
indicates that user U is an authorized user of role R and may make requests
involving permissions associated with R.

The reference monitor’s ultimate decision on whether to grant a request q
is based on a series of access-control list (ACL) entries, each of which can be
expressed as

((U forRAR) says q) ⊃ q,

where U ∈ authorized users(R) and q ∈ authorized permissions(R). That is, if
the reference monitor can verify that (1) a user U is making the request q while
activated in the role R, and (2) q is a permission associated with role R, then
the reference monitor will grant the request.

4.2 Describing User Requests

In RBAC, all requests by users are made within the context of a role. The result
is that two principals—the user and the role—are involved in all requests.

We use quoting to describe role assertions (e.g., U |R) and the says operator to
represent the actual requests. For example, a user U asserting role R and making
a request q is represented as U |R says q. Multiple requests can be expressed
through conjunction, as in U |R says (q1 ∧ q2) or (U |R1 says q1)∧ (U |R2 says q2).

Note that the statement U |R says q does not guarantee that U is authorized
for role R: it merely states that U is claiming to be acting in role R. There is no
danger, however that an inappropriate request will be granted: the ACL entry
requires the reference monitor to deduce (via Role Del) that (U forRAR) says q,
which is possible only when U is authorized for role R.

4.3 Describing Role Inheritance

The relationship R1 � R2 is expressed in the logic by the formula R1 �ap(R2) R2,
which is syntactic sugar for (R1 ⇒ R2) ∧ (R2 �ap(R2) R1).

1 Henceforth, we shall blur the distinction between actual permissions and the primi-
tive propositions that are associated with them.

188 T. Kosiyatrakul, S. Older, and S.-K. Chin

It is important to confirm that this formulation accurately captures all of
the important properties of inheritance: reflexivity, transitivity, and the subset
relationships between related roles’ authorized users and authorized permissions.
That is, we must ensure that the logical rules (and thus the logic’s semantics)
validate the following properties:

– For all roles R, � R �ap(R) R.
This rule is an instance of the �-reflexivity rule (� Ref) from Figure 4.

– For all roles R1, R2, R3,

� (R1 �ap(R2) R2 ∧R2 �ap(R3) R3) ⊃ R1 �ap(R3) R3.

Recall that, whenever R2 � R3, authorized permissions(R3) is a subset of
authorized permissions(R2), and thus ap(R3) ⊆ ap(R2). Therefore, ap(R3) =
ap(R3) ∩ ap(R2), and the desired rule is simply an instance of the �-
transitivity rule (� Trans) from Figure 4.

– For all roles R1 and R2, users U , and role authorities RA,

� (R1 �ap(R2) R2 ∧ U servesRA
ap(R1) R1) ⊃ (U servesRA

ap(R2) R2).

That is, if U is an authorized user of R1 and R1 inherits R2, then U is
also an authorized user of R2. Once again, we rely on the relationship
ap(R2) ⊆ ap(R1) to see that the desired rule is simply an instance of the
role-subsumption (Role Sub) rule from Figure 4.

4.4 Reasoning About Access-Control Decisions

To demonstrate the use of the logic in reasoning about access-control decisions,
we return to the example from Section 2. We temporarily ignore the separation-
of-duty constraints, and focus on the access-control aspects of the example.

Recall that the permission read student grade reports is associated with the
role Fac: we use rsg as the primitive proposition corresponding to this per-
mission. For simplicity, we also assume the permission rant (proposition rt) is
assigned to the Ten role; there are no other explicit permission assignments.

Thus, the role hierarchy shown in Figure 1 can be described as follows:

(CS Fac �{rsg} Fac) ∧ (CE Fac �{rsg} Fac) ∧ (UnTen �{rsg} Fac)∧
(Ten �{rsg} Fac) ∧ (Chair �{rsg,rt} Ten) ∧ (P&T VM �{rsg,rt} Ten).

Recall that Alice is explicitly assigned to the role Chair. This fact can be
represented in the logic by the statement Alice servesRA

{rsg,rt} Chair. This state-
ment, along with the description of the role hierarchy above, provide the basis for
reasoning about whether Alice should be allowed to read student grade reports.

More specifically, we interpret Alice’s attempt to read student grade reports
as a statement Alice|Fac says rsg. Ultimately, the reference monitor must be
able to deduce that (Alice forRAFac) says rsg, in which case the request will be
granted.

A Modal Logic for Role-Based Access Control 189

Table 1. Mapping from RBAC to Access-Control Logic

RBAC Access-Control Logic
A permission q is associated with role R p ∈ ap(R)
User U is authorized to act in role R. U servesRA

ap(R) R

Role R1 inherits role R2 (R1 � R2) R1 �ap(R2) R2

User U asserting role R makes a request q. U |R says q
User U , acting in authorized role R, makes a request q. U forRAR says q

From above, we know that (Chair �{rsg,rt} Ten) ∧ (Ten �{rsg} Fac). Role
transitivity allows us to conclude Chair �{rsg} Fac. Taken together with

Alice servesRA
{rsg,rt} Chair,

Figure 4’s role-subsumption rule (Role Sub) lets us deduce Alice servesRA
{rsg} Fac.

From Alice|Fac says rsg and Alice servesRA
{rsg} Fac, we can use the Figure 4’s

role-delegation rule (Role Del) to deduce (Alice forRAFac) says rsg as needed. As
a result, Alice’s request can be granted.

4.5 Summary

Table 1 summarizes how RBAC concepts are translated into formulas of the
access-control logic, providing a guideline for describing RBAC policies in the
logic. The logical rules in Figure 4 provide the basis for reasoning about access-
control decisions. Specifically, to determine whether a request U |R says q should
be granted, it suffices to determine whether the statement (U forRAR) says q can
be deduced from the logical rules.

5 Formal Specifications of RBAC Constraints

RBAC’s separation-of-duty constraints do not directly affect access-control de-
cisions, in that they are not checked at the time a decision is made. Rather, they
impose additional restrictions on the initial specification of an RBAC policy.
Therefore, we have not incorporated them into our access-control logic. However,
it is desirable to be able to verify that a given policy is consistent: its user-role
assignment and role hierarchy should not conflict with the stated separation-of-
duty constraints.

For this reason, we have formalized RBAC constraints in the Higher-Order
Logic (HOL) theorem prover. The result is a tool which one can verify the con-
sistency of RBAC policies. Because the access-control logic has also been imple-
mented and proved sound in HOL, we can easily convert RBAC policies which
has been proved consistent in HOL into the access-control logic for reasoning
about access-control decisions.

5.1 Static Separation of Duty

The role-inheritance relationship between roles R1 and R2 (R1 � R2) is a par-
tial order and thus reflexive, transitive, and antisymmetric. In RBAC, the role

190 T. Kosiyatrakul, S. Older, and S.-K. Chin

hierarchy is generally represented pictorially by a Hasse diagram. We implement
Hasse diagrams in HOL as a set HSD of pairs, with (R1, R2) ∈ HSD precisely
when there’s an explicit edge between R1 and R2 in the Hasse diagram. It is then
straightforward to define � as the reflexive, transitive closure of HSD, relative
to the set ROLES of roles:

rhRel HSD ROLES = {(R1, R2) | (R1 ∈ ROLES) ∧ (R2 ∈ ROLES)∧
(RTC (CURRY HSD) R1 R2)},

where (CURRY HSD) R1 R2 is equivalent to (R1, R2) ∈ HSD and the predicate
RTC (defined in HOL’s Relation theory) identifies the elements in the reflexive,
transitive closure of a relation.

For example, the Hasse diagram from Figure 1 can be represented by a set
HSD as follows:

HSD = {(Chair,Ten), (P&T VM,Ten), (Ten,Fac),
(CS Fac,Fac), (CE Fac,Fac), (UnTen,Fac)}

Letting ROLES be the set {Chair,P&T VM,Ten,UnTen,CS Fac,CE Fac,Fac},
the inheritance relation � is given by:

rhRel HSD ROLES =
HSD ∪ {(R, R) | R ∈ ROLES} ∪ {(Chair,Fac), (P&T VM,Fac)}.

The set of users authorized for a role R depends on both the user-role as-
signments (UA) and the inheritance relation �; likewise, the set of permissions
associated with a role depends on the permission assignments (PA) and �. Thus,
we define predicates authorized users and authorized permissions as follows:

authorized users R UA HSD ROLES =
{U | ∃ R′. (R ∈ ROLES) ∧ ((R′, R) ∈ rhRel HSD ROLES) ∧ (U, R′) ∈ UA},

authorized permissions R PA HSD ROLES =
{p | ∃ R′. (R′ ∈ ROLES) ∧ ((R, R′) ∈ rhRel HSD ROLES) ∧ (p, R′) ∈ PA}.

It is straightforward to prove that, whenever R1 � R2—that is, when (R1, R2)
is in rhRel HSD ROLES—the following two properties hold:

(authorized users R1 UA HSD ROLES) ⊆
(authorized users R2 UA HSD ROLES)

(authorized permissions R2 PA HSD ROLES) ⊆
(authorized permissions R1 PA HSD ROLES).

As described in Section 2, static separation-of-duty constraints are given by
a set SSD : each pair (rs, n) ∈ SSD represents a constraint to prevent users from
being authorized for n or more roles in rs. Because the set of authorized users
for a given role depends on both the user assignment and the role hierarchy,

A Modal Logic for Role-Based Access Control 191

we must consider both when determining whether a particular RBAC policy
is consistent with its separation-of-duty constraints. The predicate isConsistent
verifies that a given user assignment UA and role hierarchy (given as a Hasse
diagram HSD and a set of ROLES) do not violate the SSD constraints:

∀ UA SSD HSD ROLES. isConsistent UA SSD HSD ROLES =
∀ rs n. (rs ⊆ ROLES) ⊃ (FINITE rs) ⊃ (n ≥ 2) ⊃ (rs, n) ∈ SSD ⊃

(∀ t. (t ⊆ rs) ⊃ (CARD t ≥ n) ⊃
(¬∃ U. ∀r. (r ∈ t) ⊃ (U ∈ authorized users r UA HSD ROLES))),

where CARD t returns the number of elements in the finite set t and FINITE
s returns true if the set s is a finite set.

[4] identifies several properties that should hold of consistent RBAC policies,
such as that if two roles are mutually exclusive, then no nonempty role can
possibly inherit both of them. We have verified that these properties do hold
in our HOL implementation, which provides additional assurance that we have
accurately captured the definitions.

5.2 Dynamic Separation of Duty

Dynamic separation of duty imposes constraints on the roles that a user can have
activated at any given instant. Like static separation of duty, these constraints
are expressed as a set DSD : each pair (rs, n) ∈ DSD represents a constraint that
prevents a user from activating n or more roles in rs simultaneously.

In other words, if the set of roles associated with a user’s session s is a subset
of rs, the number of roles in session roles(s) must be less than n. The predicate
SessionSatisfies verifies that a session s satisfies the DSD constraints:

∀ s DSD ROLES. SessionSatisfies s DSD ROLES =
∀ rs n. (rs ⊆ ROLES) ∧ (FINITE rs) ∧ (n ≥ 2) ∧ (CARD rs ≥ n)∧

((rs, n) ∈ DSD) ⊃
(∀ t. (t ⊆ rs) ∧ (t ⊆ session roles(s)) ⊃ (CARD t < n)).

As with static separation of duty, [4] also identified necessary consequences for
dynamic separation of duty constraints, such as that, if two roles are mutually
exclusive for activation, no session may involve both roles. We have verified that
these properties hold of our HOL implementation.

6 Conclusions

Building information systems correctly is difficult—assuring information systems
are secure is even more difficult. As the size, scope, and complexity of information
systems is ever increasing, designers and verifiers of information systems face
an ever more challenging task when assuring security. Many have observed that
engineers must design security into systems from the start and that designs must

192 T. Kosiyatrakul, S. Older, and S.-K. Chin

be provably secure. An implication of this last point is the need for a simple,
formal, and rigorous logic for reasoning about access control in a wide variety
of forms and situations. Such a logic could be used by designers to reason about
access-control decisions in ways that are analogous to how digital designers use
propositional logic to reason about digital designs. Our conclusion is that such
a logic is possible, based on our experience defining a modal logic capable of
specifying and reasoning about access-control policies and decisions that utilize
role-based access control (RBAC).

In our logic, user assignments, permission assignments, and role hierarchies
are defined within the access-control logic. In so doing, we have soundly united
in a single logic the ability to reason about privileges, authority, delegation,
credentials, and RBAC. We are currently extending the logic to support the
administration of RBAC roles with concepts such as administrative scope [14,3].

The requirement that engineers prove that their designs are correct and se-
cure necessitates the development of automated tools and verification methods.
To help meet this need, both the access-control logic and the consistency checks
for static and dynamic separation-of-duty constraints are defined as conservative
extensions to the logic of the Higher Order Logic (HOL) theorem prover [10].
The HOL extensions provide an executable implementation of the access-control
logic, and the inference rules have been verified to be sound. Likewise, verifi-
cation of static and dynamic separation-of-duty constraints of RBAC policies is
also done in HOL. While we do not anticipate that theorem provers such as HOL
will be routinely used by practicing engineers, the HOL definitions and theorems
are a rigorous and provably correct basis for computer-assisted reasoning tools
such as symbolic simulators, rewriting systems, and symbolic calculators. Such
tools are accessible and familiar to engineers and do not carry the same burden
of formal proof when compared to full-scale theorem proving systems such as
HOL.

References

1. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Control in
Distributed Systems. ACM Transactions on Programming Languages and Systems,
15(4) (1993) 706-734

2. Cuppens, F., Demolombe, R.: A Modal Logical Framework for Security Policies.
Proceedings of the 10th International Symposium on Foundations of Intelligent
Systems, Lecture Notes in Computer Science, Vol.1325. Springer. (1997) 579-589

3. Cramton, J., Loizou, G.: Administrative Scope: A Foundation for Role-Based Ad-
ministrative Models. ACM Transactions on Information and System Security, 6(2)
(2003) 201-231

4. Ferraiolo, D.F., Barkley, J.F., Kuhn, D.R.: A Role-Based Access Control Model
and Reference Implementation Within a Corporate Intranet. ACM Transactions
on Information and System Security, 2(1) (1999) 34-64

5. Ferraiolo, D., Kuhn, R.: Role-Based Access Control. 15th NIST-NCSC National
Computer Security Conference, Gaithersburg, MD (1992) 554-563

A Modal Logic for Role-Based Access Control 193

6. Ferraiolo, D.F., Sandhu, R.S., Gavrila, S.I., Kuhn, D.R., Chandramouli, R.: Pro-
posed NIST Standard for Role-Based Access Control. ACM Transaction on Infor-
mation and System Security, 4(3) (2001) 224-274

7. Gordon, M.J.C., Melham, T.F.: Introduction to HOL: A Theorem Proving Envi-
ronment for Higher Order Logic. Cambridge University Press, New York (1993)

8. Glasgow, J., MacEwen, G., Panangaden P.: A Logic for Reasoning About Security.
ACM Transactions on Computer Systems, 10(3) (1992) 226-264

9. Howell, J., Kotz, D.: A Formal Semantics for SPKI. Technical Report TR2000-363,
Department of Computer Science, Dartmouth College, Hanover, NH 03755-3510
(2000)

10. International Computer Limited. Higher Order Logic (HOL) Theorem Prover Ver-
sion 4 (Kananaskis-2) http://hol.sourceforge.net (2004)

11. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in Distributed
Systems: Theory and Practice. ACM Transactions on Computer Systems, 10(4)
(1992) 265-310

12. Older, S., Chin, S.-K.: Building a Rigorous Foundation for Assurance into In-
formation Assurance Education. Proceedings of the 6th National Colloquium for
Information Systems Security Education (2002)

13. Older, S., Chin, S.-K.: Using Outcomes-based Assessment as an Assurance Tool
for Assurance Education. Journal of Information Warfare, 2(3) (2003) 86-100

14. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 Model for Role-Based
Administration of Roles. ACM Transactions on Information and System Security,
2(1) (1999) 105-135

Unique User-Generated Digital Pseudonyms

Peter Schartner and Martin Schaffer

University of Klagenfurt, Austria,
Computer Science · System Security Group
{p.schartner, m.schaffer}@syssec.at

Abstract. This paper presents a method to generate unique and never-
theless highly random pseudonyms in a distributed environment. More
precisely, each user can now generate his pseudonym locally in his per-
sonal security environment, e.g. in his smart card or his personal digital
assistant. There is no need for any information interchange between is-
suing parties or global data (especially keys), except unique identifiers
for each user and each device of the system. Additionally the holder can
prove, that he generated a specific pseudonym without revealing his iden-
tity and he can reveal his identity by disclosing the pseudonym. Whereas
the verifier of a disclosed pseudonym can be sure, that the presenter of
the pseudonym is the holder of the pseudonym (i.e. the person which
originally generated it). The identifier of the user and the identifier of
the user’s device will be used to generate unique pseudonyms, but to
ensure pseudonymity, both components will be stored in the pseudonym
in encrypted form.

1 Introduction

Pseudonyms (or nyms) are identifiers of subjects. The subject that may be iden-
tified by the pseudonym is the holder of the pseudonym (see [7,9]). From the
technical point of view, a pseudonym is a bit string which is

– (locally or globally) unique as identifier and
– suitable to be used to authenticate the holder and his/her data (e.g. messages

sent).

Most of the applications of pseudonyms have in common, that there should be
no way to correlate data (of the pseudonym) stored in different applications or
to link these data to the holder of the pseudonym and his identity. So another
important aspect in the scope of pseudonyms is linkability, i.e. the knowledge of
the relationship between the holder and his/her pseudonym. This linking may
be known to third parties or only to the holder of the pseudonym.

Up to date, there are two ways to generate globally unique pseudonyms for
a person (here called holder):

Centralized Generation: This approach employs a centralized third party,
which generates the pseudonym on the user’s behalf. This party can easily avoid
duplicates and hence the generated pseudonyms are unique. On a larger scale, we

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 194–205, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Unique User-Generated Digital Pseudonyms 195

may employ several hierarchically organized issuing parties. In order to guaran-
tee the uniqueness of the pseudonyms, these issuers either generate pseudonyms
in a specific (previously specified) range, or they have to check the randomly
generated pseudonym with all other issuers which causes immense communica-
tion efforts. Additionally, the holder of the certificate has to trust in the issuer,
since the issuer knows the linking of the holders identity to his pseudonym.

Local (Holder-based) Generation: The other way is, that the user gener-
ates his pseudonym locally. Now, only the user knows the linking between his
identity and his pseudonym. But again we need some sort of cross-checking to
avoid duplicates.

In the approach presented in this paper, the holder locally generates globally
unique pseudonyms, which are nevertheless highly random. There is no need for
any information interchange between issuing parties or global data (especially
keys), except unique identifiers for each user and each device of the system. Ad-
ditionally the holder can prove, that he generated a specific pseudonym without
revealing his identity and he can reveal his identity by disclosing the pseudonym.
This disclosure is achieved by presenting some additional, previously unknown,
information to the verifier. As a security feature, this information (the opening
information) cannot be forged, so that the verifier retrieves an identity different
from the identity used in the generating process of the pseudonym. Another fea-
ture of the proposed system is, that there is no way to disclose the pseudonym,
if the holder does not cooperate. For several application scenarios this may seem
to be a major drawback (e.g. the holder of a pseudonym has just won an auction,
but does not want to pay). But there are others, where there is either no need for
enforced disclosure, or where the holder of the pseudonym has a strong interest
in disclosing his pseudonym at a certain point of time and hence will cooperate.

The application scenarios of pseudonyms (providing pseudonymity or ano-
nymity), where the approach presented in this paper is suitable, include:

(Centralized) Register for Medical Records: Concerning medical records,
there is a strong interest in privacy, i.e. to keep the connection between a person’s
name and his/her medical record(s) private. On the other hand many countries
(like Austria and Germany) run centralized databases, in order to provide data
for statistical studies. To achieve this, each medical record is sent to a Server,
which keeps an anonymized medical history for each person. Hence the patients
have to trust in this server, because it knows the relation between the patient’s
identifier and his/her (anonymous) record identifier. If the server has been com-
promised and the algorithm for mapping the patients name (or social insurance
number) to his/her record identifer is publicly known, the privacy of all pa-
tients is at risk. In contrast to this, by applying our scheme for globally unique
pseudonyms, the medical records are anonymized before sending them to the
server. Hence, there is no way (except breaking the encryption algorithm) to
re-map a pseudonym to a user of the system.

Online Gambling: Here, the player wants to stay anonymous during gam-
bling. He participates in the game by using his pseudonym. In case of a win, he

196 P. Schartner and M. Schaffer

discloses his pseudonym. Since he wants to receive his prize, he will be coopera-
tive and will not try to forge the disclosed identity.

Online Retrieval of Information: By correlating the different areas, where
a certain person retrieves information (e.g. patents or conference papers), one
may conclude the research topic (and the state of the research) of this person.
Applying pseudonyms (actually anonyms) here, would solve the problem.

Electronic Voting: Here, the voter may use his unique identifier received dur-
ing the setup phase of the voting scheme to choose his pseudonym locally. Unfor-
tunately, by now there is no way to prove the binding between the identifier and
the pseudonym without disclosing the pseudonym. Nevertheless, this approach
may be useful within closed systems, where each participant in the system is a
legitimate voter.

Other applications may be in the field of online-subscription of newspapers
or temporary identifiers in the scope of mobile phones or RFID (radio frequency
identification).

2 Generation of Pseudonyms

The method presented in this paper is based on the idea of generating unique
keys (or key components like primes) within isolated instances [3] which has been
refined in [4,5,6,14]. Figure 1 shows the operating principle of the original scheme.
Here, we first generate unique identifiers (EID1||k1 respectively EID2||k2) by
means of symmetric encryption, where EID = Ek(UID||Data||PAD). The
proof of uniqueness will be given later on in this paper. These identifiers are
concatenated with some bits (PP1 respectively PP2) in order to generate proba-
bilistic primes. Finally, the primes are multiplied and the result gives the unique
modulus of an RSA-Crypto-System consisting of two unique primes p1 and p2.

UID || Data1 || PAD1 k1

EID1 PP1

Modulus n = p1 p2

Prime p1

k1

E

UID || Data2 || PAD2 k2

EID2 PP2k2

E

Prime p2

Fig. 1. Basic Idea – Generation of Unique Key Components

Unique User-Generated Digital Pseudonyms 197

One may now directly use the unique Identifier (EID1||k1) as a pseudonym.
But it is obvious, that this pseudonym does not hide any information (especially
the user identifier – UID) without additional measures. Given a pseudonym of
this form, the ID of the user which has been used to generate the pseudonym
can be easily retrieved by decrypting the block EID1 with key k1. Replacing
the symmetric encryption by asymmetric encryption (in this paper RSA) solves
that problem. For simplicity of our notation, we will only display the public and
private exponents (e and d) of the public and private keys (e, n) and (d, n). So
for example Ee(m) represents the asymmetric encryption of message m with the
public key (e, n).

More generally, a pseudonym P of an user identity (UID) is generated by
use of a function f parameterized with at least two parameters: the user identity
UID and a secret key k. In our approach, this function f has to be a bijective
(one-to-one) one-way computation, more precisely an asymmetric encryption
function, and the key k is the public key (e, n). Hence the pseudonym results in
P = f(UID, k) = Ee(UID)||k = Ee(UID)||e||n.

Since the public key (and its components) are random, two different users
may accidentally choose the same key. By concatenating Ee(UID) and e||n we
ensure, that at least one of the components and hence the concatenation of the
components is globally unique. For details see the proof of uniqueness given later
on in this paper.

This scheme generates unique but nevertheless highly random pseudonyms
in a distributed environment. More precisely, each user can now generate his
pseudonym locally in his personal security environment (PSE), e.g. in his smart
card or his PDA (personal digital assistant). There is no need for any global
data (especially keys) or information interchange between issuing parties. The
only requirement is a unique identifier (UID – user identifier) for each user of
the system and a unique identifier for each PSE of the system, which may easily
be managed by the use of a hierarchical issuing structure. If smart cards are
used as a PSE, then the ICCSN (integrated chip card serial number [10]) – a
globally unique identifier which is stored in every smart card – can be used in
the generating process. So we do not need to distribute or manage any IDs at all.

One problem with using the ICCSN is, that this number may be used during
the authentication of the smart card (e.g. to derive the individual authentication
key of the card) or to manage black-lists of revoked or lost smart cards. In this
case, the card has to hold a user identifier, which cannot be linked to the holder of
the card. Nevertheless, by now only the need for a globally unique identifier shall
be emphasized, one concrete mechanism for such an identifier will be presented
in section 5.

The principle to generate unique and highly random pseudonyms is quite
easy (see figure 2 and figure 3):

1. The user (respectively his PSE) generates a key-pair for an asymmetric en-
cryption algorithm.

For the ease of description, we will focus on the RSA-System [11] in the
remainder of this paper. Other asymmetric encryption schemes will work as

198 P. Schartner and M. Schaffer

well. Hence the PSE generates the modulus n, the public exponent e, and
the private exponent d. In the generation process, there is no need for the
private exponent d. This parameter is only needed for later disclosure of the
pseudonym.

EID e n

UID || Data || PAD e n

D

Fig. 2. Generation of a Unique Pseudonym

2. The unique identifier (UID) is concatenated with some additional data
(Data) and some padding (PAD) and is finally encrypted with the public-
key (e, n). In the remainder of this paper we will call this block holding the
user identifier the UID-Block.

The data field has to contain a serial-number of the pseudonym, which
has to be incremented automatically each time a pseudonym is generated
by the PSE. If a user employs different PSEs, the data-field has to store a
device identifier as well. By this, we can guarantee, that different devices
generate different pseudonyms.

Additionally, the data field may contain the (unique) identifier of the
Application (AID) requesting the pseudonym. By this, the user holds differ-
ent pseudonyms for different applications and there is no way for correlating
data of different applications. If these application-specific pseudonyms are
used, the PSE has to store the pseudonym along with the AID for later
usage.

3. The result of this encryption process, the so called encrypted ID (EID), is
concatenated with the public-key. In case of RSA this results in EID||e||n,
which forms the unique and highly random pseudonym P = EID||e||n.

The proof of uniqueness is given in the next section. Concerning the
randomness of the pseudonym, it is obvious that the second half is com-
pletely random, because we chose e, p1 and p2 (and hence n) at random.
The first half is an encrypted block. Since the key used for encryption was
chosen at random, the encryption function works as a strong pseudo-random
function.

2.1 Proof of Uniqueness

The proof of uniqueness of the generated pseudonyms is straight forward and is
based on the following facts:

Unique User-Generated Digital Pseudonyms 199

input : UID, Data
output: P
(1) generate two random primes p, q ∈RIP
(2) generate a random public key e with ((p − 1)(q − 1), e) = 1
(3) compute the private-key d = e−1 MOD (p − 1)(q − 1)
(4) generate the pseudonym P = Ee(UID||Data||PAD)||e||n
(5) return P

Fig. 3. Generation of a Unique Pseudonym

Fact 1: Each issued user identifier (UID) is unique. A hierarchical structure of
the identifiers may be used, in order to simplify the management of the identi-
fiers.

Fact 2: Ee(m1) �= Ee(m2) ⇔ m1 �= m2, since Ee(m) is a bijective (one-to-one)
function for some constant public key (e, n).

To prove the uniqueness of the pseudonym generated by two different users,
we have to distinguish two cases:

1. Both users (respectively their PSEs) accidentally generate (choose) the same
public key (e, n). In this case, the second halves of the pseudonyms (namely
e||n) are equal for both users. But fact 1 and fact 2 guarantee, that the first
halves, namely Ee(UID1||Data1||PAD1) and Ee(UID2||Data2|| PAD2), dif-
fer in at least one bit, since UID1 and UID2 differ in at least one bit.

2. The second case is quite easy to prove: the users generate (choose) different
keys, and hence, the second halves of the generated pseudonyms (namely
e1||n1 and e2||n2) differ in at least one bit. So we do not need to care about
the first halves, which may be accidentally equal (different plaintexts en-
crypted with different keys may result in the same ciphertext). Note: This
proof obviously holds also for symmetric encryption (see [14]).

Pseudonyms generated by a specific user may either be generated by the use
of the same PSE or by use of different PSEs:

1. Pseudonyms generated by the same PSE will differ in at least one bit, because
the serial numbers of the pseudonyms will differ in at least one bit.

2. Pseudonyms generated by different PSEs will differ in at least one bit, be-
cause the device identifiers of the PSEs will differ in at least one bit.

3 Proof of Ownership

One central problem of pseudonyms is to prove, that a certain pseudonym has
been generated by a certain person. In principle, this can be achieved straight
forward by disclosing the pseudonym. In our case, we do not want to disclose
our identity, we simply want to prove, that we have generated the pseudonym.

200 P. Schartner and M. Schaffer

Since only the generator of the pseudonym knows the factorization of n, only
he can calculate d. The verifier who holds a pseudonym P = Ee(UID||Data||
PAD)||e||n knows e and n and can simply run a challenge-response protocol,
where the holder of the pseudonym has to prove the knowledge of d. To achieve
this, the verifier encrypts some (random) challenge r with the public key (e, n)
and sends c = Ee(r) to the prover. The prover decrypts the encrypted challenge,
retrieves r′ = Dd(c) and returns r′ to the verifier. If r′ matches r the verifier is
convinced, that the prover has generated the pseudonym.

Since the verifier chooses the challenge, he might try to trick the prover by
sending c = Ee(UID||Data||PAD). In this case, the prover would return the
value r′ = Dd(Ee(UID||Data||PAD)) = UID||Data||PAD which would reveal
his identity UID. So the prover has to dismiss the encrypted challenge c if it
matches Ee(UID||Data||PAD).

Within our scheme of pseudonyms, two users may accidently choose the same
public key (e, n) and hence the same value of d. In this case, they can obviously
forge the proof of ownership of each other’s pseudonym. Regarding key com-
ponents of 1024 bits, this is a very rare scenario. To overcome this drawback,
one may use the original scheme of generating unique key-components by use of
trustworthy smartcards presented in [3] which has been refined in [4,5,6,14]. By
applying this scheme, all primes and hence all public and private keys will be
pairwise different (see also figure 1).

4 Disclosure of Pseudonym

In order to disclose his pseudonym (and to reveal his identity), the user simply
presents his private exponent d. Now, the encrypted identifier EID may be
decrypted and the resulting plaintext holds the user identifier UID (see figure
4 and figure 5).

D

UID || Data || PAD

dEID e n

Fig. 4. Unique Pseudonyms – Disclosure

5 Forgery of Pseudonyms

Here we will investigate two attack scenarios and present solutions which prevent
the following attacks:

Unique User-Generated Digital Pseudonyms 201

input : pseudonym P , private exponent d

output: UID || OK / NOK

(1) retrieve EID and n form P

(2) compute UID = Dd(EID) // retrieve the UID

(3) return UID || OK

Fig. 5. Disclosure of a Unique Pseudonym (1)

1. When disclosing his pseudonym, the user sends a modified value of his private
exponent d′ such that UID′ = Dd′(EID) and UID′ �= UID.

2. Another User (with identifier UID′) who knows the identifier of a specific
user (UID) generates a pseudonym P = Ee(UID||Data||PAD)||e||n in order
to impersonate the user with UID.

5.1 Disclosure of a False Identity

If somebody reveals a private key d (and the primes p and q building the modulus
n = p ·q) to a verifier in order to disclose his pseudonym, this private key cannot
be manipulated (forged) so that the verifier retrieves an identity different from
the identity used to generate the pseudonym. This is simply given by the fact,
that exactly one value of d fulfills the requirement e · d ≡ 1 (mod ϕ(n)), with
ϕ(n) = (p− 1)(q − 1).

Note: This is contrary to the variant that employs symmetric encryption,
where the key may be changed (attack based on a plaintext-ciphertext-pair) in
order to retrieve a different identity.

input : pseudonym P , private exponent d, primes p and q

output: UID || OK / NOK

(1) retrieve EID, e and n form P

(2) if (p · q 	= n) then // check the primes

(3) return 0 || NOK
(4) if (e · d 	≡ 1 (mod ϕ(n))) then // check the public exponent

(5) return 0 || NOK
(6) compute UID = Dd(EID) // retrieve the UID

(7) return UID || OK

Fig. 6. Disclosure of a Unique Pseudonym (2)

The complete procedure for disclosure of a pseudonym is given in the algo-
rithm stated in figure 6. The algorithm runs on the inputs P , d, p and q and
returns the user identifier UID if all checks concerning the correctness of d have
been passed.

202 P. Schartner and M. Schaffer

5.2 Forgery of a User’s Pseudonym (Impersonation)

Another central problem of pseudonyms (presented in this paper) is, that a
pseudonym which has been disclosed to a verifier may be used by the verifier
to impersonate its original holder. This is possible, because after disclosure the
verifier knows d, p, and q. Hence he can act like the original holder; he may use
and disclose the ’stolen’ pseudonym to proof the ownership, which enables him
to impersonate the original holder.

A straight-forward solution for this problem is to sign the ID-Block (UID||
Data||PAD) and to replace the original ID-Block by the new ID-Block UID||
V alidity||Data||SIGNds(UID||V alidity||Data||PAD)||PAD. Here SIGNds(m)
is the signature of the hash value of m using the private signing key (ds, ns)
with the according public verification key (es, ns). The value V alidity holds the
time of generation (i.e. the time, the pseudonym was requested by some applica-
tion) and the time-to-live of the pseudonym. These values may be used to check
the freshness of a presented (and disclosed) pseudonym, after the signature has
been verified by use of the public key which may be retrieved from a certificate
issued by a trusted certification authority. A drawback of this approach is, that
only the application that requested the pseudonym is able to verify the value of
V alidity. All other applications which also use the pseudonym do not know the
point in time when the pseudonym has been requested (and generated). Hence,
they cannot verify the freshness.

If the freshness of the pseudonym cannot be checked by the application using
the pseudonym, we need some other mechanism to avoid the reuse of a previ-
ously disclosed pseudonym. Now, the verifier of the pseudonym simply checks
if the presenter (i.e. the supposed holder) of the pseudonym has generated the
signature within the pseudonym. This can again be checked by verifying, that
the holder knows the according private key (ds, ns). As above, we will employ a
challenge-response protocol to accomplish this proof.

The certificates used to sign the ID-Block, show a method to retrieve a unique
user identifier. This identifier may be the distinguished name of the certificate
issuer concatenated with the distinguished name of the owner of the certificate.
It would be more practical to replace the distinguished name of the owner of
the certificate by the serial number of the certificate. Since the verifier of a
disclosed pseudonym knows the issuer and the serial number, he may retrieve
the according certificate and use the public key to check (as described above), if
the supposed holder of the pseudonym knows the private signing key. If we use
this method, there is no need to include a signature in the pseudonym. In order
to verify a presented pseudonym, it is sufficient to check that the presenter of
the pseudonym knows the private key belonging to the certificate holding the
identifier of the pseudonym’s holder.

6 Analysis of the Proposed Scheme

For security reasons (i.e. to withstand factorization) the length of a modulus
(which is the product of two primes) has to be significantly larger than 512 bit

Unique User-Generated Digital Pseudonyms 203

(N.B. on December 3, 2003, the 174 digit (576 bit) RSA Challenge Number has
been factored [12], whereas the next challenge, a 193 digit (640 bit) number has
not been factored yet [13]).

Pseudonyms may be analyzed (and classified) according to the following cri-
teria:

– Involved mechanisms (e.g. symmetric/asymmetric encryption, hash-function,
MAC or digital signature)

– Pre-computation (Are pre-computations possible? Which values may be pre-
computed?)

– Generation efforts (Which values have to be calculated at the time, the
pseudonym is generated?)

– Length of pseudonym
– Proof of ownership (with or without disclosure)
– Disclosure (local/global, Key Escrow)
– Security (forging of pseudonyms, non-repudiation)

The last three points have been discussed in previous sections of this paper.
Now we would like to analyze the length of the proposed pseudonyms and the
(pre-)computation efforts.

Pseudonym: P = Ee(UID||AID||PAD)||e||n
Involved Mechanisms: asymmetric encryption (here RSA)
Pre-computations: e, d, and n.
Generation Efforts: Needs one asymmetric encryption. This may be done in

advance as well, if the pseudonym does not contain any data concerning the
application which requests the pseudonyms (e.g. the application identifier
AID).

Length: |P | = |n| + |e| + |n| = 2|n| + |e|, where |n| is the block-length of the
cipher (which is equal to the length of the modulus n) and |e| is the length
of the public exponent.

A variant of the proposed scheme uses a common public exponent e for all
users of the system. Hence, there is no need to include e in the pseudonym, and
the modified pseudonym results in P = Ee(UID)||n. The bit-length of this type
of pseudonyms is only slightly smaller than the length above (N.B. e will be
most commonly some small number, like 3, 17 or 216 + 1).

7 Resumee, Problems, Extensions and Future Research

In this paper we presented a scheme for generating digital pseudonyms, which
does not apply any centralized issuers or any online-communications between
issuers. The holder of the pseudonym can generate his pseudonym locally in his
personal security environment (e.g. in his smart card or his personal digital assis-
tant). The proposed method generates unique and nevertheless highly random
pseudonyms in a distributed environment and with considerable computation

204 P. Schartner and M. Schaffer

efforts. On the one hand, the holder of a pseudonym can prove that he gener-
ated the pseudonym without disclosing it. On the other hand, the verifier of a
disclosed pseudonym can be sure, that the presenter of the pseudonym is the
original holder (i.e. the person who generated it).

However, there are still some open problems and possible extensions. These
questions, which are scope of ongoing research include:

Enforcement of Disclosure: One of the major drawbacks of our approach is,
that the disclosure of the pseudonym is completely under control of the holder.
In specific application scenarios, this is an appreciated feature. In other scenarios
we would like some mechanism which ensures, that a pseudonym can be disclosed
under certain (previously specified) circumstances. Escrowing of the private key
(d, n) is a straight-forward solution for this problem; but there may be better
ones.

Certification of the Private Exponent d: A user may certify his private ex-
ponent d (note NOT his public key which would include n) at a certification
authority. So he can later on prove that a specific pseudonym belongs to his
identity.

Other Types of Pseudonyms: Different mechanisms and different types of
common components influence the properties (pre-computations, generation ef-
forts, length of pseudonym, proof of ownership, disclosure and security) of the
generated pseudonym.

Pseudonyms by means of Unique Primes: Here, we will combine the orig-
inal scheme of generating unique primes and the proposed scheme for unique
pseudonyms in order to overcome the drawback discussed in section 3.

Proof of Binding between ID and Pseudonym: By now, the only way to
prove the binding between the ID of a user presenting a certain pseudonym, is
to disclose the pseudonym.

References

1. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms.
Commun. ACM, 24(2) (1981) 84–88

2. Heikkila, J., Holmstrm, U.: Secure digital pseudonyms for privacy and liability,
Master Thesis, Pennsylvania State University, November 15 (2002)

3. Horster, P.: Dublettenfreie Schlüsselgenerierung durch isolierte Instanzen. Chip-
karten, DuD-Fachbeiträge, Vieweg Verlag (1998)

4. Horster, P., Schartner, P.: Bemerkungen zur Erzeugung dublettenfreier
Primzahlen. Proceedings of Sicherheitsinfrastrukturen (1998)

5. Horster, P., Schartner, P., Wohlmacher, P.: Key Management. Proceedings of the
IFIP TC11 14th international Information Security (1998) 37–48

6. Horster, P., Schartner, P., Wohlmacher, P.: Special Aspects of Key Generation.
Information Technology: Science-Technique-Technology-Education-Health, Printed
Scientific Works, Kharkov (1998) 345–350

Unique User-Generated Digital Pseudonyms 205

7. Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems. In Selected
Areas in Cryptography (1999) 184–199

8. Mjolsnes, S.Fr.: Privacy, cryptographic pseudonyms, and the state of health. Lec-
ture Notes in Computer Science 739 (1993)

9. Pfitzmann, A., Köhntopp, M.: Anonymity, unobservability, and pseudonymity —
a proposal for terminology. In Workshop on Design Issues in Anonymity and
Unobservability (2000) 1–9

10. Rankl, W., Effing, W.: Smart Card Handbook, 3rd edition. John Wiley & Sons
(2003)

11. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems. Communications of the ACM, 21 (1978) 120–126

12. RSA Laboratories. RSA-576 is factored!.
http://www.rsasecurity.com/rsalabs/node.asp?id=2096

13. RSA Laboratories. The RSA Challenge Numbers.
http://www.rsasecurity.com/rsalabs/node.asp?id=2093

14. Schartner, P.: Security Tokens – Basics, Applications, Management, and In-
frastructures. IT-Verlag (2001)

A Probabilistic Property-Specific Approach to
Information Flow

Danièle Beauquier1,�, Marie Duflot1,�, and Marius Minea2,�

1 University Paris 12, France
{beauquier, duflot}@univ-paris12.fr
2 Institute e-Austria Timişoara, Romania

marius@cs.utt.ro

Abstract. We study probabilistic information flow from a property-
specific viewpoint. For a given property of interest, specified as set of
traces, we examine whether different low-level observations imply differ-
ent probabilities for the occurrence of the property. Quantifying over all
properties in a given class (e.g., high-level traces, or high-level sequences
separated by low-level events) we obtain different notions of information
flow. We give characterizations of systems that are secure according to
these definitions. We consider both properties that are expressed over
whole traces and those that distinguish between past and future given
a reference point. In this framework, we can express several classical
definitions of possibilistic security, as well as giving a more detailed,
quantitative measure of information flow.

1 Introduction

Several classical treatments of information flow exist in the literature. Trace-
based approaches assume a set of observable low-level events L and a set of
(not directly observable) high-level events H . The question is whether observing
a certain low-level trace can give information about the occurrence of high-
level events, either in a possibilistic sense (the possibility or impossibility of a
certain high-level interleaving) or in a probabilistic sense, yielding quantitative
information about high-level activity.

It is generally accepted that there is no single all-encompassing definition
of information flow. Different notions are noninterference [5], generalized nonin-
terference [11], noninference [14], generalized noninference and separability [13],
depending on the kind of information about high-level behavior considered rele-
vant. In these possibilistic approaches, information flow is prevented if the trace
set corresponding to a low-level observation contains “enough” traces to make
inferences about high-level behavior impossible. Indeed, there can be no infor-
mation flow if all high-level behaviors of interest are possible, i.e., included in
the set of traces corresponding to a low-level observation. Precisely which traces
must be present depends on the individual notion of information flow.

� Partially supported by ECO-NET project No 08112WJ.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 206–220, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

A Probabilistic Property-Specific Approach to Information Flow 207

Subsequently, various frameworks for information flow [13,18,10], have been
developed, attempting to unify the various existing definitions. McLean’s intro-
duction of selective interleaving functions [13] provides a way to reason about
the relative strength of different security properties and their preservation under
composition. Zakinthinos and Lee [18] propose “perfect security” as the weakest
property on trace sets which guarantees absence of information flow (in a rather
informally defined sense). In contrast, Mantel [10] argues the need for variety
and modularity, and provides a library of basic security predicates from which
common notions of security properties can be constructed.

In the same view, that an analysis of information flow must be flexible enough
to be adapted to the specific features and needs of the considered application,
we propose a parameterized view of information flow that develops a quantita-
tive, probabilistic approach sketched in [17]. We define information flow with
respect to a property (a set of system traces, possibly abstracted in its low-level
part) which is deemed important for the system under scrutiny. The system has
information flow with respect to the given property if there exist two low-level
observations for which the chosen property has different probabilities of occur-
rence. In this case, the quantitative, probabilistic knowledge about the given
property is sensitive to the observation which can be made, and so there is
information flow in the system with respect to this property.

From this starting point, we define several generic notions of information
flow, corresponding to different classes of properties of interest. These include
high-level information flow, in which properties are sets of sequences of high-level
events, and sequential information flow, in which properties can describe not only
sequences of high-level events but also how these sequences are interrupted by
the low-level, following the view of [12].

In examining information flow, we consider two views on the sequence of
events in a trace. In the first, a global view, properties are simply sets of traces
(infinite sequences of events). Alternatively, in a relativized view, the present
timepoint splits a trace into a pair: a finite sequence of past events and an
infinite sequence of future events. In this way, we can express properties that
link the past behavior with the future behavior of the system; we have absence of
information flow if such a behavior set is equiprobable regardless of the low-level
observation up to the current timepoint. For instance, a property may state that
if the last event before the time point is a then the next event is a′ and if the
last event before the time point is b then the next event cannot be a′.

We then give characterizations of systems that are secure according to these
views of information flow, describing the structure of their trace sets in terms of
high/low-level events and their probabilities.

Using this framework, and choosing appropriate sets of properties, we can
express several classical definitions of possibilistic security: generalized noninter-
ference [11], noninference [14], and separability [13]. At the same time, by sup-
porting a user-defined choice of properties, we allow a finer granularity for the
definition of information flow than previous approaches. In addition, for systems

208 D. Beauquier, M. Duflot, and M. Minea

that are not secure according to one of these notions, the probabilistic approach
allows us to give a quantitative measure of the appearing information flow.

An important issue when defining security properties is deciding what kinds
of information flow are acceptable. In some existing definitions of information
flow, such as noninference [14] or the perfect security property [18], covert chan-
nels already existent in the description of a system are allowed, such as auditing
or copying low-level events on a high-level. Such definitions take a causal view,
defining information flow as the fact that high-level behavior influences low-level
behavior. Conversely, this means that viewing a string of low-level events may
allow us to deduce something about the high-level events that have occurred in
the past, prior to these observations.

In contrast, we take a purely observational view. Thus, if a low-level obser-
vation is compatible only with an interleaving of high-level events, but not with
another, this constitutes information flow, regardless whether this knowledge is
already present in the description (trace set) of the system. Indeed, the proba-
bility of a given interleaving of high-level events depends in this situation on the
low-level observation, which corresponds to our definition of information flow.

Related Work

Work on tailoring security properties to the system under consideration orig-
inates with the string of different definitions for information flow [5,11,14,13].
Following the recognition that security is a property of trace sets rather than
traces (e.g., [13]), in [18], security properties are defined uniformly by specifying
a predicate that the low-level equivalent bunch of a trace has to satisfy. The ap-
proach is taken further in [10] by defining basic security predicates in terms of a
restriction and a closure requirement on a trace set. The parameterization in the
latter paper is given by the variants in which the basic operations of inserting
and deleting high-level events in a trace (to keep their absence and presence,
respectively, confidential) can be performed.

Probabilistic information flow has naturally been more difficult to treat than
the possibilistic version. McLean [12] introduces the flow model which distin-
guishes mere correlation from actual causal influence. Gray [7] introduces prob-
abilistic interference in a context of finite state machines and gives a more general
information-theoretic framework, including probabilistic channel capacity [6].
Sabelfeld and Sands [16] define probabilistic noninterference in the context of
schedulers for multithreaded programs, based on the concept of probabilistic
bisimulation, and show compositionality properties. Lowe [9] treats quantita-
tive information flow distinguishing probabilistic aspects from nondeterminism,
which is handled from an adversarial worst-case perspective; the treatment is
done in a discrete-time context, considering also the rate of information flow. A
probabilistic process-algebraic approach is given in [1], focused on noninterfer-
ence, generalizing the possibilistic variant and allowing formal reasoning about
the amount of information flow.

All these approaches, whether possibilistic or probabilistic, treat general,
system-independent notion of information flow. A framework which parameter-

A Probabilistic Property-Specific Approach to Information Flow 209

izes information flow is defined in [8] by giving a definition of secrecy in multi-
agent systems, using a modal logic of knowledge in a state-based model. This
generalizes several existing approaches and can be extended to probabilistic se-
curity. Their parameterization stems from defining formulas (knowledge) of what
must be kept secret, thus providing a fine-grained way of characterizing security
requirements. Since the approach is state-based, our model appears complemen-
tary in that it can talk about both past and future evolution of the system.

Other perspectives on information flow include that of [2] which offers a
variety of characterizations of non-interference, expressed in Hoare logics and
CTL; however, the variety is not given by parameterization, but language as-
pects such as sequential vs. concurrent, or termination sensitivity. Closer to a
parametric view is the approach of [4], where the parameter is an observable
property (an abstraction) of the public observations of a program. Thus, the at-
tacker is a data-flow analyzer, and can be specified in an abstract interpretation
framework. Both approaches deal with much more specific systems, described in
particular programming languages, and the class of expressed properties, though
parameterized to some extent, is not as general.

Beyond the possibilistic approaches, [3] analyzes quantitative information
flow for a simple imperative language from a semantic point of view, whereas [15]
replace indistinguishability in the formalization of non-interference by similarity
based on the notion of distance, in a process-algebraic setting. In comparison,
we also define quantity of information flow based on the distance between the
probability of a property given an observation.

Our approach to parameterization allows properties that range from the gen-
eral to the entirely system-specific. Thus we can select the granularity (a partic-
ular trace set or even a single trace) with respect to which information flow is
analyzed. Alternatively, quantifying over classes of such properties, we can still
obtain and reason about several of the classic definitions of information flow.

Paper Outline. We first introduce the mathematical model of probabilistic event
systems which we use throughout the paper. Section 3 gives property-based de-
finitions for three classes of probabilistic information flow, and theorems char-
acterizing systems that conform to these notions. These results are extended in
Section 4 to properties which distinguish between past and future with respect
to the reference point defined by the observation. Section 5 shows how some of
the classic definitions of information flow can be expressed in this formalism.

2 Probabilistic Event Systems

Notations

Given a finite alphabet A, we let A∗ (resp. Aω) denote the set of finite (resp.
infinite) sequences (or traces) over this alphabet. The set A∞ is the union of A∗

and Aω . The empty sequence is denoted ε. Given a sub-alphabet A′ ⊂ A and a
trace λ, λ|A′ denotes the projection of λ onto this sub-alphabet. If λ is a finite
non-empty trace, last(λ) denotes the last letter of λ.

210 D. Beauquier, M. Duflot, and M. Minea

Let λ be a (finite or infinite) trace. We denote by Pref (λ) the set of finite
prefixes of λ. More generally, if Tr is a set of traces, Pref (Tr) =

⋃
λ∈Tr Pref (λ).

Let u, v ∈ (A∗)n, u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn). We denote by
u⊗ v the simple interleaving of u and v defined as u⊗ v = x1y1x2y2 . . . xnyn.

If U, V ⊂ (A∗)n, we denote by U ⊗V the set: U ⊗V = {u⊗ v|u ∈ U, v ∈ V }.
If U, V ⊂ (A∗)ω, the definition of U ⊗ V is extended in a standard way.
The interleaving of two sequences x, y, denoted by interl(x, y) is the set of

sequences: {x1y1x2y2...xnyn | x = x1x2...xn, n ∈ N, y = y1y2...yn, xi, yi ∈ A∗}.
This extends to sets of sequences: interl(X, Y) = {interl(x, y)| x ∈ X, y ∈ Y }.

Probabilistic Event System

The execution of a system is modeled by its set Tr of traces which are finite or
infinite sequences of atomic events from a set E. A particular atomic event τ is
distinguished which represents the halting of the system. For example, if λ is a
sequence of atomic events, it is useful to distinguish between “λ has occurred but
the system still executes”, and “λ has occurred and the system has stopped”.
The latter case is modeled by the event λτ . To unify the presentation, it is
convenient to use only infinite sequences, writing λτω instead of λτ . Then, from
now on, Tr is a set of infinite sequences which do not contain any occurrence of
τ except when they are of the form λτω where λ contains no occurrence of τ .

The set of atomic events E is divided into two disjoint sets, the set H of high-
level atomic events and the set L of low-level ones. Depending on the situation,
the stop event τ can be considered as a low-level or a high-level event. In this
paper, we only consider the case when the low-level user can observe that the
system has stopped, i.e., τ ∈ L.

The set of traces Tr is equipped with a probability measure μ over the σ-
algebra generated by the cylinders λEω , λ ∈ E∗, such that Tr is μ-measurable.
The measure μ(X) of a measurable set X is denoted as Prμ(X), or shortly
Pr(X). Thus if we consider the infinite tree T built from Tr with edges labeled
by atomic events, each edge of the tree is equipped with a non-zero probability.
(We assume that every prefix of a trace in Tr has a non-zero probability).

Traditionally, an event is a measurable set in the theory of probabilities, so
to avoid confusion, the atomic events of the system will be called actions.

We use the customary notation for conditional probabilities: if P and Q are
two measurable events and Pr(Q) �= 0, the conditional probability Pr(P |Q) is
Pr(P ∩Q)/Pr(Q). Since we are interested only in traces of the system S we deal
only with conditional probabilities relative to Tr . Thus, for each measurable
event X we denote by PrS(X) the probability Pr (X |S) (assuming Pr(S) > 0).

Definition 1. An event system S is a tuple (E, H, L,Tr , μ) where E = H ∪ L,
and H (resp. L) is the set of high-level (resp. low-level) actions, Tr is the set of
traces of the system, and μ is a probabilistic measure on Tr.

We assume that only low-level actions are observable on the low-level, i.e.,
for a trace λ the projection λ|L is observable by low-level users. More precisely,
a finite prefix of λ|L is observable. Thus, from the observation of u ∈ L∗, the

A Probabilistic Property-Specific Approach to Information Flow 211

low-level user who is supposed to know the entire system can construct the bunch
BS(u) = {λ ∈ Tr | u is a prefix of λ|L} and possibly deduce some information
about what happened or what will happen at the high-level. When there is no
ambiguity, we will write B(u) instead of BS(u). For every u such that B(u) is
non empty, B(u) is supposed to be measurable and without lost of generality
the measure PrS(B(u)) is supposed to be positive. A projection u ∈ L∗ such
that B(u) is non empty is called possible.

3 Global Information Flow

Depending on the level of information we are interested in, we introduce an
abstraction function φ : L → L′ ∪ {ε}, where L′ is some set with |L′| ≤ |L| and
express properties as sets of infinite traces on (H ∪ L′)ω . We extend φ on H as
the identity, and then on Eω in a classical way. Notice that it is possible that an
infinite trace of Eω has an image which is finite.

A property of abstraction level φ is a subset of (H ∪L′)∞. We consider only
properties P such that φ−1(P) ∩ Tr is a measurable subset of Tr . By abuse
of notation we write PrS(P) =df PrS(φ−1(P) ∩ Tr), and write P instead of
φ−1(P)∩Tr everytime we compute probabilities, e.g., in Pr(P ∩A) or Pr(P |A).

Definition 2. Given a system S, the quantity of information flow for a prop-
erty P of abstraction level φ is the value IF (P, S) = maxu,v|PrS(P |B(u)) −
PrS(P |B(v))| for all possible u, v ∈ L∗.

A system S is without information flow for a property P of abstraction level
φ if IF (P, S) = 0.

We can also consider a “qualitative” version of this definition:

Definition 3. A system S is without qualitative information flow for a prop-
erty P of abstraction level φ if for every u ∈ L∗ such that B(u) is non-empty,
PrS(P) �= 0 → PrS(P |B(u)) �= 0.

Definition 4. A system is without information flow for a given abstraction level
if it is without information flow for all properties of this level.

We will consider three abstraction functions which are of interest in an ob-
vious way. If L = L′ and φ is identity, i.e., there is no abstraction, we will speak
of general information flow. If L′ is a singleton {l}, and φ(li) = l for every
li ∈ L, a trace on (H ∪ L′)ω expresses what happens on the high-level, as well
as whether two high-level events have been separated by a low-level event or
not (the identity of this low-level event does not matter). In this second case we
speak of sequential information flow. Finally, if L′ = {τ} and φ(τ) = τ , φ(li) = ε
for every li ∈ L \ {τ}, that is we are interested only in the projection on the
high-level of a trace, we will speak of high-level information flow.

The intuition behind this hierarchy of abstractions stems from the fact that
we may be interested whether an event x is followed by an event y, in other
words, in the presence of the pattern xy in a system trace.

212 D. Beauquier, M. Duflot, and M. Minea

If x and y are both high-level events, this property cannot be expressed
using the definition of high-level information flow, since any intervening low-
level events are projected out by the abstraction. However, it can be expressed
as a sequential property: (H ∪ {l})∗xy(H ∪ {l})ω.

If one of the events (say x) is low-level and the other one high-level, the
property can no longer be expressed by a sequential property, since the identity
of y is lost by abstraction to l. However, the presence of the pattern xy can still be
expressed as a general property: (H∪L)∗xy(H∪L)ω. This motivates considering
properties which preserve full information for both high- and low-level events.

Another example to motivate our framework is the following. Consider a
program where variables are classified as low (observable by low level users) or
high. The system consists of the set of executions of the program. A regular
property like ”during every time duration t (the duration is measured by the
number of events and t is a fixed integer), the high level variable x is updated
at least once”, in other words, it is impossible that there exists a time duration
t without an update of variable x can be of interest, and one can require that
the system does not suffer information flow for this property.

Let L0 = L \ {τ}.
We write E = (H ∪L0)ω ∪(H ∪L0)∗τω for the set of all infinite words formed

by actions from H and L. This is a superset of the set of system traces: Tr ⊆ E .
In the following, low level actions are denoted a, b, ..., sequences of low-level

actions u, v, ..., sequences of high-level actions α, β, ... and traces λ,λ
′,

Let S = (E, H, L,Tr , μ) be a system and T be the associated probabilistic
tree. We define:

Hn(Tr) = {(α1, ..., αn) ∈ (H∗)n|∃a1...an ∈ L α1a1α2a2...αnan ∈ Pref (Tr)}.
Hω

n (Tr) = {(α1, ..., αn) ∈ (H∗)n−1Hω|∃a1...an−1 ∈ L α1a1α2a2...αn ∈ Tr}.
Ln(Tr) = {(a1, ..., an) ∈ Ln|∃ α1 . . . αn ∈ H∗ α1a1α2a2...αnan ∈ Pref (Tr)}.
Trn = {α1a1α2a2 . . .αnan ∈ Pref (Tr)| αi ∈ H∗, ai ∈ L}.
We give below a characteristic property for a system S to be without sequen-

tial information flow. For this we need to introduce some technical terms related
to the probabilistic tree T .

We color edges labeled by a high-level action black and edges labeled by
a low-level action red. We are interested in the set of sequences of high-level
actions (including the empty word) which can occur starting from a node x. To
make this set of sequences more explicit we build for each such node x a ”black”
probabilistic tree Tx in the following way: we keep only the black edges reachable
in T from x, and for each node y (including x) accessible from x by a black path,
we add a node y′ and an edge (y, y′) labelled by ε and with a probability equal
to the sum p of the probabilities of red edges starting from y in T . The tree Tx

is a probabilistic tree which has the following meaning: the probability of a path
in Tx starting from x labelled by α (without ε labels) is exactly the probability
that the sequence of high-level actions α occurs from x; the probability of a path
in Tx starting from x labelled by α and ending in a leaf is the probability that
from x the sequence of actions α followed by a low-level action occurs.

A Probabilistic Property-Specific Approach to Information Flow 213

A node has the color of the edge ending in this node. The root is red.
Two red nodes x and x′ of T are H-equivalent if there exists an integer n

such that the labels of the paths from the root to x and x′ are respectively
α1a1α2a2...αnan and α1b1α2b2...αnbn where αi ∈ H∗ and ai, bi ∈ L.

We also need to state an equivalence property on L. Two nodes x and x′

of T are L-equivalent if there exists an integer n such that the labels of the
paths from the root to x and x′ are respectively α1a1α2a2...αn−1an−1αnan and
β1a1β2a2...βn−1an−1βnan where αi, βi ∈ H∗ and ai ∈ L.

A tuple (x, x′, y, y′) of red nodes of the tree T is H, L-compatible if x and
x′ are H-equivalent, y and y′ are H-equivalent, x and y are L-equivalent and
x′ and y′ are L-equivalent, i.e., there exist (α1, ..., αn), (β1, ..., βn) ∈ Hn, and
(a1, ..., an), (b1, ..., bn) ∈ Ln such that the paths from the root to x, x′, y, y′ are
labeled respectively by α1a1...αnan, α1b1...αnbn, β1a1...βnan and β1b1...βnbn.

Let p1, ..., pn, q1, ..., qn be the probabilities of edges labeled by a1, ..., an on
the path from the root to x (resp. y). Let p′1, ..., p

′
n, q′1, ..., q

′
n be the probabilities

of edges labeled by b1, ..., bn on the path from the root to x′ (resp. y′).
A H, L-compatible tuple (x, x′, y, y′) is perfect if for every i = 1, ..., n we have

pi/qi = p′i/q′i.
The systems we consider are supposed to satisfy:

(1) Tr is a closed subset of E
(2) For each measurable subset X of Tr , the closure X̄ is measurable and

PrS(X) = PrS(X̄).

We start by characterizing sequential information flow, where the identity
of low-level events is abstracted out, and only their position in the sequence of
events is preserved.

Theorem 1. A probabilistic system S such that Tr �⊂ Hω is without sequential
information flow iff

(1) ∀n > 0 Trn = Hn(Tr)⊗ Ln(Tr).
(2) Every H, L-compatible tuple of the tree T is perfect.
(3) For every pair of H-equivalent nodes x, x′ of T , the probabilistic trees Tx and

Tx′ are isomorphic.
(4) For every n > 0 (Ln(Tr) �= ∅→ PrS(Tr ∩ (H∗L)n−1Hω) = 0).

The intuition behind this characterization is the following: we don’t want the
low-level traces to give any information on the interleavings with the high level.
Then, if a sequential high-level trace is possible, this trace can occur whatever
the trace on the low level is. Point (4) states that observing that k low-level
actions have occurred doesn’t give any additional information, since all traces
of Tr have the same number of low-level events. Points (2) and (3) state that
probabilities of certain subtrees have to be equal or in equal ratios.

We give here only a sketch of the proof.
If the system has no information flow, then we prove (1), (4) and, by con-

tradiction, the existence of the same edges in Tx and Tx′ in (2). For the latter,
we exhibit properties for which, if one edge is not in T then for some u, v,

214 D. Beauquier, M. Duflot, and M. Minea

Pr(P |B(u)) > 0 and Pr(P |B(u)) = 0. The probabilistic parts of (2) and (3)
are proven by contradiction as well, assuming that there exist nodes with dif-
ferent ratios, considering the pair of nodes with the highest ratio and obtaining
information flow for some property.

The converse is proven by considering basic cylinders for which it is possible
to show that there is no information flow. Then we define measurable subsets Pn

which are disjoint unions of cylinders and we prove that there is no information
flow for these sets. Taking the limit of these sets we show that the absence of
information flow follows for P .

Next, we characterize general information flow, which turns out to be a very
strong property:

Theorem 2. The only systems with Tr �⊂ Hω which are without general infor-
mation flow are those which have a projection on L reduced to a single trace.

Proof. Suppose that the projection of Tr on L is a trace w. Since Tr �⊂ Hω

this trace w is different from ε and the finite non-empty low-level words u such
that B(u) �= ∅ are the finite prefixes of w. Moreover for such a trace u, we have
B(u) = Tr and in this case, the system is without general information flow.

Conversely, suppose that the projection on L of the trace set Tr contains two
different traces w and w′, and let u be their longest common prefix. Let a ∈ L
such that ua is a prefix of w′. Let P be the property which consists of the infinite
sequences in Tr whose projection on L is equal to w. We have PrS(P | B(u)) > 0
and PrS(P | B(ua)) = 0. Therefore S has general information flow. �

To our knowledge, there is no simple characterization of systems which are
without high-level information flow. It is immediate that any system without
sequential information flow is without high-level information flow, since the de-
finition of the latter has a coarser abstraction function. Also directly from the
definition, it follows that the projection of any nonempty bunch B(u) onto H
must be the same, otherwise, for a high-level sequence α ∈ H∗ distinguishing
between B(u) and B(v) we can take P = αHω and we have PrS(P |B(u)) �=
Prbs(P |B(v)), since one is zero and the other one not.

4 Relativized Information Flow

The definitions of the previous section capture information flow, but provide
no specific information about the time moment of the low-level observation and
the events whose occurrence are linked to it. For a more refined and relativized
view, one may wish to introduce the moment of observation in the property under
consideration. For example a question of interest could be: observing some partial
low-level trace at the current moment, what is the probability that the potential
trace satisfies some past or future or more generally some relativized property?
For example, what is the probability that starting from the current time, there
is still one high-level action which will occur? Or, what is the probability that
at current time, an event has occurred in the past, and will never occur in the
future?

A Probabilistic Property-Specific Approach to Information Flow 215

In this case, properties we are interested in are called relativized properties
and are defined as subsets of (φ(H∪L))∗×(φ(H∪L))ω , where φ is the abstraction
function. The first component represents the past, and the second one the future.

A property P is a past property (resp. future property) if P = R×φ((H∪L)ω)
(resp. P = φ((H ∪ L)∗)×R) where R ⊂ φ((H ∪ L)∗) (resp. R ⊂ φ((H ∪ L)ω)).

We state the definition of information flow in this relativized situation.
Let u ∈ L+ with B(u) �= ∅. For a relativized property P we define PrS(P, u)=

PrS({γ ∈ Tr | γ = γ1γ2, γ1|L = u, last(γ1) = last(u), (γ1, γ2) ∈ P})/PrS(B(u)).
The event {γ ∈ Tr | γ = γ1γ2, γ1|L = u, last(γ1) = last(u), (γ1, γ2) ∈ P}

corresponds to the situation when the low-level user observes u and the last
action which occurred is a low-level action. We assume that P is well-behaved
such that this event is a measurable set for every u ∈ L+.

We can give now a definition of relativized information flow:
Definition 5. A system S is without relativized information flow for a rela-
tivized property P of abstraction level φ if for every u, v ∈ L+ such that BS(u)
and BS(v) are nonempty, PrS(P, u) = PrS(P, v).

Definition 6. A system is without relativized information flow for a given ab-
straction level if it is without relativized information flow for all relativized prop-
erties of this level.

Again, one can use different levels of abstraction depending on the type of the
events whose occurrence is of interest. For instance, consider the high-level event
sequence xy, and assume one wishes to express that it occurs without any low-
level event intervening after the last event of the low-level observation u. This can
be expressed by the sequential relative property (H∪{l})∗×H∗xy(H∪{l})ω. (A
sequential property is needed to express the fact that x and y are not separated
by low-level events). If now one of the interesting events (say y) is low-level, we
need a general relative property so the identity of y is not abstracted away. For
instance, (H ∪L)∗ × (H ∪L)2xy(H ∪L)ω expresses that xy will occur with two
intervening events after the last low-level event of the given observation.

Theorem 3. The only systems such that Tr �⊂ Hω which are without relativized
general information flow are those which have a projection on L equal to τω.

Proof. Suppose that the projection of Tr on L is equal to τω , then the only
finite sequences u �= ε such that B(u) is non-empty are τn, n > 0, and in that
case PrS(P, τn) = PrS(P, τm) for all positive integers m, n for every relativized
general property P . We conclude that the system S has no relativized general
information flow.

Conversely, suppose that the projection of Tr on L contains a trace w �= τω .
Then the first action a of w is different from τ , otherwise w would be equal
to τω . Consider the property P = {(γ1a, γ2) ∈ E∗ × Eω | γ1|L = ε}. We have
PrS(P, a) > 0 and PrS(P, τ) = 0. Therefore S has a relativized general infor-
mation flow. �

The next theorem characterizes the systems without relativized sequential
information flow. Recall that in this case the abstraction function φ collapses all
the low-level actions into a single one, the action l.

216 D. Beauquier, M. Duflot, and M. Minea

Theorem 4. The only systems with Tr �⊂ Hω which are without relativized se-
quential information flow are those which satisfy one of the following conditions:

(1) the projection of Tr on L is reduced to τω

(2) the projection of Tr on L is a subset M of L and Tr = U ⊗ (M ×{ε}) where
U = {(α1, α2) |α1lα2 ∈ φ(Tr)} and and for every pair of H-equivalent
nodes x, x′ of T , of depth one, the probabilistic trees T (x) and T (x′) are
isomorphic.

Proof. If the system S satisfies condition (1) it is easy to conclude like in
Theorem 3 that S is without relativized sequential information flow.

If the system S satisfies condition (2), the only finite non-empty traces u ∈ L+

such that the bunch B(u) is non-empty are actions the a ∈ M . Clearly for every
relativized sequential property P , PrS(P, a) = PrS(P, b) for a, b ∈M .

Conversely, let S be a system without relativized sequential information flow.
Suppose that the projection of Tr on L is not reduced to τω. We have to prove
that S satisfies (2). The projection of Tr on L cannot contain a trace w with
more than one action and different from τω . Indeed suppose that w = abw′,
a, b ∈ L. Then Tr contains a trace αaβbλ, where α, β ∈ H∗, and λ ∈ (H ∪ L)ω.
Consider now the relativized sequential property P = {αl} × {βl}(H ∪ {l})ω.
We have PrS(P, a) �= 0 and PrS(P, ab) = 0. Contradiction. So the projection of
Tr on L is a subset M of L. Let us prove that Tr = U ⊗ (M × {ε}). Suppose
that there exists α1lα2 ∈ φ(Tr) and some a ∈ M such that α1aα2 �∈ Tr . Then
there is information flow for the property P = {αl}× (H ∪ {l})ω: PrS(P, a) = 0
and there exists b ∈M such that PrS(P, b) �= 0. Proving the other conditions of
(2) is straightforward, following steps of the proof of Theorem 1. �

The absence of relativized sequential information flow is a very strong prop-
erty, and as seen from the conditions in Theorem 4, very few probabilistic event
systems have this property. This stems from the fact that, in expressing the
property P , a trace is split into two parts, just after the occurrence of a low-
level event. If it is possible to observe more or fewer low-level actions in a trace
than specified in the property, there is information flow.

But it is still interesting to consider low-level traces of the same length n,
and examine if they give some additional high-level information (besides the fact
that n low-level events have occurred). We are then interested in a weaker notion
of “no information flow” for a relativized sequential property, namely:

Definition 7. A system S is without information flow at each fixed step for a
relativized property P if PrS(P, u) = PrS(P, v) for every u, v ∈ L+ such that
|u| = |v| and B(u), B(v) are non-empty.

In order to characterize the systems without sequential relativized information
flow at each fixed step we need to introduce a new definition. In the probabilistic
tree T of the system, the red depth of a node is the number of red edges on the
path from the root to it.

Theorem 5. A system S such that Tr �⊂ Hω is without sequential relativized
information flow at each fixed step iff

A Probabilistic Property-Specific Approach to Information Flow 217

(1) ∀n > 0 Trn = Hn(Tr)⊗ Ln(Tr).
(2) ∀n > 0, all nodes of red depth n with outgoing red edges are equivalent
(3) For every H-equivalent nodes x, x′ of T (S), the probabilistic trees Tx and Tx′

are isomorphic.

The proof of this theorem is based on the lemma given below which links
sequential relativized information flow at each fixed step with sequential rela-
tivized information flow. Then we can reuse the proof of Theorem 1.

Lemma 1. Let RE ′ be a sequential property on traces where R ⊂ (H ∪ l)∗ and
E ′ = (H ∪ l)ω ∪ (H ∪ l)∗τω . Then, for PR = {(γ1, γ2) | |γ1|L | = n, last(γ1) =
l, γ1γ2 ∈ RE ′}, for every u of length n we have PrS(PR, u) = PrS(RE ′|B(u)).

5 Comparison with Some Classical Security Properties

In this section we restrict ourselves to finite systems, for which Tr ⊆ (H∪L)∗τω ,
and we suppose that τ ∈ L. Denote by E0 the set H ∪ L0, where L0 = L \ {τ}.

We identify an element of Tr with its shortest prefix ending with the action τ .
Given a trace λ and a system S, the low-level user observing λ|L0τ can construct
the set of system traces which correspond to the same observation, the low-level
equivalent set [18] of λ:

For λ ∈ E∗
0{τ}, LLES(λ, S) = {β ∈ Tr | λ|L0 = β|L0}.

We will show that separability, noninterference and noninference can be ex-
pressed in our framework and correspond to the absence of information flow for
some classes of properties.

1. Noninference
Noninference is a security property which was introduced by O’Halloran [14].

It requires that every trace λ of the system admits in its low-level equivalent set
its projection λ|L0 . As a consequence a low-level user cannot deduce from an
observation the existence of any occurrence of a high-level action:

Noninference(S) ≡ ∀λ ∈ Tr ∃u ∈ LLES(λ, S) u ∈ L∗
0τ .

Consider the property NonInf = L∗
0τ ⊂ (H ∪ L0)∗τ . A trace satisfies this

property iff it does not contain high-level actions. Thus this property exactly
focuses on the (non) existence of a high-level activity. It turns out that nonin-
ference can be expressed in terms of information flow for the property NonInf .

Theorem 6. For a probabilistic system S, Noninference(S) holds iff
PrS(NonInf) �= 0 and there is no qualitative general information flow for the
property NonInf .

Proof. Suppose PrS(NonInf) �= 0 and there is no qualitative general in-
formation flow for the property NonInf . Let λ be a trace ∈ Tr . Consider the
projection u = λ|L. Since B(u) is non-empty, PrS(NonInf) �= 0 and there is
no qualitative general information flow for the property NonInf . So we have
PrS(NonInf , u) �= 0. It proves that u ∈ Tr because B(u)∩NonInf = {u}. Thus,
Noninference(S) is true.

218 D. Beauquier, M. Duflot, and M. Minea

Conversely, suppose that Noninference(S) holds. Let λ ∈ Tr , and u = λ|L.
Then PrS(NonInf) �= 0, since u is also in Tr . Suppose there exists some v ∈ L∗

such that PrS(NonInf , v) = 0 and B(v) is non-empty. There exists some λ′ in
B(v), and the projection w of λ′ on L belongs to Tr and v is a prefix of w. So,
PrS(NonInf , w) > 0, but PrS(NonInf , v) > PrS(NonInf , w), a contradiction.
No qualitative general information flow for the property NonInf can occur. �

Moreover, we can quantify the degree of noninference by measuring the maxi-
mal value of |PrS(NonInf)−PrS(NonInf |B(u))| for all non-empty B(u), u ∈ L∗.

2. Separability
Separability is aimed to express a complete independence between the se-

quences of actions at high and low level:
Separability(S) ≡ ∀λ ∈ Tr ∀λ′ ∈ Tr interl(λ|L0 , λ

′
|H)τ ∈ Tr .

Again this security property can be expressed in terms of qualitative sequen-
tial information flow for some set of properties. For each ξ1, ..., ξn ∈ H∗, let
Sepξ1,...,ξn be the following predicate defined on (H ∪ {l})∗:

Sepξ1,...,ξn(λ) holds iff λ = ξ1lξ2l...ξplξp+1ξp+2...ξnl for some p ≤ n.

Theorem 7. For a probabilistic system S, Separability(S) holds iff for any prop-
erty Sepξ1,...,ξn, where ξ1...ξn ∈ Tr |H , PrS(Sepξ1,...,ξn) �= 0 and there is no
qualitative sequential information flow for these properties.

Proof. Suppose Separability(S) holds. Consider the property Sepξ1,...,ξn for
some ξ1, ..., ξn ∈ Tr |H . Suppose PrS(Sepξ1,...,ξn) = 0. Let v = a1a2...ap be the
projection on L of some trace in Tr . If p ≥ n then ξ1a1ξ2a2...ξnanan+1...ap ∈ Tr ,
and if p < n then ξ1a1ξ2a2...ξpapξp+1...ξn ∈ Tr . The two cases contradict
PrS(Sepξ1,...,ξn) = 0. Suppose that for some ξ1...ξn ∈ Tr|H , there is qual-
itative sequential information flow for property Sepξ1,...,ξn . This means that
PrS(Sepξ1,...,ξn) �= 0 and there exists u ∈ L+ with PrS(Sepξ1,...,ξn | B(u)) = 0
and B(u) is non-empty.

Let v = a1a2...ap be the projection on L of some trace in B(u). If p ≥ n then
ξ1a1ξ2a2..., ξnanan+1...ap ∈ Tr which contradicts PrS(Sepξ1,...,ξn | B(u)) = 0. If
p < n then ξ1a1ξ2a2..., ξpapξp+1...ξn ∈ Tr which contradicts again the fact that
PrS(Sepξ1,...,ξn | B(u)) = 0.

Conversely, suppose there is no qualitative sequential information flow for
any property Sepξ1,...,ξn , where (ξ1, ..., ξn) ∈ Hn(Tr) and there exists λ, λ′ ∈ Tr
and ν ∈ interl(λ|L0 , λ

′
|H)τ such that ν �∈ Tr .

The trace ν can be written ξ1a1ξ2a2...ξn−1an−1ξnτ , where ξ ∈ H∗, and ai ∈
L0. Thus PrS(Sepξ1,...,ξn | B(a1a2...an−1τ)) = 0 with B(a1a2...an−1τ) non-
empty since a1a2...an−1τ = λ′

|H . Therefore PrS(Sepξ1,...,ξn) must be equal to
zero since there is no information flow for this property. �

3. Noninterference
Noninterference is a security property introduced by Goguen and Meseguer

[5] and generalized by McCullough [11]. It demands that a low-level user cannot
infer that any sequence of high-level inputs has (not) occurred. Let HI ⊂ H (resp.
HO) is the set of high-level input (resp. output) actions. We have HI∩HO = ∅.

A Probabilistic Property-Specific Approach to Information Flow 219

∀λ ∈ Tr ∀γ ∈ interl(HI∗, λ|L0)∃δ ∈ LLES(λ, S) γ = δ|L0∪HI

For each μ1, ..., μn ∈ HI∗ let Noninterμ1,...,μn = interl(HO∗, μ1lμ2l...μnl)×
(H ∪ l)ω. In a similar way to Theorem 7, one can prove

Theorem 8. For a given probabilistic system S, Noninterference(S) holds iff
for each n, for each μ1, ..., μn ∈ HI∗ PrS(Noninterμ1,...,μn , u) �= 0 for every
u ∈ Ln such that B(u) is non-empty.

6 Conclusion

We have studied probabilistic information flow from a point of view parame-
terized by user-specified properties of interest. A property is a set of system
traces, possibly viewed through an abstraction function. Our definitions support
a range of property classes, e.g., referring to high-level events only, or high-level
sequences separated by low-level events. We also allow specifications where a
distinction is made between the past and future fragments of a trace. In this
way, we can define (absence of) information flow for a given property, or for an
entire set of properties of a given class.

We have given theorems that characterize the structure of systems for which
absence of information flow according to these notions is guaranteed: for instance,
a certain isomorphism between probabilistic trees is needed for properties which
can distinguish subsequences of high-level events separated by low-level ones. We
have also shown how several classic notions of possibilistic information flow (non-
inference, noninterference and separability) can be expressed using qualitative
versions of our definitions.

We believe that this property-specific fashion of characterizing information
flow is useful because it can be adapted to the particularities of the system
under analysis. In many cases, a mere division into high- and low-level events
and a single definition of information flow policy may not be enough, whereas
our approach allows for a finer granularity of reasoning depending on the
property.

An issue for future research is to apply this framework in the case where
systems and properties are explicitly given as Markov chains and regular lan-
guages, respectively, and to investigate the decidability of the above notions of
information flow in this setting.

Acknowledgements. We are grateful to Anatol Slissenko for the numerous and
fruitful discussions of the approach studied in this paper.

References

1. Aldini, A., Bravetti, M., Gorrieri, R.: A process-algebraic approach for the analysis
of probabilistic noninterference. Journal of Computer Security, 12 (2004) 191–246

2. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
17th IEEE Computer Security Foundations Workshop. IEEE Computer Society
(2004) 100–114

220 D. Beauquier, M. Duflot, and M. Minea

3. Clark, D., Hunt, S., Malacaria P.: Quantified interference for a while language.
Electronic Notes Theoretical Computer Science, 112 (2005) 149–166

4. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: parameterizing non-
interference by abstract interpretation. Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. ACM (2004) 186–
197

5. Goguen, J.A., Meseguer, J.: Security policies and security models. Proc. IEEE
Symp. on Security and Privacy (April 1982) 11–20

6. James W. Gray III: Toward a mathematical foundation for information flow se-
curity. Proc. 1991 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press (1991) 21–35

7. J.W. Gray III: Probabilistic interference. Proc. IEEE Symp. on Security and Pri-
vacy (May 1990) 170–179

8. Halpern, J.Y., O’Neill, K.R.: Secrecy in multiagent systems. Proc. IEEE Computer
Security Foundations Workshop (2002)

9. Lowe, G.: Quantifying information flow. Proc. IEEE Computer Security Founda-
tions Workshop (June 2002) 18–31

10. Mantel, H.: Possibilistic definitions of security – An assembly kit. Proc. IEEE
Computer Security Foundations Workshop (July 2000) 185–199

11. McCullough, D.: Specifications for multi-level security and hook-up property. Proc.
IEEE Symp. on Security and Privacy (April 1987) 161–166

12. McLean, J.: Security models and information flow. Proc. IEEE Symp. on Security
and Privacy (May 1990) 180–187

13. McLean, J.: A general theory of composition for trace sets closed under selective
interleaving functions. Proc. IEEE Symp. on Security and Privacy (May 1994)
79–93

14. O’Halloran, C.: A calculus of information flow. Proc. of the European Symposium
on Research in Security and Privacy (ESoRiCS’90) (1990) 180–187

15. Di Pierro, A., Hankin, C., Wiklicky, H.: Approximate non-interference. Journal of
Computer Security, 12 (2004) 37–82

16. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
Proc. IEEE Computer Security Foundations Workshop (July 2000) 200–214

17. Slissenko, A.: On probabilistic modeling of information flow. Talk at a working
seminar of LACL (2004)

18. Zakinthinos, A., Lee, E.S.: A general theory of security properties. Proc. IEEE
Symp. on Security and Privacy. IEEE Computer Society Press (1997) 74–102

Generalized Abstract Non-interference:
Abstract Secure Information-Flow

Analysis for Automata

Roberto Giacobazzi and Isabella Mastroeni

Dipartimento di Informatica - Università di Verona, Italy
roberto.giacobazzi@univr.it

mastroeni@sci.univr.it

Abstract. Abstract non-interference has been introduced as a weaken-
ing non-interference which models attackers as abstract interpretations
(i.e., static analyzers) of programming language semantics. In this paper
we generalize the notion of abstract non-interference to deal with tree-
like models of computation. This allows us to widen the scope of abstract
non-interference for modeling security properties in automata, timed au-
tomata as models of real-time systems, and concurrent systems. We show
that well known definitions of non-interference in these models of com-
putation can be viewed as instances of our generalization. This proves
that abstract non-interference can reasonably be considered as a general
framework for studying and comparing security properties at different
levels of abstraction in both programming languages and systems. More-
over, the most precise harmless attacker of a system is systematically
derived by transforming abstract domains, characterizing the security
degree of automata and concurrent systems.

1 Introduction

Non-interference [15] is a key notion in language based security. The idea is
that no information about confidential data can be obtained by observing public
information. The standard methods used for preventing interference are based
on access control, i.e. higher privileges are required in order to access files con-
taining confidential data. The problem with these methods is that, after access,
there is no further control on how confidential information flows during execu-
tion. Hence, many techniques for checking secure information flows in software
and systems, ranging from standard data-flow/control-flow analysis techniques
to type inference, are studied, based on non-interference (see [22] and [11] for
excellent surveys). All these approaches are devoted to prove that a system as
a whole, or parts of it, does not allow confidential data to flow towards public
variables. Type-based approaches are designed in such a way that well-typed
programs do not leak secrets. In a security-typed language, a type is induc-
tively associated at compile-time with program statements in such a way that
any statement showing a potential flow disclosing secrets is rejected [25,27,28].

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 221–234, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

222 R. Giacobazzi and I. Mastroeni

Similarly, data-flow/control-flow analysis techniques are devoted to statically
discover flows of secret data into public variables [4,18,19,23]. In concurrency,
bisimulation is used to prove equivalence between computations where private
actions are hidden with respect to the same system’s computations where these
actions are avoided [10]. In real-time systems trace equivalence is used to prove
that the computations where private actions are avoided are equivalent to the
same system’s computations where these actions are admitted with a minimum
fixed delay, and then hidden to the attacker [2]. These notions are all based on
the same principle, which is non-interference, but they can be hardly recognized
as instances of a same construction. This is due to the fact that different aspects
of the underlying computational models become crucial in order to provide ex-
pressive enough notions of secrecy in sequential, non-deterministic, concurrent
and real-time systems. While in sequential programs we are mainly concerned
with non-interference in input/output behavior, in concurrency and in real-time
we are, respectively, mainly concerned with interleaving actions and time delays.

Standard non-interference is often too strict for any practical use in language-
based security: most programs are rejected by static control/data flow analyzers
or type checkers for non-interference. In order to adapt security policies to practi-
cal cases, it is essential to know how much an attacker may learn from a program
by (statically) analyzing its input/output behavior. This idea led to the defini-
tion of the notion of abstract non-interference [14], which captures a weaker
form of non-interference. Namely, non-interference is made parametric relatively
to some abstract property, formalized as an abstract interpretation [7], of the
input/output behavior. This notion however is not adequate to cope with more
complex systems like concurrent and real-time systems. In particular, as stated
in [14], abstract non-interference strongly relies upon a denotational model of
computation, which is inadequate for modeling security protocols for instance.

Main Contribution and Related Works. In this paper, we prove that the no-
tion of abstract non-interference introduced in [14] can be generalized in order
to cope with many well-known models of secrecy in sequential, concurrent and
real-time systems and languages. This is achieved by factoring abstractions in
order to identify sub-abstractions modeling the different properties of the system
on which the notions of non-interference are based. Abstract interpretation [7]
and the theory of abstract domain transformers [8] plays a key role in this gen-
eralization: The abstraction represents here both what an attacker may observe
about a computation (as in abstract non-interference [14]) and which aspects of
the computation are relevant for checking non-interference. In this context, non-
interference corresponds to asking that the behavior of the chosen relevant as-
pects of the computation is independent from what an attacker may observe. We
prove that both narrow and abstract non-interference in [14] are instances of our
generalized abstract non-interference (GANI). Then we prove that NNI (Non-
deterministic Non-Interference), SNNI (Strong NNI), NDC (Non-Deducibility
on Compositions), BNDC (Bisimulation NDC), BNNI (Bisimulation NNI), and
BSNNI (Bisimulation SNNI) in [10] for Security Process Algebras (SPA), are all
instances of GANI. Finally, we prove that decidable notions of non-interference

Generalized Abstract Non-interference 223

introduced for timed automata in [2] are again instances of GANI. In all these
constructions, the model of an attacker is specified as an abstract interpretation
of the system semantics. This is a key point in order to introduce systematic
methods for deriving attackers by transforming abstract domains. We general-
ize the method introduced in [14] to derive harmless attackers for GANI, i.e.,
abstractions of the semantics of systems which guarantee non-interference.

This is not the first attempt neither for deriving general schemes for security
policies [12], nor for trying to bridge language-based and process-calculi secu-
rity [13,16,20]. In particular, in [12] the authors provide a uniform method for
defining computer security properties for process algebras, obtaining a quite flex-
ible schema for reasoning about different properties. What we do in this paper is
something similar since the aim is the same, but in a more general context which
ranges from language based-security to process algebras, to timed automata. The
problem of studying the link between language-based and process calculi secu-
rity is well known in literature. In particular, recently [13] this problem has been
approached by transforming imperative language in a CCS-like process calculus,
and by defining a notion of BNDC which corresponds for imperative languages to
the standard notion of non-interference. In our case, we don’t have to transform
programs, since we consider a general model that can cope with both imperative
programming languages and process algebras.

2 Information Flows in Language-Based Security

Non-interference can be naturally expressed by using semantic models of pro-
gram execution. This idea goes back to Cohen’s work on strong dependency
[5], which uses denotational semantics for modeling how information can be
transmitted among variables during the execution of programs. Therefore non-
interference for programs essentially means that “a variation of confidential
(high or private) input does not cause a variation of public (low) output” [22].
When this happens, we say that the program has only secure information flows
[3,5,9,18,26]. This situation has been modeled by considering the denotational
(input/output) semantics �P � of the program P . In particular, we consider pro-
grams where data are typed as private (H) or public (L). Program states in Σ
are functions (represented as tuples) mapping variables in the set of values V. If
T ∈ {H, L}, n = |{x ∈ Var(P)|x : T}|, and v ∈ Vn, we abuse notation by writing
v ∈ VT when v is a value for the variables with security type T. Moreover, we
assume that any input s, can be seen as a pair (h, l), where sH = h is a value
for private data and sL = l is a value for public data. In this case, (standard)
non-interference can be formulated as follows:

A program P is secure if ∀ input s, t . sL = tL ⇒ (�P �(s))L = (�P �(t))L.

This problem has been formulated also as a Partial Equivalence Relation (PER)
[17,23]. In [14], the notion of abstract non-interference is introduced for mod-
eling both weaker attack models, and declassification. The idea is that, instead
of observing the concrete semantics of programs, namely the concrete values of

224 R. Giacobazzi and I. Mastroeni

Table 1. Narrow and Abstract Non-Interference

[η]P (ρ) if ∀h1, h2∈VH, ∀l1, l2∈VL. η({l1})=η({l2})⇒ρ({�P �(h1, l1)L})=ρ({�P �(h2, l2)L})

(η)P (φ �[]ρ) if ∀h1, h2∈VH, ∀l∈VL. ρ(�P �(φ({h1}), η({l}))L) = ρ(�P �(φ({h2}), η({l}))L)

public data, the attackers can only observe properties of public data, namely ab-
stract semantics of the program. For this reason we model attackers by means of
abstract domains. Formally, the lattice of abstract domains of a concrete domain
C is isomorphic to the lattice uco(C) of all the upper closure operators on C [8].
An upper closure operator ρ : C → C on a poset C is monotone, idempotent,
and extensive1. The model of an attacker , also called attacker , is therefore a pair
of abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL)), representing what an observer can
see about, respectively, the input and output of a program. The notion of nar-
row (abstract) non-interference (NANI), denoted [η]P (ρ), is given in Table 1. It
says that if the attacker is able to observe the property η of public input, and
the property ρ of public output, then no information flow concerning the pri-
vate input is observable from the public output. The problem with this notion is
that it may introduce deceptive flows [14], generated by different public outputs
due to different public inputs with the same η property. Consider, for instance,
[Par]l := l∗h2(Sign)2, then we can observe a variation of the output’s sign due to
the existence of both negative and positive even numbers, revealing flows not due
to private data, since h cannot affect the sign of the result. Most known mod-
els for weakening non-interference (e.g., PER model [23]) and for declassifying
information (e.g., robust declassification [29]) corresponds to instances of NANI
[14,17]. In order to avoid deceptive interference we introduce a weaker notion of
non-interference. In this case, the set of all the elements sharing property η is
used as the public input. Moreover we consider also a property φ ∈ uco(℘(VH)),
modeling the private property that has not to be observed by the attacker 〈η, ρ〉.
This notion, denoted (η)P (φ �[]ρ), is called abstract non-interference (ANI) and
is defined in Table 1.

Note that [id]P (id) models exactly (standard) non-interference. Moreover,
we have that abstract non-interference is a weakening of both, standard and
narrow non-interference: [id]P (id) ⇒ (η)P (φ �[]ρ) and [η]P (ρ) ⇒ (η)P (φ �[]ρ),
while standard non-interference is not stronger than the narrow version, due to
deceptive interference. In [14], two methods for deriving the most concrete output
observation for a program, given the input one, for both narrow and abstract
non-interference are provided. In particular the idea is that of abstracting in the
same object all the elements that, if distinguished, would generate a visible flow.
These most concrete output observations, that are not able to get information
from the program P observing η in input, are, respectively, denoted [η]�P �(id)
and (η)�P �(φ �[]id), both in uco(℘(VL)).

1 ∀x ∈ C. x ≤C ρ(x).
2 Note that Par

def= {�, ev, od,⊥} and Sign
def= {�, 0+,−,⊥}.

Generalized Abstract Non-interference 225

3 Generalized Abstract Non-interference

In this section, we introduce a generalization of abstract non-interference, called
generalized abstract non-interference (shortly GANI), which subsumes many of
the known notions of non-interference based on tree-like computations and au-
tomata. Abstract interpretation plays a key role in this generalization: The ab-
straction represents here both what an attacker may observe about a computa-
tion (as in abstract non-interference) and which aspects of the computation are
relevant for checking non-interference, aspects determined by the specific notion
of non-interference that we have to enforce on the system. Non-interference cor-
responds to asking that relevant (confidential) aspects of the computation have
no effects on what an attacker observes of the computation. Moreover, what an
attacker may observe is indeed composed by two aspects: what the particular
notion of non-interference allows to observe, and what effectively the attacker
can observe. In the following, we consider computational systems S modeled by
their tree semantics {|S|}, i.e., the set of all the trees of computations of S. The
corresponding trace and I/O denotational semantics are, respectively, denoted
by 〈|S|〉 and �S�.

We define generalized non-interference by means of three abstractions in the
standard framework of abstract interpretation, i.e., additive functions, each one
with a specific and precise meaning, depending on the given notion of non-
interference, and depending on the attacker model. The chosen policy of non-
interference decides two of these abstractions:

αOBS: The first abstraction αOBS abstracts the tree semantics in the model used
in the notion of non-interference that has to be enforced. Note that, the ab-
straction level chosen for defining non-interference corresponds to delegating
particular parts (i.e., aspects) of the system to release information [24]. For
instance, if we want to check standard non-interference for imperative pro-
gramming languages, then αOBS corresponds to the denotational semantics ab-
straction of the computational tree. We call this abstraction the observation
abstraction. Such an abstraction extracts always an observational property
from semantic trees, e.g., all the computational traces, the I/O relations,
etc.;

αINT: The second abstraction αINT characterizes the maximal amount of informa-
tion that an attacker should observe, in the chosen policy. This abstraction
regulate what information may be released [24]. For example, if we have to
check non-interference in Spa [10], then we want the computations where pri-
vate actions are hidden to be equivalent to the computations where private
actions are avoided. Namely the set of all the computations where private
actions are avoided is the maximal information that the attacker is allowed
to observe. In this case αINT selects only those computations where private
actions are not executed. This abstraction, called interference abstraction,
forgets about all information which should not be observed by an attacker.
Such an abstraction always selects the subset of the possible computations
that we allow the attacker to observe, namely it is such that for each X in
its domain, αINT(X) ⊆ X .

226 R. Giacobazzi and I. Mastroeni

These two abstractions tells us that, in general, non-interference holds whenever
the amount of information that an attacker can grasp from a computation is
precisely what, for the given notion of non-interference, that attacker is allowed
to observe about it.

Finally, we have to model the observational capability of the passive attacker
observing the system, and we consider a further abstraction αATT, called attacker
abstraction, which characterizes the model of the attacker, namely what it can
observe of the system behavior. In this case the attacker is passive since it cannot
interfere with the execution of the program, and it cannot control the inputs of
the system. By using these three abstractions we define generalized abstract
non-interference for the system S as

αATT◦αOBS({|S|}) = αATT◦αINT◦αOBS({|S|})
This equation says that, in the
model chosen by αOBS, the maximal
amount of information that the at-
tacker is allowed to observe, deter-
mined by αATT◦αINT, is exactly what
the attacker does observe, deter-
mined by αATT. In other words, this
definition of non-interference says
that the attacker, modelled by the
abstraction αATT, cannot distinguish
between the observable computa-
tions (αOBS) and the set of only
those computations that the at-
tacker should observe (αINT◦αOBS).

αOBS

αINT
({|S|})

{|S|}

αATT

=

αATT

αOBS ({|S|})αOBSαINT

αOBSαATT αINTαATT αOBS({|S|}) ({|S|})

The Generalized Non-Interference Policy. It is worth noting that this definition
of GANI in general is characterized by a possibilistic interpretation of equality
and doesn’t provide an explicit notion of non-interference. Indeed, in ANI [14],
the non-interference policy states that all the computations with the same public
input has to provide the same public outputs. We can think of generalizing the
notion of non-interference by checking the equality of public observations of the
outputs for all the computations sharing a common maximal partial execution,
instead of sharing only the public input. Consider the tree semantics {|S|} of the
system S.

A system S is secure if ∀σ ∈ αINT◦αOBS({|S|}), ∀δ ∈ αOBS({|S|}) .
δ �max σ ⇒ αATT(δ) = αATT(σ)

where the relation �max, specifies the maximal subtree which δ shares with an el-
ement in αOBS({|S|}). The definition above clearly, depends on the subtree relation
�. Consider σ ∈ αINT◦αOBS({|S|}) and consider δ ∈ αOBS({|S|}): δ �max σ if

∃π � δ . π � σ ∧ ∀π′ �= π . π � π′ � δ, ∀σ′ ∈ αOBS({|S|}) then π′ �� σ′

Generalized Abstract Non-interference 227

The definition above is based on the observation that if a computation has a
maximal partial computation in common with what can be surely observed by
the attacker, then it is in those points, where the common partial computations
end, that some private action has interfered in the computation.

Example 1. Let A be a system, if αOBS({|A|}) = {1 → 2 → 3, 1 → 2 → 4, 1 → 3 → 2}
and αINT◦αOBS({|A|}) = {1 → 2 → 3, 1 → 3 → 2} then 1 → 2 → 3 �max 1 → 2 → 3,
1 → 2 → 4 �max 1 → 2 → 3 and 1 → 3 → 2 �max 1 → 3 → 2.

3.1 Abstract Non-interference as GANI

In this section, we show that abstract non-interference [14], which general-
izes standard non-interference [5,15], is an instance of GANI. For determinis-
tic programs the standard denotational semantics is given as the abstraction
approximating traces with input/output relations (functions for deterministic
programs) [6]3. Let X be a set of traces, the denotational semantics is defined:
αD(X) = λσ
.

{
σ�
∣∣σ ∈ X, |σ| < ω

}∪{ ⊥ ∣∣ |σ| = ω
}
, where σ
 and σ� denote

respectively the initial and the final states of the trace σ. Given two closures
φ ∈ uco(VH) and η ∈ uco(VL), we define the abstraction αη

φ : (Σ → Σ) −→
℘(℘(Σ)× ℘(Σ)) such that for any f : Σ −→ Σ:

αη
φ(f) =

{ 〈S
, S�〉
∣∣S
 = 〈φ(h), η(l)〉, h ∈ VH, l ∈ VLS� = f(φ(h), η(l))

}
The idea is to abstract denotational input/output semantics to the set of all the
possible associations between the corresponding input/output abstract states. In
this way, we model the observation made by the attacker, which consists precisely
in the ability to observe input/output abstract values. Consider the function
CH : ℘(VH) −→ VH that uniquely chooses an element in the domain of values VH.
Note that the equation ∀h1, h2. ρ(�P �(〈φ(h1), η(l)〉)L) = ρ(�P �(〈φ(h2), η(l)〉)L) is
equivalent to the equation ∀h. ρ(�P �(〈φ(h), η(l)〉)L) = ρ(�P �(〈φ(CH(VH)), η(l)〉)L).
Therefore abstract non-interference can be formulated as follows:

∀h ∈ VH . ρ(�P �(φ(h), η(l))L) = ρ(�P �(φ(CH(VH)), η(l))L)

At this point, we can define the interference abstraction αANI : ℘(℘(Σ) × ℘(Σ))
−→ ℘(℘(Σ) × ℘(Σ)), which selects only the observation with the fixed private
input, hence for any F ∈ ℘(℘(Σ)× ℘(Σ)):

αANI(F) =
{ 〈S
, S�〉 ∈ F

∣∣∃l ∈ VL . S
 = 〈φ(CH(VH)), η(l)〉 }
In order to obtain abstract non-interference, we assume that the attacker may
observe only the ρ abstraction of the low output. This process is encoded by
the attacker abstraction, which depends upon the input/output abstractions
η, ρ ∈ uco(℘(VL)), i.e., αρη

ATT
: ℘(℘(Σ)× ℘(Σ)) −→ ℘(℘(VL)× ℘(VL)) where

αρη
ATT

(F) =
{ 〈η(XL), ρ(YL)〉

∣∣ 〈〈XH, XL〉, 〈YH, YL〉〉 ∈ F
}

Then, we can specify abstract non-interference in the following theorem.
3 For deterministic systems the trace semantics coincides with the tree semantics.

228 R. Giacobazzi and I. Mastroeni

Theorem 1. αρη
ATT

◦αη
φ(�P �) = αρη

ATT
◦αANI◦αη

φ(�P �) iff (η)P (φ �[]ρ).

Note here that the observation abstraction is the composition αη
φ◦αD.

As far as the narrow case is concerned, we have to check if the possible
executions with the high variable ranging on the whole concrete domain VH and
the low variables ranging on the set of values with the same property η are equal
to the interference abstraction obtained by setting the high variable to CH(VH)
and the low one to any fixed value in the given property of low variables. This
means that we have to change the interference abstraction given above as follows,
where CL : ℘(VL) −→ VL is a function that uniquely selects an element from sets
of values: αNANI : ℘(℘(Σ)× ℘(Σ)) −→ ℘(℘(Σ)× ℘(Σ))

αNANI(F) =
{

f

∣∣∣∣∃l ∈ VL . f = 〈〈CH(VH), η(l)〉, S�〉〈〈CH(VH), l′〉, S�〉 ∈ F
l′ = CL(

{
y ∈ VL

∣∣η(y) = η(l)
}
)

}
Therefore, we can rewrite also narrow abstract non-interference (NANI).

Theorem 2. αρη
ATT

◦αid

id
(�P �) = αρη

ATT
◦αNANI◦αid

id
(�P �) iff [η]P (ρ).

3.2 GANI in Concurrency

In [10], the authors introduced a classification of security properties for security
process algebras . Since process algebras can be modeled by computational trees,
we show how different security properties defined in [10] can be re-interpreted
as instances of the generalized abstract non-interference. In the following we
consider the process algebra Spa introduced in [10]. We only remind the reader
that, if L ⊆ Act, then P\L can execute all the actions P is able to do, provided
that they do not belong to L, P\IL can execute all the actions P is able to do,
provided that they do not belong to L ∩ I, and P/L hides the actions in L.

Consider a process P ∈ Spa, whose computational tree is {|P |}. We start by
considering NNI (non-deterministic non-interference) which is defined by using
the trace equivalence ≈T in the following way: (P\IH)/H ≈T P/H, where P/H
means that all the action in H (high) are hidden, i.e., they are substituted by
the internal action ε, while P\IH means that all the actions in H which are
input actions cannot be executed by P . Then, we can translate this definition as
GANI. It is clear that the definition of NNI considers the concrete system P , this
means that αOBS

def= id. On the other hand, we have that what an external user
can observe is the system having the high actions hidden. Therefore, we have
to define the attacker abstraction that hides high-level actions. In the following
let TAct be the set of all the semantic trees on the set of actions Act, while let
TL be the set of all the semantic trees where the private actions are hidden.
Let τ ∈ TAct and consider the following function: low : TAct −→ TL such that
low(τ) is the tree where any label σ ∈ H in τ is substituted by ε. Let {|P |}
the semantics of P specified as a computational tree. We define the function
αlow as follows: αlow({|P |}) =

{
low(τ)

∣∣ τ ∈ {|P |} }. This specifies the attacker
abstraction in GANI and it is such that: {|P/H|} = αlow({|P |}). Moreover, we
can note that NNI is defined by using trace equivalence, this means that the

Generalized Abstract Non-interference 229

attacker can analyze traces of computations only. By definition two systems are
trace equivalent if they accept the same language, therefore we have to make
equal the αT abstraction of the result, namely αATT

def= αT◦αlow. Finally, consider
the operation P\IH which avoids high-level inputs. Let I be the set of input
actions, then we can define the abstraction: αI

L : ℘(TAct) −→ ℘(TAct) such
that for any T ⊆ TAct: αI

L(T) =
{

τ ∈ T
∣∣∀σ ∈ τ . σ /∈ H ∩ I

}
, where σ ∈ τ

is a shorthand notation for σ being an action (node) in τ . Then we have that
{|P\IH|} = αI

L({|P |}). At this point, we can derive the NNI as:

αT◦αlow({|P |}) = (αT◦αlow)◦αI
L({|P |})

Consider now the notion of Strong Non-deterministic Non-Interference (SNNI)
defined in [10]: P satisfies SNNI iff P/H ≈T P\H. In order to define SNNI as
an instance of the generalized abstract non-interference, we have to define the
operator P/H, that hides all the high-level actions. Let αL : ℘(TAct) −→ ℘(TAct)
be the map such that ∀T ⊆ TAct :αL(T) =

{
τ ∈ T

∣∣∀σ ∈ τ . σ ∈ L
}
. This defines

the interference abstraction in GANI and it is such that {|P\H|} = αL({|P |}) .
The standard notion of SNNI introduced in [10] can be defined as

αT◦αlow({|P |}) = αT◦αlow◦αL({|P |}).
At this point, since bisimulations are equivalence relations [21], they can be
viewed as abstractions of computational trees, i.e., a tree is abstracted into
the equivalence class of all the trees bisimilar to it, then we can model both
BNNI and BSNNI. In this context, we obtain this by substituting to αT, the
abstraction αB, corresponding to the given chosen bisimulation, which associates
with a computation the set of all the computations bisimilar to the given one.

Consider now non-deducibility on compositions (NDC) and the bisimulation-
based NDC (BNDC) notions of non-interference. NDC is: ∀Π .P/H ≈T (P ||Π)\H,
where Π is a process that can execute only high-level actions. In [10] it is
proved that NDC=SNNI, therefore also NDC can be modeled as a generalized
abstract non-interference. The situation is different when we consider BNDC,
i.e., ∀Π .P/H ≈B (P ||Π)\H, for the bisimulation relation B. In this case, we have
that BNDC �=BSNNI, and therefore we have to explicitly model it as general-
ized abstract non-interference. In [10] the authors also prove that BNDC can be
equivalently formalized as: ∀Π .P\H ≈B (P ||Π)\H. At this point, we note that we
have to consider αB◦αL as αATT, since in this definition it is only observable what a
low-level user (i.e., a user that can execute only low level actions) can see, which
is only the computation without high-level actions. Moreover, we have that αOBS

is the identity, since, in this case, non-interference is defined on computational
trees. Finally, we define αINT noting that the semantics (computational tree) of
P ||Π contains the semantics of P.Π (which doesn’t execute synchronizations),
therefore we can define αINT({|P ||Π |}) = {|P.Π |}, modeling BNDC as follows:

∀Π.(αB◦αL)◦αINT({|P ||Π |}) = αB◦αL({|P ||Π |}).
This is BNDC since in the right side of the equality αL is applied to the semantics
of P.Π , and therefore executes only the high-level actions of P .

230 R. Giacobazzi and I. Mastroeni

Theorem 3. Given a system P then:
• P satisfies SNNI iff αT◦αlow({|P |}) = αT◦αlow◦αL({|P |});
• P satisfies BNDC iff ∀Π.(αB◦αL)◦αINT({|P ||Π |}) = αB◦αL({|P ||Π |}).

3.3 GANI in Real-Time Systems

Let A be a timed automaton [1], {|A|} the corresponding computational tree
semantics, and L def= αT({|A|}) the corresponding timed accepted language, i.e.,
the sequence of all the computational traces of states 〈σ, t〉, where σ is an action
executed at the time t. In [2] a notion of non-interference for timed automata is
introduced. Given a natural number n, the authors say that high-level actions
do not interfere with the system, by considering minimum delay n, if the system
behaviour in absence of high-level actions is equivalent to the system behaviour,
observed on low-level actions only, when high-level actions can occur with a
delay between them greater than n. Let Σ be the alphabet of actions of A. We
suppose that Σ is partitioned into two disjoint sets of actions H and L: H is the
set of the high-level actions, while L is the set of the low-level ones. Consider the
following languages:

L|L def=
{
〈σ, t〉 ∈ L ∣∣∀〈σi, ti〉 ∈ 〈σ, t〉 . σi ∈ L

}
L/H

def=
{

w

∣∣∣∣∃〈σ, t〉 ∈ Lsuch that w is the projection of〈σ, t〉
on the pairs

{ 〈σ, t〉 ∣∣σ ∈ L
} }

Ln
H

def=
{
〈σ, t〉 ∈ L

∣∣∣∣∀〈σi, ti〉, 〈σj , tj〉 ∈ 〈σ, t〉 . i �= j,
σi, σj ∈ H ⇒ |ti − tj | ≥ n

}
So, L|L avoids high-level actions, i.e., it takes only the traces of the system that
make only low-level actions. On the other hand, L/H hides all the high-level
actions, i.e., it executes them and then it hides them. Finally, Ln

H selects only
those traces where the high-level actions are distant at least n. Then in [2] a
system is said to be n-non-interfering iff Ln

H /H = L|L.
Consider the example below [2]. This timed automaton have L = {begin-c,end-c}
and H = {cloche,reset}. There is only one possible trace of only low-level actions:

〈begin-c, 2〉〈end-c, 4〉 . . . 〈begin-c, 2 + 4i〉〈end-c, 4 + 4i〉 . . .
If more than one cloche
action is executed and
the time elapsed between
them is less than 1, then
it is possible to execute
the action reset, which
can change the moment
of the execution of begin-
c, and therefore in this
case we have an interfer-
ence.

x0 = 1,cloche,{x1}

x1 < 1,cloche,{x1}

x1 < 1,cloche,{x1}

x0 ≤ 2

x0 = 2,begin-c,{}

x0 > 2

s0s1 s2

s3

x0 = 4,end-c,{x0} x1 = 1, ε, {}

ε, {}
reset,{x0}

Generalized Abstract Non-interference 231

In particular, for example, we can have the trace

〈begin-c, 2〉〈end-c, 4〉〈cloche, 5〉〈cloche, 5.6〉〈cloche, 6.3〉〈begin-c, 8.3〉 . . .

whose projection 〈begin-c, 2〉〈end-c, 4〉〈begin-c, 6.3〉〈end-c, 8.3〉, on the low-level
actions, is not the one described above. This means that in this system there is
interference.

Consider the attacker abstraction αlow, defined in Sec. 3.2, the interference
abstraction αL and the language Ln

H . We define the family of abstractions αn,
with n ∈ N, as follows:

αn(L) =
{

τ ∈ L ∣∣∀〈σi, ti〉, 〈σj , tj〉 ∈ τ . i �= j, σi, σj ∈ H ⇒ |ti − tj| ≥ n
}

where each map αn is additive and Ln
H = αn(L). Then the notion of non-

interference introduced in [2] for timed automata can be specified as follows:

αlow◦αn(L) = αlow◦αL◦αn(L),

where αL◦αn = αL. Note that, in this case, αOBS = αn◦αT.

Theorem 4. A timed automaton, with timed language L, satisfies n-non inter-
ference iff αlow◦αn(L) = αlow◦αL◦αn(L).

4 Deriving GANI Attackers

In this section, we generalize the construction to GANI of the most powerful
attacker [14]. Let A be a system and let αOBS and αINT be abstractions defining
the chosen notion of non-interference for which A results insecure whenever
observed by the attacker modeled by αATT. As we said, αOBS and αINT depend on the
definition of non-interference that we chose, while αATT depends on what we decide
to observe about the computation. Therefore if non-interference is not satisfied,
i.e., the system is not secure as regards the chosen notion of non-interference,
we can think of further abstracting the attacker abstraction in order to achieve
security. The resulting abstraction provides a certificate of the security level of
the system A with respect to the fixed observation and private abstractions. In
order to find an abstraction that makes equal the sets αATT◦αOBS and αATT◦αINT◦αOBS

we have to merge elements in both sets in order to make them contain the
same new abstract objects. Hence, given a security policy determined by what
is observable (αOBS), and what at most the attacker should observe (αINT◦αOBS), we
derive from the program the most concrete harmless attacker αATT for the given
policy. Namely, we derive the minimal abstraction necessary in order to make
GANI hold. Note that, in abstract non-interference [14] there is a clear criterion
for collecting elements in order to build the abstraction: abstracting to the same
object all the elements resulting from computations that differ only for private
inputs. The corresponding construction for GANI is provided by the relation
�max defined in the previous section. Hence, we use �max for defining the sets
of objects that need to have the same abstraction in order to achieve secrecy.

232 R. Giacobazzi and I. Mastroeni

Hence, ∀σ ∈ αINT◦αOBS({|A|}) the following set collects all the trees that have to
be indistinguishable from the tree σ:

Υ (σ) = [σ] def=
{

δ ∈ αOBS({|A|})
∣∣ δ �max σ

}
Example 2. Consider a system A, if we have αOBS({|A|}) = {1 → 2 → 3, 1 → 2 → 4,

1 → 3 → 2} and αINT◦αOBS({|A|}) = {1 → 2 → 3, 1 → 3 → 2} then [1 → 2 → 3] =
{1 → 2 → 3, 1 → 2 → 4}, [1 → 3 → 2] = {1 → 3 → 2}. While, if we have αOBS({|A|}) =
{1 → 2 → 4, 1 → 2 → 3, 1 → 5 → 3, 3 → 5 → 4, 1 → 2 → 5, 1 → 3 → 2, 3 → 2 → 1}
and αINT◦αOBS({|A|}) = {1 → 2 → 3, 1 → 3 → 2, 3 → 2 → 1} then [1 → 2 → 3] =
{1 → 5 → 3, 1 → 2 → 3, 1 → 2 → 4}, [1 → 3 → 2] = {1 → 5 → 3, 1 → 3 → 2} and,
finally, [3 → 2 → 1] = {3 → 2 → 1, 3 → 5 → 4}.
Similarly to [14], we define the set D{|A|} collecting all computations that may fail
secrecy, and Irr{|A|} collecting all computations for which secrecy cannot fail.

D{|A|} =
{

[σ]
∣∣σ ∈ αINT◦αOBS({|A|})

}
Irr{|A|} =

{
X
∣∣∀σ ∈ αINT◦αOBS({|A|}) . X /∈ ↑([σ])

}
The predicate Secr{|A|}, which characterizes all the elements that should be con-
tained in the abstraction modeling the most concrete harmless attacker, is de-
fined as

Secr{|A|}(X) iff ∀σ ∈ αINT◦αOBS({|A|}) . (∃Z ∈ [σ] . Z ⊆ X ⇒ ∀W ∈ [σ] . W ⊆ X)

Following the construction in [14], we can prove that S{|A|} def=
{

X
∣∣Secr{|A|}(X)

}
is the most concrete abstraction that enforces the notion of GANI to hold, w.r.t.
the relation �max.

Theorem 5. Let A be a system. S{|A|} is the most concrete abstraction such
that ∀σ ∈ αINT◦αOBS({|A|}), ∀δ ∈ αOBS({|A|}) . δ �max σ ⇒ S{|A|}(δ) = S{|A|}(σ).

Proposition 1. S({|A|}) = S(↑(D{|A|})) ∪ Irr{|A|}.

5 Conclusion

We introduced GANI as a generalization of abstract non-interference for au-
tomata and concurrent systems. We believe that the combination of abstract
interpretation and non-interference may provide advanced techniques for an-
alyzing, in a modular way, how sub-components of complex systems interact
during computation and how, analyses at different levels of abstraction can be
combined in a useful way. On one side, abstract interpretation has been proved
to be the most appropriate framework for reasoning about properties of compu-
tations at different levels of abstraction. On the other side, strong-dependency,
and in particular non-interference, is the most appropriate notion to disclose
information-flows among sub-components of a system, when a variation of some
of them can be conveyed to the others. GANI is intended to bridge these two

Generalized Abstract Non-interference 233

notions in order to provide adequate methods for studying properties of com-
plex systems by analyzing the properties of computations that are conveyed
among system sub-components. In this sense, GANI may provide a framework
for studying the relation between different and interacting entities which may be
reciprocally influenced by the action of computing, giving advanced techniques
for systematically classifying the information leakage in the lattice of abstrac-
tions. Moreover, the advantage of specifying different notions of non-interference
for sequential, concurrent and timed systems as GANI relies upon the possibil-
ity offered by abstract interpretation to systematically derive abstractions. This
paper does not contain any tool support for the analysis, clearly such a tool
would provide an evidence on how the framework can be used, and indeed this
problem deserves further work. However, the definition of a general schema for
defining security properties allows to study relationship among different prop-
erties. Moreover, by using a unique model and unique schema, parametric on
the security policy and on the computational system, it is possible to develop
more general theories which could then be applied to a number of definitions by
simply instantiating them, in the same spirit as [12].

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science,
126(2) (1994) 183–235

2. Barbuti, R., De Francesco, N., Santone, A., Tesei, L.: A notion of non-interference
for timed automata. Fundamenta Informaticae, 51 (2002) 1–11

3. Bell, D.E., LaPadula, L.J.: Secure computer systems: Mathematical foundations
and model. Technical Report M74-244, MITRE Corp. Badford, MA (1973)

4. Clark, D., Hankin, C., Hunt, S.: Information flow for algol-like languages. Com-
puter Languages, 28(1) (2002) 3–28

5. Cohen, E.S.: Information transmission in sequential programs. Foundations of
Secure Computation (1978) 297–335

6. Cousot, P.: Constructive design of a hierarchy of semantics of a transition system
by abstract interpretation. Theor. Comput. Sci., 277(1-2):47,103 (2002)

7. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. Proc. of
Conf. Record of the 4th ACM Symp. on Principles of Programming Languages
(POPL ’77). ACM Press, New York (1977) 238–252

8. Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. Proc.
of Conf. Record of the 6th ACM Symp. on Principles of Programming Languages
(POPL ’79). ACM Press, New York (1979) 269–282

9. Denning, D.E., Denning, P.: Certification of programs for secure information flow.
Communications of the ACM, 20(7) (1977) 504–513

10. Focardi, R., Gorrieri, R.: A classification of security properties for process algebras.
Journal of Computer security, 3(1) (1995) 5–33

11. Focardi, R., Gorrieri, R.: Classification of security properties (part i: Information
flow). R. Focardi and R. Gorrieri, editors, Foundations of Security Analysis and
Design, volume 2171 of Lecture Notes in Computer Science. Springer-Verlag (2001)

12. Riccardo Focardi and Fabio Martinelli: A uniform approach for the definition of
security properties. World Congress on Formal Methods (1) (1999) 794–813

234 R. Giacobazzi and I. Mastroeni

13. Riccardo Focardi, Sabina Rossi, and Andrei Sabelfeld: Bridging language-based
and process calculi security. FoSSaCS (2005) 299–315

14. Giacobazzi, R., Mastroeni, I.: Abstract non-interference: Parameterizing non-
interference by abstract interpretation. Proc. of the 31st Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL ’04). ACM-
Press, NY (2004) 186–197

15. Goguen, J.A., Meseguer, J.: Security policies and security models. Proc. IEEE
Symp. on Security and Privacy. IEEE Computer Society Press (1982) 11–20

16. Kohei Honda, Vasco Thudichum Vasconcelos, and Nobuko Yoshida: Secure infor-
mation flow as typed process behaviour. ESOP (2000) 180–199

17. Hunt, S., Mastroeni., I.: The per model of abstract non-interference. Proc. of
The 12th Internat. Static Analysis Symp. (SAS’05), Lecture Notes in Computer
Science. Springer-Verlag (2005) To appear

18. Joshi, R., Leino, K.R.M.: A semantic approach to secure information flow. Science
of Computer Programming, 37 (2000) 113–138

19. Laud, P.: Semantics and program analysis of computationally secure information
flow. In Programming Languages and Systems, 10th European Symp. On Program-
ming, ESOP, volume 2028 of Lecture Notes in Computer Science, Springer-Verlag
(2001) 77–91

20. Mantel, H., Sabelfeld, A.: A unifying approach to the security of distributed and
multi-threaded programs. Journal of Computer Security, 11(4) (2003) 615–676

21. Milner, R.: Communication and Concurrency. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey (1989)

22. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J. on
selected ares in communications, 21(1) (2003) 5–19

23. Sabelfeld, A., Sands, D.: A PER model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation, 14(1) (2001) 59–91

24. Sabelfeld, A., Sands, D.: Dimensions and principles of declassification. Proc. of
18th IEEE Computer Security Foundations Workshop (CSFW-18). IEEE Comp.
Soc. Press (2005)

25. Skalka, C., Smith, S.: Static enforcement of security with types. ICFP’00. ACM
Press, New York (2000) 254–267

26. Volpano, D.: Safety versus secrecy. Proc. of the 6th Static Analysis Symp. (SAS’99),
volume 1694 of Lecture Notes in Computer Science. Springer-Verlag (1999) 303–311

27. Volpano, D., Smith, G., Irvine, C.: A sound type system for secure flow analysis.
Journal of Computer Security, 4(2,3) (1996) 167–187

28. Zanotti, M.: Security typings by abstract interpretation. Proc. of The 9th Inter-
nat. Static Analysis Symp. (SAS’02), volume 2477 of Lecture Notes in Computer
Science. Springer-Verlag (2002) 360–375

29. Zdancewic, S., Myers, A.C.: Robust declassification. Proc. of the IEEE Computer
Security Foundations Workshop. IEEE Computer Society Press (2001) 15–23

Detection of Illegal Information Flow

Alexander Grusho1, Alexander Kniazev2, and Elena Timonina1

1 Russian State University for Humanity,
25 Kirovogradskaya, Moscow, Russian Federation
aaotee@mail.infotel.ru, eltimon@yandex.ru

2 Russian Academy of Sciences Lebedev Institute of Precise Mechanics and
Computer Technology, 51 Leninsky Prospekt, Moscow, Russian Federation

avk@ipmce.ru

Abstract. Several types of statistical covert channels that break the in-
formational system security policy ensuring a reliable information trans-
fer between hostile agents can be detected by a competent warden. We
introduce1 the basic detection technique and analyze the conditions un-
der which the warden with limited resources can perform his task suc-
cessfully.

1 Introduction

Since [4] many papers dealing with statistical profiles of normal behavior in in-
trusion detection techniques have been published. Some methods proposed can
be used as well for analysis of steganography methods or covert channels. We
investigate the means to detect covert channels build up by hostile agents within
an informational system. We assume that such covert channels will exploit for
secure transmission a manipulation of the probability distribution parameters
of the sent message sequence. We think that the most difficult problem here is
to establish the proper correspondence between the reliability of analysis results
and adequacy the chosen model of the message sequence probability distribu-
tion. In many cases a probabilistic description of informational system extremely
simplifies the system behavior. Natural dependencies in message sequences are
eliminated by the necessity to calculate probabilities.

The problem of mathematical exposure of data hiding was discussed in [1].
This work also pointed to existence of problem of adequate mathematical model
choice. In [1] reasons were presented in the terms of Shannon entropies which
suppose memoryless channels or channels with restricted memory. Usage of such
models is a serious simplification of real command flow structure from one com-
puter to another computer, for example from task manager of GRID to the com-
puter where problems are solved. The main point of our paper is the research
of data sequence from task control computer to the computer where tasks are
solved. Adversary chances to manipulate this data sequence seem to be very lim-
ited. Adversary can use different dependencies. But he tries to use them without
1 This work was supported by the Russian Foundation for Basic Research, grant 04-

01-00089.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 235–244, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

236 A. Grusho, A. Kniazev, and E. Timonina

a define knowledge about the existence of such dependencies at the moment of
transmission. It produces very complex probability models.

We use the term ”system” in several senses. We think that the context deter-
mines the sense of the term ”system” everywhere in the paper. The main sense of
the term ”system” means that there is a generator of data sequence from the task
control computer to the computer where tasks are solved. This data sequence
is unidirectional. Sometimes we say about computer systems to point that data
generator in the task control computer is a complex system where independent
hardware/software adversary agent can function besides task computation. The
same can be said about the computer where tasks are solved.

We analyze the system with infinite sequences of messages and show that
the final results of analysis are almost independent of the probability model.
The word ”almost” means that we need to have a probability measure of normal
behavior being perpendicular to the probability measure of a covert channel.
This assumption seems to be quite natural when we are dealing with the usage
of statistical methods in signal detection. We prove also that under certain con-
ditions the warden can construct consistent tests for covert channel detection. If
the warden’s capacities are limited we examine the possibilities for the warden
to detect a covert transmission when a method of data hiding is known.

Likewise ideas were investigated in intrusion detection models, for example in
[2,5]. But intrusion detection demands the quickest reaction to an attack. That
means that the decision should be based on the shortest trace of entrance data.
There are a lot of traces that should be considered as input of intrusion detection
automaton. There is no decision rule that produces good detection of intrusion
and a few false alarms. This fact is well known in mathematical statistics as
the problem of large amount of short samples and also as detection of rare
events in the sequence of homogeneous samples [3]. The best interpretation of
this problem for intrusion detection systems is presented in [2]. We consider the
problem which is likewise but different from intrusion detection. Warden can
permit covert transmission to get enough information for proving covert channel
existence (data hiding). Warden’s problem consists of knowledge absence about
a data hiding method. That means that he knows hypothesis H0 but doesn’t
know alternatives. Our work solves theoretical problems and helps to understand
weaknesses of statistical covert channels. It uses probability models and methods.
That is why we cannot simultaneously consider construction of the practical tools
for the warden. Nevertheless the proof of the existence of the consistent test is
constructive. The hardness of the problem is to be researched.

The paper is structured as follows. In section 2 the proof of existence of a
consistent test for hidden transfer detection is presented. Section 3 specifies con-
ditions for the warden with the limited resources to detect a covert transmission.
Section 4 presents the conclusions.

2 Existence of Consistent Tests

In the paper we analyze the simplest case of the system which consists of two
computers connected by the only unidirectional link S.

Detection of Illegal Information Flow 237

Consider two computer systems KA and KB connected by link S. Let
X , X < ∞, be a set of all possible messages, which can be sent from KA
to KB through S. We describe the informational stream from KA to KB
with a random infinite sequence of messages taken from X . Elements of any
sequence are numbered with natural numbers N . Denote a sequence space:
{α = (xi1 , xi2 , ..., xin , ...), xin ∈ X} = X∞. Let In(xi1 , xi2 , ..., xin , ...) be an
elementary cylindrical set in X∞ and A be a minimal σ-algebra, which is gen-
erated by all cylindrical sets. Let

{P0,t1,...tn(xt1 , xt2 , ..., xtn)} − (1)

be a consistent family of probability distributions on cylindrical sets. Then there
is the only probability measure P0 on measurable space (X∞,A), generated by
(1) which describes the normal behavior of the system. Imagine that adversary
hardware/software agent KA′ functions independently in computer system KA
and tries to send illegally a message to his partner KB′ in KB through the link
S. It is not allowed and they need a covert channel [7] on the base of the legal
transmission from KA to KB. We characterize the existence of transmission
from KA′ in legal traffic with a consistent family of probability distributions on
cylindrical sets of X∞

{P1,t1,...tn(xt1 , xt2 , ..., xtn)}, (2)

which generates the only probability measure P1 on measurable space (X∞,A).
When seeing the traffic from KA to KB to detect the signal from KA′ agent KB′

should test a hypothesis H0 : {P0,t1,...tn} versus an alternative H1 : {P1,t1,...tn}.
Definition 1. There is a statistical covert channel from KA′ to KB′ in S
if and only if measures P0 and P1 are mutually perpendicular [6]. That is
∃A0, ∃A1, A0, A1 ∈ A, A0 ∩A1 = ∅,

P0(X∞ \A0) = 0, P1(X∞ \A1) = 0.

If P0 and P1 are mutually perpendicular then there exists a consistent testing
of H0 versus alternative H1.

Considering Warden existence define a set of alternatives H11 instead of
the single alternative H1. It consists of all probability measures {P1θ, θ ∈ Θ}
where each P1θ is perpendicular to P0 (Θ is an arbitrary parameterization of
alternatives in H11). Let examine an existence of a consistent testing of H0

versus alternatives H11.
To prove an existence of the consistent tests we should consider more compli-

cated model. It is convenient to see the finite set X as a topological space where
every point is an open set and a closed set simultaneously. Then every subset of
X is an open set and a closed set. Topological space X∞ is a Tychonoff product
[6], if its basis of open sets consists of cylindrical sets of X∞. The topological
space X is a separable space and compactum. Then the space X∞ is compactum
and Baire σ-algebra [6] on X∞ equals to σ-algebra A [6]. Let us define a Borel

238 A. Grusho, A. Kniazev, and E. Timonina

σ-algebra A on topological space X∞. If P0 and {P1θ, θ ∈ Θ} are Baire mea-
sures [6] on compactum X∞ then for each of them exists the only continuation
[6] of the probability measure on (X∞,A). As a result we can consider P0 and
{P1θ, θ ∈ Θ} to be defined on (X∞,A). From perpendicularity for every θ ∈ Θ

∃A0(θ), ∃A1(θ), A0(θ), A1(θ) ∈ A, A0(θ) ∩A1(θ) = ∅,

P0(X∞ \A0(θ)) = 0, P1(X∞ \A1(θ)) = 0.

It is easy to see that perpendicular measures on (X∞,A) are perpendicular
on (X∞,A).

If we suppose that for every θ ∈ Θ the set A0(θ) ∈ A and A0(θ) is a closed
set in Tychonoff product then the set

A0 =
⋂
θ∈Θ

A0(θ)

is closed. Consequently, the set A0 and X∞ \A0 are measurable sets in A.
Tychonoff product X∞ is a topological space with countable basis. Then [8] a

support S of the measure P0 on (X∞,A) exists, i.e. S =
⋂

F , where intersection
of sets is such that every F is closed, P0(F) = 1 and P0(S) = 1. As for every
θ ∈ Θ we have P0(A0(θ)) = 1 and A0(θ) is closed, then

A0 =
⋂
θ∈Θ

A0(θ) ⊇
⋂

F = S.

As a result P0(A0)) = 1.
As every subset in X is closed then every cylindrical set is also closed.
We have already proved that if P0 is perpendicular in (X∞,A) to all P1θ,

A0(θ) is closed for θ ∈ Θ, then there is a measurable A0 of A that for every
θ ∈ Θ A0 ∩A1(θ) = ∅ and P0(X∞ \A0) = 0.

Let B1, B2, ... be a decreasing sequence of cylindrical sets in which Bn is
defined by all possible vectors from Xn, standing on as the first n elements of
the sequences of A0. Then

lim
n→∞Bn = B.

It is clear that A0 ⊆ B. We prove that B ⊆ A0. Let ω ∈ B. Then for every n
the set A(n), A(n) ⊆ A0, is defined as a set of all sequences in A0 for which
their first n elements coincide with the first n elements of ω. One can see that
A(n) �= ∅ and A(n), n = 1, 2, ..., is a decreasing sequence.

Projection πn of the sequences of A0 to the first n elements of the sequences
is continuous as the inverse image of any open set Dn of Xn is the set (Dn ×
X∞) ∩ A0. This set is open in topological space A0 and closed in Tychonoff
product X∞. Then the inverse image of any closed set is closed in X∞ and
π−1

n (ωn) = A(n) - is a closed set in X∞, where πn(ω) = ωn. Then

A =
∞⋂

n=1

A(n)

Detection of Illegal Information Flow 239

is closed set in X∞ and ω is a limiting point of A in X∞. It follows ω ∈ A. We
proved B ⊆ A0. Then B = A0. It follows that X∞ \A0 and A0 are elements of
A. We use that P0 is continuous. Then

lim
n→∞P0(Bn) = 1.

We choose Bn and P0(X∞ \Bn) = 0, so X∞ \Bn can be taken as the set where
we refuse to accept H0. We have A0 ∩A1(θ) = ∅ and

lim
n→∞(X∞ \Bn) = X∞ \A0.

Then for every θ ∈ Θ

lim
n→∞P1θ(X∞ \Bn) = P1θ(X∞ \A0) = 1.

We proved the following lemma.

Lemma 1. If probability measures. P0 and P1θ, θ ∈ Θ are perpendicular on
the measurable space (X∞,A) and A0(θ) are closed for all θ ∈ Θ in Tychonoff
product, then exist consistent tests of H0 versus alternatives H11.

It can be proved that an arbitrary closed set can be represented as a limit of
a decreasing sequence of cylindrical sets.

Lemma 1’. If Probability Measures. P0 and P1θ, θ ∈ Θ are perpendicular on
the measurable space (X∞,A) and every A0(θ) can be represented as a limit of
a decreasing sequence of cylindrical sets, then exist consistent tests of H0 versus
alternatives H11.

3 Wardens with Limited Resources

Assume that the link S possesses an additional interface F for the warden U
who can see either the whole sequence of messages in S or a part of it, depending
on the properties of the new channel from KA to U which we denote S(F). U
has the task to find out whether a covert transmission from agent KA′ to agent
KB′ takes place or not. Both U and KB′ know P0 . KB′ knows P1θ as well, but
U does not know P1θ. If U sees all messages in S, then lemma 1 shows when U
can see the covert transmission from KA′ to KB′.

Let us consider S(F) that does not transmit to U the whole traffic of S, e.g.
low level protocol messages are omitted in S(F). Choose the set X1, X1 ⊆ X
and messages of X1 are unseen to U . We have X0 ∪X1 = X, X0 ∩X1 = ∅. We
have that messages of X1 are taken away from the sequence of messages in S.
As a result U sees the reduced sequence and draw his conclusions from it. Let
A1 be σ-algebra which is generated by cylindrical sets of X∞

0 .
Let γ ∈ X∞. Denote by γ → α, β, γ ∈ X∞ the unique decomposition, where

α is the subsequence of all elements of X0 in γ, and β is the subsequence of all
elements of X1 in γ. One of the sequences α or β may be empty.

240 A. Grusho, A. Kniazev, and E. Timonina

Denote X̃ = {γ : γ → α, β, α ∈ X∞
0 , β ∈ X∞

1 }. Then % = {X̃ ∩ A, A ∈ A}
is σ-algebra on X̃.

We can assume that only sequences from X̃ are transmitted through S. Oth-
erwise the warden sees too little or almost everything (this case has been dis-
cussed above in lemma 1). Then S(F) defines a function F : X̃ → X∞

0 the
following way. If γ ∈ X̃ and γ → α, β, then F (γ) = α. Let KA′ sends a covert
message to KB′ if it generates γ ∈ X̃ using probability measure P1 on (X̃,%)
which is perpendicular to P0. If F is (%,A1) - measurable function then it defines
two probability measures on (X∞

0 ,A1):

∀B ∈ A1, P ′
0(B) = P0(F−1(B)), P ′

1(B) = P1(F−1(B)).

Here P ′
0 is known to U and P ′

1 is unknown to U . But if P ′
0 and P ′

1 are perpen-
dicular then since conditions of lemma 1 are satisfied, a consistent test to find
the hidden message may exist. The fact is reflected in the next definition.

Definition 2. Statistical covert channel from KA′ to KB′ can be identified in
S(F) by U if and only if F is (%,A1) - measurable and P ′

0 and P ′
1 are perpen-

dicular.
To prove that F is (%,A1) - measurable we investigate sets F−1(C), C ∈ A1.

Definition 3. For α ∈ X∞
0 , β ∈ X∞

1 , we define an interleaved product of α and
β as

α⊗ β = {γ : γ → α, β, γ ∈ X∞}.

Definition 4. For α ∈ X∞
0 an interleaved product of α and X∞

1 is

α⊗X∞
1 =

⋃
β∈X∞

1

{α⊗ β}.

Definition 5. For ∈ A1 an interleaved product of and X∞
1 is

C ⊗X∞
1 =

⋃
α∈C

{α⊗X∞
1 }, C �= ∅, or C ⊗X∞

1 = ∅, if C = ∅.

The usefulness of the interleaved product is demonstrated by the following
lemma.

Lemma 2. ∀C ∈ A1, F−1(C) = C ⊗X∞
1 .

Proof. If C �= ∅ and γ ∈ F−1(C), then γ ∈ X̃. Then there are the only α ∈
X∞

0 , β ∈ X∞
1 that γ → α, β, and F (γ) = α. That means α ∈ C. Then α⊗ β ⊆

C ⊗X∞
1 and F−1(C) ⊆ C ⊗X∞

1 . If C �= ∅ and γ ∈ C ⊗X∞
1 , C ∈ A1, then by

definitions 4 and 5 there are α ∈ C and β ∈ X∞
1 , that γ ∈ α⊗β. Then γ → α, β,

and F (γ) = α. That means F−1(C) ⊇ C ⊗X∞
1 . That completes the proof.

Now we take an advantage from the fact that if the inverse image of any
elementary cylindrical set of A1 belongs to %, then the inverse image of any
set of A∞ belongs to %. Let Cn = (xi1 , ...xin) × X∞

0 , xij ∈ X0, j = 1, ..., n,

Detection of Illegal Information Flow 241

be an elementary cylindrical set of A1. Denote Vk,n, k ≥ n, a set of all vectors
(z1, ..., zk) ∈ Xk, where xi1 , ...xin is the sequence of all elements of X0. It is clear
that Vk,n ×X∞ is a cylindrical set of A.

Lemma 3. If Cn = (xi1 , ...xin) ×X∞
0 , xij ∈ X0, j = 1, ..., n, is an elementary

cylindrical set of A1, then

Cn ⊗X∞
1 =

⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃.

Proof. By definition Cn⊗X∞
1 ⊆ X̃. Let γ ∈ Cn⊗X∞

1 , γ → α, β, α ∈ X∞
0 , β ∈

X∞
1 }, and α is represented as α = xi1 , ...xin , α′, where α′ is a sequence of X∞

0 .
Let (z1, ..., zk), k ≥ n, are the first k elements of γ, where xi1 , ...xin is the
sequence of all elements of X0. Then (z1, ..., zk) ∈ Vk,n, and γ ∈ Vk,n × X∞.
That is why

γ ∈
⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃.

This is proof of
Cn ⊗X∞

1 ⊆
⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃.

Prove the inverse implication of events. If γ ∈ X̃ and

γ ∈
⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃,

then there is a set Vk,n, that the first k elements (z1, ..., zk) of γ are in Vk,n and
all elements of X0 in (z1, ..., zk) are from the vector xi1 , ...xin . If γ ∈ X̃, then
γ → α, β, α ∈ X∞

0 , β ∈ X∞
1 and the first n elements of α form the vector

xi1 , ...xin . Then α ∈ Cn, and γ ∈ Cn ⊗X∞
1 . Here we proved

Cn ⊗X∞
1 ⊇

⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃,

and lemma is proved.

Corollary 1. Cn ⊗X∞
1 = A ∩ X̃, A ∈ A.

Proof. As Vk,n ⊗X∞ is a cylindrical set of A then

A =
⋃
k≥n

{Vk,n ⊗X∞} ∈ A.

Corollary 2. ∀C ∈ A1, C ⊗X∞
1 ∈ %.

Theorem 1. Function F is (%,A1) - measurable.

Proof. The proof follows from lemmas 2 and 3 and corollary 2.

242 A. Grusho, A. Kniazev, and E. Timonina

Let σ-algebra & be generated by F . From lemma 2 we get that & = {C ⊗
X∞

1 , C ∈ A1}.
The next theorem shows how to use such a presentation of &. Let σ-algebra

& be generated by an arbitrary (%,A1) - measurable function F , & ⊆ %.

Theorem 2. Probability measures P ′
0 and P ′

1, which are generated by an arbitrary
(%,A1) - measurable function F , are perpendicular if and only if there are A0

and A1 of &, that A0 ∩A1 = ∅,

P0(X̃ \A0) = 0, P1(X̃ \A1) = 0.

Proof. 1) Sufficiency. If A0 and A1 of &, then there are B0 ∈ A1 and B1 ∈ A1,
that A0 = F−1(B0), A1 = F−1(B1). Then

P ′
0(X

∞
0 \B0) = P0(F−1(X∞

0 \B0)) = P0(X̃ \ F−1(B0)) =

= P0(X̃ \A0) = 0, P ′
1(X

∞
1 \B1) = P1(X̃ \A1) = 0.

It follows by definition A0 = F−1(B0), A1 = F−1(B1), A0 ∩ A1 = ∅. Then
B0 ∩B1 = ∅. The sufficiency is proved.

2) Necessity. If a statistical covert channel exists, then B0, B1 ∈ A1, B0∩B1 =
∅, P ′

0(X∞
0 \B0) = 0, P ′

1(X∞
0 \B1) = 0. Denote F−1(B0) = A0, F−1(B1) = A1.

By definition

P0(F−1(X∞
0 \B0)) = P0(X̃ \ F−1(B0)) = 0,

P1(F−1(X∞
0 \B1)) = P1(X̃ \ F−1(B1)) = 0.

As far as B0 ∩ B1 = ∅, then F−1(B0) ∩ F−1(B1) = ∅. Consequently, there
are A0, A1 of &, that A0 ∩ A1 = ∅ and P0(X∞ \ A0) = 0, P1(X∞ \ A1) = 0.
Theorem is proved.

According to definition 2 the theorem 2 states that U can detect the statistical
covert channel from KA′ to KB′.

Let us consider another case of S(F), when the possibility of U to control
the traffic in S is limited due to shortage of the computational resources or/and
memory space available. As a result U has to draw his conclusions from some
subsequences of messages.

Let μ be a binary sequence with an infinite number of 1 and an infinite
number of 0, γ is the sequence of messages from KA to KB. U uses μ to make
sampling in γ. Every element in γ is taken away if it is in the position, where 0 is
in the sequence μ. Then U sees the sequence δ = Fμ(γ), where Fμ : X∞ → X∞.

Lemma 4. For arbitrary sequence function Fμ is (A,A) - measurable.

Proof. Let Bn = (δ1, ..., δn)×X∞ be an elementary cylindrical set of A. Then
F−1

μ (Bn) is a cylindrical set of A, where Xs there is between δi and δi+1. Here
s denotes the number of binary zeros between i-th and (i + 1)-th binary one
position in μ. Lemma is proved.

Detection of Illegal Information Flow 243

Then for every μ the function Fμ generates probability measures P ′
0 and P ′

1

on (X∞,A).

Theorem 3. Measures P ′
0 and P ′

1 are perpendicular then ∃A0, ∃A1, A0, A1 ∈
A, A0 ∩A1 = ∅,

P0(X∞ \A0) = 0, P1(X∞ \A1) = 0,

and Fμ(A0) ∩ Fμ(A1) = ∅.
Proof. The proof follows from the proof of the theorem 2.

Example. If P ′
0 and P ′

1 are not perpendicular then the warden U cannot de-
tect a covert transmission reliably. Let μ be an arbitrary binary sequence and
P0(ω) = 1, P1(ω′) = 1, ω �= ω′ . Assume Fμ(ω) = Fμ(ω′). Despite P0 and P1

are perpendicular there is no consistent test for U to identify a hidden mes-
sage from KA′ to KB′. That means U can discover the hidden message if
the agents do not use such P1, that ∀A0, ∀A1, A0, A1 ∈ A, A0 ∩ A1 = ∅, if
P0(X∞ \A0) = 0, P1(X∞ \A1) = 0, then Fμ(A0) ∩ Fμ(A1) �= ∅.

4 Conclusions

The obtained results show that the manipulation of the probability distribution
of the messages in communicational link in order to send hidden messages can
be revealed. The warden should know well enough the normal properties of the
communication link and its probabilistic characteristics, e.g. in lemma 1’. Then it
is possible to construct a consistent test for detection of hidden message. That is
why it is a problem to make a statistical covert channel invisible for the warden.
Even if the warden’s resources are limited the detection of a hidden message
most often can be done reliable enough.

We plan to research the necessary conditions to detect hidden transmission
by the warden.

We didn’t touch the problem whether the construction of a consistent test is
a hard task. Most probably it is.

References

1. Anderson, R.J., Petitcolas, F.A.P.: On the Limits of Steganography. IEEE Journal
of Selected Areas in Communications, 16(4) (May 1998) 474–481

2. Axelson S.: The Base-Rate Fallacy and its Implications for the Difficulty Of Intrusion
Detection. Proc. of the 6th Conference on Computer and Communications Security
(November 1999)

3. Grusho A.: Consistent revelation conditions for rare events search a sample from
the uniform distribution. In: Probabilistic problems of discrete mathematic. Moscow
Institute of Electronic mechanical engineering (1987) (in Russian)

4. Denning, D.: An Intrusion Detection Model. Proceedings of the IEEE Symposium
on Security and Privacy (May 1986) 119–131

5. Lee W., Xiang D.: Information-Theoretic Meaasures for Anomaly Detection. IEEE
Symposium on Security and Privacy (2001) 130–143

244 A. Grusho, A. Kniazev, and E. Timonina

6. Prokhorov, U.V, Rozanov, U.A.: Theory of probabilities. Science, Moscow (1973)
(in Russian)

7. Timonina, E.E.: The covert channels (review). Jet Info, Vol. 14(114) (2002) 3–11
(in Russian)

8. Vaxania, N.N., Tarielidze, V.I., Chobanian, S.A..: Probability distributions in Ba-
nach spaces. Moscow (1985) (in Russian)

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 245 – 258, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Towards More Controllable and Practical Delegation

Gang Yin1, Huaimin Wang1, Dianxi Shi1, and Haiya Gu2

1 Department of Computer Science,
National University of Defense Technology, Changsha, China

2 Agricultural Bank of China, Hunan Branch, China
jack_nudt@yahoo.com.cn, fayecoolbaby@163.com

Abstract. Delegation is essential to the flexibility and scalability of trust man-
agement systems. But unrestricted delegation may result in privilege prolifera-
tion and breach the privacy of information systems. The delegation models of
existing trust management systems can not avoid privilege transition, and being
lack of effective constraints on delegation propagation, which may easily lead
to privilege proliferation. In this paper, we propose a generalized constrained
delegation model (GCDM), which uses typed privileges to control potential
privilege transition, and restricts the propagation scope of delegation trees by a
novel delegation constraint mechanism named spacial constraints. This paper
also designs a rule-based trust management language named REAL05 to ex-
press the policies and semantics for GCDM. REAL05 supports flexible delega-
tion policies while can control the potential privilege proliferation in subsequent
delegations. Comprehensive samples and simulation results show that our ap-
proach is more controllable and practical.

1 Introduction

Trust management (TM) is a promising approach to access control in environments
where entities in different administrative domains want to share resources. Delegation
is the core mechanism for transferring trust and authorization in TM systems, which
greatly improves the flexibility and scalability of distributed access control. However,
delegation may also easily lead to “privilege proliferation” and breach the privacy of
information systems.

One important reason for privilege proliferation in TM systems is the transition be-
tween management-type permissions (MTP) and access-type permissions (ATP)
during delegation process. B. S. Firozabadi etc have pointed out that privileges of
these two types of privileges are essentially different [3], and use “authority” and
“permission” to denote them respectively. In most TM systems however, delegation
of MTP and ATP are expressed by the same sort of policy items, such as “condition”
field in Keynote [8], “authorization tag” in SPKI [4], “base-atom” in DL [11], etc. For
example, “read(file1)” and “isMember(?S, orgA)” are base-atoms in DL and used to
express ATP and MTP respectively. Entities in these systems entitled with MTP may
obtain the corresponding ATP simply by self-authorization; and the entities holding
ATP are often allowed to re-delegate the ATP to others, which means they have been

246 G. Yin et al.

inherently entitled with the corresponding MTP, and may lead to more speedy prolif-
eration of privileges. This kind of privilege model also leads to inefficiency in speci-
fying policies of more “pure” delegation of MTP or ATP, such as security administra-
tion policies in decentralized authorization and delegation of access capabilities in
proxy-based authentication systems [2, 6, 17].

The other reason for privilege proliferation in TM systems is inefficient control on
privilege propagation. Two typical constraints on delegation in existing TM systems
are boolean control and integer control. Boolean control includes two policies: no
further delegation or unrestricted delegation. SPKI [4] and RT [12] support this kind
of constraint. DL [11] supports integer control over delegation depth. Integer control
provides more flexibility than boolean control, but it supposes that the trust relation-
ships are transitive within the upper-bound of delegation depth, which is too optimis-
tic and may lead to undesired propagation of privileges. DL also supports constraints
on delegation width, but it has to use a temp key to sign the assistant policies to en-
force such constraint.

In this paper, we propose a more controllable and practical delegation model
named GCDM (Generalized Constrained Delegation Model) to restrict the potential
proliferation of privileges during delegation while at the same time keep the inherent
strengths of delegation policies. GCDM uses typed privileges to control potential
privilege transition, and restricts the propagation scope of delegation trees by a novel
delegation constraint structure named spacial constraint. A rule-based policy language
is also introduced to specify the core policies and semantic rules for GCDM. The rest
of this paper is organized as follows. Section 2 defines the main components of
GCDM including a basic model, typed privileges and typed delegations, spacial con-
straint model and its control granularity. In section 3, we describe the syntax and
semantics of a rule-based specification language designed for GCDM. Implement
issues and simulation results are discussed in section 4. Section 5 give further discus-
sion of related work and section 6 concludes this paper.

2 Generalized Constrained Delegation

In this section, we firstly define the basic and generalized part of our model. Then we
extend its privilege model and constraint model to support more controllable and
practical delegation and authorization policies.

2.1 Basic Model

The basic idea of delegation is that one entity delegates its privilege to another entity
to perform functions controlled by the privilege on behalf of the former. The core
components of GCDM are defined as follows.

Definition 1 (Authorization System). An authorization system (AS) is a 5-tuple (E,
P, F, ∋, ∝), where E, P and F are sets of all entities, privileges and functions in the
system respectively; ∋ and ⊃ are relations where ∋ ⊆ E×P, ∝ ⊆ P×F. Given e∈E, p∈P
and f∈F, e∋p means e is entitled with p; p∝f means p controls f; e can perform the
function f iff ∃p∈P (e∋p and p∝f).

 Towards More Controllable and Practical Delegation 247

Definition 2 (Delegation Tree and Delegation Path). A delegation tree is a 5-tuple
(p, dr, de, MD, DT), where p∈P, dr∈E, de∈E, MD⊆E, DT⊆E. p, dr, de, MD, DT are
called delegated privilege, delegator, direct delegatee, set of mediate delegatees and
set of delegation targets respectively. A delegation path in delegation tree (p, dr, de,
MD, DT) is denoted as: [dr de[0..n] dt]p, where n≥0, de0=de, de[0..n]

 = de0 de1 …
den, dei∈MD(i=1...n), dt∈DT. Here n is called delegation depth (n plus 1 is equal

to the value of delegation depth defined in some TM systems such as DL [11]).

Fig.1 illustrates a sample delegation tree. When dr initiates a delegation by delegat-
ing p to de, de may re-delegate p to entities in MD, such as de1, de2, …, de5. de and
the entities in MD may perform the functions controlled by p on the target entity in
DT, such as dt1 and dt2. “dr de de1 de3 dt” is a delegation path whose delega-
tion depth is 2.

Fig. 1. A Sample Delegation Tree

Definition 3 (Constraint Structure). A constraint structure is a 4-tuple (DP, DC, ⊃,
), where DP and DC are sets of delegation paths and delegation constraints respec-

tively, ⊃ and are relations where ⊃ ⊆ DC×DC, ⊆ DP×DC. Given c1, c2∈DC,
c1⊃c2 means c1 dominates c2. Given dp∈DP and c∈DC, dp c means dp satisfies c.

 is monotonic: Given c1, c2∈DC and c1⊃c2, if dp c1 then dp c2.

Given dp=[dr de[0..n] dt]p∈DP and ci∈DC(i=0...n), we say dp is a valid delega-
tion path iff dpi ci(i=0...n), where dpi=dri de[i..n] dt (i=0...n), dr0 = dr, dri = dei-

1(i=1...n), ci is the delegation constraint specified by dri. If dp=[dr de[0..n] dt]p is a
valid delegation path and dr∋p, then den∋p and den can perform function f, where f∈F
and p∝f.

2.2 Typed Privileges

The privilege of the authorization system defined in section 2.1 is abstract and has no
practical meaning. In this section, we reify it into two typical MTP and ATP, i.e.,
authority and capability, to express more specific authorization policies. The two
types of privileges are strongly connected with one basic type of privilege named
permission.

Definition 4 (Permission, Authority and Capability). PM is the set of all permis-
sions, which are the privileges of accessing resources, such as read/write a file, in-

mediate delegatees delegation targets
initial delegation

between dr and de

de5

dt2
p

p p
p

p

p f

f

f

f

de2

de1 dt1

de3

de dr de4

248 G. Yin et al.

vokes the functions of an object, etc. A is the set of all authorities, which are the privi-
leges of managing the authorization of permissions in PM. C is the set if all capabili-
ties, which are the privileges of exercising the activated permissions in PM. An entity
must log on a server to activate some permission before it can obtain its capability.

Two more practical authorization systems (see def. 1) can be derived from above
typed privilege model: (1) Management-level AS is a 5-tuple (E, A, E×PM, ∋, ∝),
where A and E×PM are instances for P and F in AS. Given e∈E, a∈A, p∈PM, f=(e’,
pm)∈E×PM=F, if e∋a and a∝f=(e’, pm), then e can perform f, i.e., e can perform the
authorization of pm to entity e’; (2) Access-level AS is a 5-tuple (E, C, E×PM, ∋, ∝),
where C and E×PM are instances for P and F in AS. Given e∈E, c∈C, p∈PM, f=(e’,
pm)∈E×PM=F, if e∋c and c∝f=(e’, pm), then e can perform f, i.e., e can perform the
access to resources identified by pm on entity e’.

Fig. 2. Access Control Model based-on Typed Delegation

Delegation of authorities (DoA) and delegation of capabilities (DoC) can be used
to construct access control models for widely distributed systems, as shown in fig. 2.
S is a resource owner and wants to share resources with entity U across several ad-
ministrative domains. In above access control model, S can make distributed
authorization to U by DoA () and direct authorization (). S can also enable
proxy-based authentication for U by DoC () and direct access request (). The
path of DoA and the path of DoC are isolated by the process of permission activation
() on S requested by U. The policies for above scenarios will be further discussed
and specified in section 3.3.

Permission activation is a basic mechanism for least privilege principles [9]. Here
this mechanism is used to prevent the privilege transition: (1) before an entity can
delegate its access permission (ATP) to another entity, it must activate the permission
to obtain the capability from the server who is the source of the authority controlling
the permission. Thus the privilege transition from ATP to MTP can be controlled by
the server during activation. (2) on the other hand, if an entity entitled with some
authority (MTP) authorizes a permission to an entity discretionally, then when the
authorized entity activates the permission from the server, the server can check
whether such activation should be allowed (so the transition from MTP to ATP can be
controlled by the server).

In the paradigms of policy-based distributed systems management, privileges may
be extended to responsibilities and obligations. Delegation of responsibilities and

DoC

Permission Activation

DoCDoC

DoA Authorization

Access Request

DoA

Pm P1

M1 Mn

S U

 Towards More Controllable and Practical Delegation 249

obligations are still hot problems in this area. One may reify GCDM to enforce the
delegation policies for these paradigms. We will test these ideas in the future.

2.3 Spacial Constraint on Delegation

To restrict the privilege propagation in a delegation tree, the delegator can specify
constraints from following aspects: (1) the scope of mediate delegatees in delegation
tree; (2) the scope of delegation targets in delegation tree; (3) the valid time interval
of all the delegation chains in the tree. The first two aspects care about the propaga-
tion scope of current delegation and called spacial constraints. The third aspect is
called temporal constraint. This paper uses spacial constraints to enforce control on
delegation.

Definition 5 (Spacial Constraint). The spacial constraint is a structure SC(ds, dd, ts),
where SC is the type of the structure, and also denotes the set of all spacial con-
straints, ds ⊆ E, dd ≥ 0 and ts ⊆ E are attributes of the structure, and denotes the scope
of mediate delegatees, upper-bound of delegation depth and the scope of delegation
targets respectively. ds and ts are also called trust scope in our previous work [18].
Here the delegation depth is mainly used to avoid infinite delegation loops. The
spacial constraint defines a kind of unitary control on delegation, as shown in fig.3-II.

I. step-by-step control II. unitary control

Fig. 3. Two Typical Delegation Control Model

The constraint structure defined in section 2.1 can be reified as (DP, SC, ⊃,).
Here we can give more precise definition of the semantics for the relation ⊃ and :

⊃: Given sc1, sc2∈SC, then sc1⊃sc2 iff (sc1.ds ⊆ sc2.ds) ∧ (sc1.dd ≤ sc2.dd) ∧ (sc1.ts
⊆ sc2.ts).

: Given dp=[dr de[0..n] dt]p∈DP, sc∈SC, then dp sc iff (dei ∈ sc.ds) ∧ (n ≤
sc.dd) ∧ (dt ∈ sc.ts), where sc is specified by dr and i=1…n.

…

.

ds

dd

ts
dt

de

de’de’

de’ de’

dt dt

de’ de’

…

... ..
dd=1

dd=1

ds1

ts
dt dt dt

de’ de’ de’ de’

de

de’ de’

ds2 ds3

dr dr

250 G. Yin et al.

The delegator dr can specify spacial constraint when it begins a delegation to direct
delegatee de, as shown in fig.3. In fact, dr can also specify constraints on each step of
delegation, which is called step-by-step control, see fig.3-I. O. Bandmann etc adopted
this kind of control in their delegation model [14]. The step-by-step control seems too
detailed to be useful in practical systems and may raise much difficulty in construct-
ing computation models [14].

According to the semantics of the relation defined above, we can see that the
spacial constraint adopts the unitary control model, as shown in fig.3-II. The unitary
control model unifies the one-step constraint into more intuitionistic constraint and
overcomes the deficiencies of step-by-step control, while still provides enough flexi-
bility. Spacial constraint can be used both on DoA and DoC. Samples in section 4 will
illustrate the advantages of such constraint model. The semantics of valid delegation
path and relations of ⊃ and will be defined by logic rules in section 3.

3 Rule-Based Policy Language

To validate the feasibility of our model, we design a policy specification language for
GCDM named REAL05 (Role-based Extensible Authorization Language, 2005 Ver-
sion). REAL05 is a declarative language based on DatalogC [15], which can be used
to specify policies as well as semantics.

Definition 6 (Rule). A rule in REAL05 takes the form of the following:

A.H A1.B1, A2.B2, … , An.Bn, ,

where H, B1…Bn are predicates with one or more parameters, A, A1,…An are entities.
H is the rule head, Ai.Bi (i=1…n) and constitute the rule body. is the constraint.
If n=0, the rule is called a constraint fact. The entity before each predicate is called
the principle of the predicate, which means the predicate is asserted by its principal.
The principle of the rule head is called the issuer of the rule. The rule can be read as:
to deduce A says H, we must deduce “A1 says B1”, “A2 says B2”, …, “An says Bn”
and . The rules often need to be transferred across open networks and need to be
signed by its issuer. The signed rules are often called credentials.

3.1 Syntax

REAL05 can specify authorization, delegation and constrained delegation policies.
Table 1 shows the simplified syntax of REAL05. The undefined items such as user-
defined-predicate , entity , name , natural-number constant and var are user
defined predicate name, entity, name of permission or role, natural number and vari-
ables respectively.

Privileges. The privileges in REAL05 include permission (5) and roles (6). Permis-
sions have the same meaning as permissions defined in section 2.2. For example,
pm(read, file-a) may represent the privilege to read the file named “file-a”. The roles
group related permissions together and can express more scalable policies. There are
three types of roles in REAL05: dR, aR and sR.

 Towards More Controllable and Practical Delegation 251

Table 1. Core Syntax of REAL05

(1) Predicate Name pn ::= canRequest | canHold | canActivate | hasActivated |canAdmin | canUse |
user-defined-predicate

(2) Predicate p ::= entity . pn (list of v)
(3) Rule rule ::= p . | p c . | p list of p . | p list of p , c .
(4) Query Query ::= ? p .
(5) Permission pm ::= pm(name , list of var)
(6) Role role ::= dR(rv) | aR(rv) | sR(rv)
(7) Role Variable rv ::= entity , name
(8) Parameter Vector v ::= constant | var | entity | permission | role | dc
(9) List (macro) list of X ::= X | list of X , list of X
(10) Delegation Constraint dc ::= sc(scope , depth , scope) | ∅ | *
(11) Trust Scope scope ::= role | scope ∩ scope | {list of entity } | {} | *
(12) Delegation Depth depth ::= natural-number | 0 | *
(14) Constraint c ::= e = e | e e | e e | e e | e ⊃ e | e ⊆ e | c , c
(15) Expression e ::= constant | var | dc | f(list of var) | e - e | e + e | e ∪ e

 dR is a distributed role, e.g. dR(org, member) represents all the members in org.
In the rest of this paper, roles denote distributed roles by default.

 aR is an administrative role, representing the authority defined in section 2.2,
e.g. aR(org, member) is the administrative role for dR(org, member). Given a
role dr, its administrative role is denoted as aR(dr).

 sR is a session role, representing the capability defined in section 2.2, e.g.
sR(org, sid012) is the capability holding by the session identified by session ID
“sid012”. A user has to log on the server successfully before he can get a session
role.

Delegation Constraint. The delegation constraint (10) is a logical term and defines
the spacial constraint in section 2.3. Spacial constraint acts as parameters in predicates
when specifying policies. scope and depth can be “*”, which means no constraint.
dc can be ∅, which is equivalent to the constant sc({}, 0, *).

Constraint. The constraints (14) are composed of constraint expressions (15) and
constraint predicates. The type of constants and variables in (15) can be integer, float,
entity and set of entities. Constraint expression can also be delegation constraints and
return values of functions. Constraint predicates include “=”, “ ”, “ ”, “ ”, “⊆” and
“⊃”, where “⊆” and “⊃” are binary predicates on entity sets and dc respectively.

Predicates. The predicates (2) are the policy items used to express authorization and
delegation policies. REAL05 has six reserved predicates:

 x.canRequest(y, pm) means that x allows entity y to access the resources con-
trolled by permission pm.

 x.canHold(dr, pm) means that x assigns role dr with permission pm.

 x.canActivate(y, dr) means that x allows entity y to activate the role dr, and y
will be assigned with all the permissions hold by dr.

 x.hasActivated(y, dr) means that entity y has logged on x and activated the role
dr successfully.

252 G. Yin et al.

 x.canAdmin(y, ar, sc) means that x delegates the administrative role ar to entity
y, where the delegation constraint sc is used to specify the special constraint on
succeeding delegations initiated by y. The default value of sc is “∅”. The predi-
cate canAdmin is specifying DoA policies.

 x.canUse(y, sr, sc) means that x delegates the session role sr to entity y, where
the delegation constraint sc is used to specify the special constraint on succeed-
ing delegations initiated by y. The default value of sc is “∅”. The predicate
canUse is specifying DoC policies.

REAL05 also supports user defined predicates, which can be used to specify appli-
cation dependent policies and constraints.

Rules. There are three kinds of rules in REAL05: policy rules, session rules and meta
rules. (a) policy rules is the rules specified according to security requirements; (b)
session rules are temporary rules within the context of a specific session. When the
session is closed, its session rules are deleted; (c) meta rules are used to describe the
general semantics that can not be expressed by policy rules and sessions rules.

3.2 Semantics

The semantics of REAL05 is defined by meta rules, as shown in Table 2. Meta-rules
are used to describe rules with general purpose, such as the semantics of relations “⊃”
and “ ” defined in section 2.3.

Table 2. Meta Rules for REAL05 Semantics

[Meta Rules for Role-based Authorization]
?x.canRequest(?y, ?pm) ?x.canActivate(?y, dR(?x, ?n)), ?x.canHold(dR(?x, ?n), ?pm).

[Meta Rules for Delegation of Authority]
?x.doa(?y, ?ar, ?sc) ?x.canAdmin(?y, ?ar, ?sc’), ?sc ⊃ ?sc’.
?x.doa(?z, aR(?x,?n), ?sc) ?y.canAdmin(?z, aR(?x, ?n), ?sc’), ?sc ⊃ ?sc’,
?x.doa(?y, aR(?x,?n), sc({?z}∪?sc.ds, ?sc.dd+1, ?sc.ts)).
?x.isMember(?z, dR(?x, ?n)) ?x.canActivate(?z, dR(?x, ?n)).
?x.isMember(?z, dR(?x, ?n)) ?y.canActivate(?z,dR(?x, ?n)), ?x.doa(?y, aR(?x, ?n), sc({},0,{?z})).

[Meta Rules for Delegation of Capability]
?x.doc(?y, ?sr, ?sc) ?x.canUse(?y, ?sr, ?sc’), ?sc ⊃ ?sc’.
?x.doc(?z, sR(?x, ?s), ?sc) ?y.canUse(?z, sR(?x, ?s), ?sc’), ?sc ⊃ ?sc’,
?x.doc(?y, sR(?x, ?s), sc({?z}∪?sc.ds, ?sc.dd+1, ?sc.ts)).
?x.allowAccess(?y, ?pm) ?x.canRequest(?x, ?pm), doc(?x, ?y, sR(?x, ?s), sc({}, 0, {?x})).

[Meta Rules for Delegation Constraint Computation]

?sc ⊃ ?sc’ ?sc.ds ⊆ ?sc’.ds, ?sc.dd ?sc’.dd, ?sc.ts ⊆ ?sc’.ts.

REAL05 introduces four semantic predicates in meta rules: isMember, doa, doc
and allowAccess, which are delegation-based extensions of predicates canActivate,
canAdmin, canUse and canRequest respectively. The predicates doa and doc keep the
status of delegation path within the delegation constraint structure of the last parame-
ter, as shown by rules . The rule expresses the semantics for constraint
relation “⊃”. The predicate “⊆” is used to check whether each entity in the left-side-
parameter is belongs to the trust scope specified by right-side-parameter (also see its

 Towards More Controllable and Practical Delegation 253

Prolog implementation in section 4). During semantic inference, the left-side-
parameter will be instantiated into a set of constant entities. The meaning of other
meta rules in table 2 is easily read based on the introduction of predicates in section
3.1.

There are two kinds of queries need to be answered by the semantics of REAL05.
The predicates in queries are isMember and allowAccess respectively. The query
containing isMember will be raised when an entity tries to activate a role, and the
query containing allowAccess will be raised when an entity tries to access resources.

Given a REAL05 rule set P, the computational complexity of P denotes the time
needed to answer a given query Q based on P, i.e. P Q or P Q. REAL05 is a subset
of DatalogC, its computational complexity lies on DatalogC. The computational com-
plexity of DatalogC is closely connected with constraint domain it contains. The con-
straint domains that can be evaluated with safe Datalog in polynomial data complex-
ity (PTIME) include: (1) equality constraints, order and inequality constraints over
dense linear order domains [15], (2) linearly decomposable domain [13]. It’s clear
that REAL05 only contains these two constraint domains, and each rule in REAL05
has finite variables. Therefore we get the following result:

Proposition 1. Given a set of REAL05 rules P, its computational complexity is
PTIME on size(P), where size(P) = |P|*V, |P| is the number of the rules in P, V is the
upper-bound of the sum of the variables in a rule.

3.3 Samples

A comprehensive example is introduced in this section to illustrate how REAL05 can
be used to express more controllable delegation policies, both for DoA and DoC. The
sample shares the same entity names and delegation paths in fig. 2.

Suppose S is an online digital library and wants to give 20% discount to the stu-
dents of its cooperative universities. But these students must have papers indexed by
S and can only download the discounted papers through the proxy servers of his/her
certifying university. M1 is a cooperative university of S. S only trusts M1 and its
branch campus to certify a student of M1. Mn is one of the branch campuses of M1. P1
is a proxy server of M1. U is a student of M1 and studying at Mn. One of U’s papers
has been indexed by S. The above policies can be specified in REAL05 as follows.

(1) S.canHold(dR(S, discount) , pm(download, 20%)).
(2) S.canActivate(M1, dR(S, co-university)).
(3) S.canActivate(?x, dR(S, contributor)) S.author-of-indexed-papers(?x).

The rules (1, 2, 3) are basic authorization policies defined by S. The predicate “au-
thor-of-indexed-papers” is a user-defined-predicate, which will query database to
answer whether S has indexed papers of an entity. The policies for ~ in fig. 2 are
specified with following rules.

: The rules (4, 5) specify constrained DoA policies from S to M1. The rules
(6, 7) specify constrained DoA policies from M1 to Mn. The rules (8, 9, 10, 11) define
the authorization policies of M1 and Mn. The rule (10) shows that Mn makes authori-
zation based on the authority originated from S.

254 G. Yin et al.

(4) S.canAdmin(?x, aR(S, trusted-proxy)) S.canActivate(?x, dR(S, co-
university)).

(5) S.canAdmin(M1, aR(S, discount), sc(dR(M1, branch-campus), 1,
dR(S,contributor)∩dR(M1,student))).

(6) M1.canAdmin(?x, aR(S, discount)) M1.canActivate(?x, dR(M1, branch-
campus)).

(7) M1.canAdmin(?x, aR(M1, student)) M1.canActivate(?x, dR(M1, branch-
campus)).

(8) M1.canActivate(Mn, dR(M1, branch-campus)).
(9) M1.canActivate(P1, dR(S, trusted-proxy)).

(10) Mn.canActivate(?x, dR(S, discount)) Mn.canActivate(?x, dR(M1, stu-
dent)).

(11) Mn.canActivate(U, dR(M1, student)).

: When U wants to log on S with the role dR(S, discount), S transfers the login
request to a query: “? S.isMember(U, dR(S, discount))”. According to the seman-
tics of REAL05, S will allow U to activate the role dR(S, discount) and create a ses-
sion with an identity “sid001”. The rule (12) defines the constrained DoC policy from
S to the entity that has activated the discount role (here the entity is U). The function
curr-sid() returns the current session id (now it is sid001). The rules (13, 14) are ses-
sion rules. The rule (13) indicates that U has activated the discount role, and the rule
(14) defines the permissions for the session “sid001”.

(12) S.canUse(?x, sR(S, curr-sid()), sc(dR(S, trusted-proxy), 1, {S}))
S.hasActivated(?x, dR(S,discount)).

(13) S.hasActivated(U, dR(S, discount)).
(14) S.canRequest(sid001, ?pm) S.canHold(dR(S, discount), ?pm)).

: Now U logs on P1 and begins to download papers from S. The rule (15) is
session rule and defines the constrained DoC from U to P1. Then P1 makes a request
to S to download the paper (here Pm is omitted in the sample).

(15) U.canUse(P1, sR(S, sid001), sc({}, 0, {S})).

S will transfer the request from P1 to another query: “? S.allowAccess(P1,
pm(download, 20%))”. According to the policies rules and semantics of REAL05, the
query can be deduced and S will allow this request.

REAL05 can be used to express more sophisticated policies. But the discretional
specification of policies may contain unrestricted delegations. For example, the rule
“A.canActivate(?x, dR(A, r1)) B.canActivate(?x, dR(B, r2))” will implicitly de-
fines the delegation of authority of dR(A, r1) to from A to B, and there is no control
over this delegation. This kind of policy is also called distributed attributes inference
[12], which may result in an unrestricted delegation chain. We can add some restric-
tions on the REAL05 rules (see def. 6) to avoid such delegation: A=A1=A2=…=An.
We can omit the entities (i.e. A1, A2, …, An) in the rule body because they are same to
the issuer (i.e. A) of the rule, and denote a REAL05 rule with the form: A.H B1,
B2, …, Bn, . Note that the restriction will be enforced only when defining policy
rules and session rules. The semantic rules (such as the meta rules in table 2) need not
be controlled by this restriction.

 Towards More Controllable and Practical Delegation 255

4 Implementation

We use SICStus Prolog (SICSP) [5] as the inference engine of REAL05. The com-
pound terms in SICSP are very suitable for expressing permissions, roles and spacial
constraints in REAL05. List structures are suitable for expressing entity sets and trust
scopes. The predicate symbols in REAL05 can be translated into SICSP predicates.
For example, the predicate symbol “⊆” in rule (see table 2) can be implemented as
predicate “subspt”, which is defined by following ~ SICSP predicates, where
“isMember(E, X, dR(E, N))” is equivalent to “?y.canActivate(?x, dR(?e, ?n))” in
REAL05.

 subspt(_, *). subspt(_, []). subspt([], []). subspt([], _). subspt([X], [X]).
 subspt([X|ES], [dR(E, N)|TS]) :- isMember(E, X, dR(E, N)), subspt([X], TS),
subspt(ES, [Y|TS]).

SICSP also provides a mapping mechanism between predicates and external func-
tions. This mechanism allows the inference engine to make distributed query during
local inference. When the predicate being evaluated is not asserted by local entity, the
local inference engine will send a query containing this predicate to its principle. Each
entity stores the delegation policies of the delegation trees that originated from it. The
authorization policies are stored with subjects and will be submitted to server during
login process. Note that the number of authorization policies is usually much more
than that of delegation policies in the system. Therefore our policy distribution
scheme is more attractive considering the efficiency of both policy retrieval and pol-
icy discovery. We have embedded such distributed inference mechanism into a mid-
dleware access control management (MACM) architecture, which is the central part
of the security service in StarBus [16]. MACM covers multiple administrative do-
main, different domains exchange credentials and queries through a domain manger
overlay network (DMON). DMON ensures the consistency and completeness of po-
lices among all the domains participating in the overlay network. DMON also pro-
vides a new approach to realize negation policies within a specified domain, while
enforcing negation policies in open decentralized systems is still very difficult and
waits for more feasible solutions [11].

Our simulation system is the extension of the samples in section 3.3. There are 10
M1 entities (treated as administrative domains), each M1 has 10 P1 and 10 Mn as its
domain members, and each Mn has 100 U as domain members. The name of each
entity is generated by a string randomizer. There are 1000 sessions on the server S.
The system distributes over 10 PCs (CPU-2.0GHz, RAM-256M, LAN-100M) and the
communication is protected by SSL. There are more than 10,000 rules (without signa-
ture yet) in the system. The average overhead of login is 0.26 seconds; the average
overhead of each request is 0.12 seconds. This performance is acceptable for most
large-scale distributed systems.

5 Related Work

The concept of trust management was firstly introduced by M. Blaze et al with Poli-
cyMaker [7]. A large amount of work has been done on trust management, such as

256 G. Yin et al.

Keynote [8], SPKI [4], DL [11], RT [12] and Cassandra [10]. In the introduction
section, we have briefly reviewed some of the related work. Now we give further
comparison of our work with some highly related work.

PolicyMaker allows arbitrary programs to be used in credentials and policies. Key-
note uses a special assertion language to define delegation policies. However, both
PolicyMaker and Keynote do not provide mechanisms to control the privilege prolif-
eration during delegation. RT [12] is a family of role-based trust management lan-
guages whose semantics are built upon Datalog rules. RT supports boolean control
over delegation of role authorities. The role intersections in RT can be viewed as a
kind of constraint on the scope of delegation targets. However, RT can only enforce
these delegation constraints for management-level AS. REAL05 supports the delega-
tion constraints on the scope of mediate delegatees, upper-bound of delegation depth
and the scope of delegation targets for both management-level AS and access-level
AS.

RTC [13] is a constrained version of RT for fine-grained control of structured re-
sources, which adopts DatalogC as the logical foundation. RTC does not introduce new
delegation constraints into existing RT framework. RTC only supports equality and
range constraints on role parameters. REAL05 supports inequality constraints as well
as equality and range constraints on both role parameters and predicate parameters.
The semantics of RTC follows the approach in RT0, which translates each credential
into a DatalogC rule. REAL05 uses meta rules to capture the general semantics of
policies, which can be extended to express more general constraints from the perspec-
tive of the whole system. Although the meta-rule approach will be a little more time-
consuming than credential-rule-translating approach, our simulation results show that
the performance is practically acceptable.

Cassandra [10] expresses policies in a language based on DatalogC [15], which
bears some similarities to our system. The expressiveness of Cassandra (and its com-
putational complexity) can be tuned by choosing an appropriate constraint domain.
The rules in Cassandra can refer to remote policies (for automatic credential retrieval
and trust negotiation). However, Cassandra does not embed any delegation control
mechanism in its reserved semantics. For example, the integer control on delegation is
totally managed by security administrators in Cassandra, which will easily lead to
mistakes in security management.

B. C. Neumann uses restricted proxy model [1] to support a variety of restrictions
on authorization and delegation, including grantee, for-use-by-group, issued-for,
quota, authorized, group-membership, accept-once. But the restricted proxy model
does not provide restriction specification and semantics computation. Some of these
restrictions can be expressed by REAL05. For example, the authorized restriction can
be viewed as an access-level constraint on delegation targets. To support other restric-
tions such as accept-once, REAL05 need to be extended and collaborate with other
security mechanisms such as session management facilities.

REAL05 can be viewed as a successor of REAL04 [18], a role-based extensible
authorization framework proposed by the authors in 2004. REAL05 extends REAL04
to support many new features: (a) three types of roles to express the collections of
permissions, authorities and session capabilities; (b) constraints on delegation targets
and delegation depth; (c) using rules to define policies. The approaches to define the
semantics of REAL04 and REAL05 are also different: REAL04 adopts the credential-

 Towards More Controllable and Practical Delegation 257

rule-translating approach while REAL05 adopts the meta-rule approach. REAL05 is
also powered by a clearly defined constrained delegation model named GCDM.
Compared with REAL04, REAL05 are more flexible and extensible on both syntax
and semantics.

6 Conclusion

“Trust can not be trusted.” We aim to provide a more controllable and practical dele-
gation model for TM systems, which could be used to specify delegation policies not
only between entities that trust each other, but also between entities that (often have
to) cooperate according to application requirements or security policies.

Contributions of this paper includes: (1) proposing a generalized constrained dele-
gation model, giving clear definition of authorization system, delegation tree, delega-
tion depth, delegation constraint, and the semantic model of constrained delegation.
(2) proposing a typed privilege model based on permission activation mechanism,
uncovering the essential difference between MTP and ATP, and provides means to
avid undesired privilege transition. (3) using spacial constraint to restrict the shape of
delegation trees, including mediate delegatees, delegation targets and upper-bound of
delegation depth. (4) deigning a rule-based policy specification language, using meta
rules to express general policy semantics, which provides a means to enforce more
general policies (such as setting the upper-bound of the delegation depth for all the
delegations in the whole system).

Future work includes: (i) extending GCDM with temporal constraints; (ii) integrat-
ing GCDM model with existing role-based TM systems such as RT [12] and Cassan-
dra [10] to control the potential privilege proliferation in distributed attributes infer-
ence policies [12]; (iii) searching for more efficient credential distribution and distrib-
uted inference algorithms.

Acknowledgements

This research was sponsored by the National Natural Science Foundation under Grant
No.90412011; the National High Technology Development 863 Program of China
(No.2003AA115210; No.2004AA112020). The authors would also like to thank the
anonymous reviewers for their valuable comments which greatly improve the quality
of this paper.

References

1. Neumann, B.C.: Proxy-Based Authorization and Accounting for Distributed Systems.
Proceedings of the 13th International Conference on Distributed Computing Systems,
Pittsburgh, PA (May 1993)

2. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer Systems, 10(4) (November 1992)
265–310

258 G. Yin et al.

3. Firozabadi, B.S., Sergot, M., Bandmann, O.: Using Authority Certificates to Create Man-
agement Structures. Proceeding of Security Protocols, 9th International Workshop, Cam-
bridge, UK. Springer Verlag. In press (April 2001)

4. Ellison, C.M., Frantz, B., Lampson, B., Rivest, R., Thomas, B.M., Ylonen, T.: SPKI Cer-
tificate Theory. IETF RFC 2693 (1998)

5. Intelligent Systems Laboratory, Swedish Institute of Computer Science, SICStus Prolog
User's Manual, Release 3.11.1 (February 2004)

6. Sollins, K.R.: Cascaded Authentication. Proceedings of the 1988 IEEE Symposium on
Research in Security and Privacy (April 1988) 156–163

7. Blaze, M., Feigenbaum, J., Lacy, J.: Decentralized trust management. Proceedings of 17th
Symposium on Security and Privacy, Oakland. IEEE (1996) 164–173

8. Blaze, M., Feigenbaum, J., John Ioannidis, and Angelos D. Keromytis: The KeyNote trust
management system, version 2. IETF RFC 2704 (September 1999)

9. Schroeder, M.D., Saltzer, J.H.: The protection of information in computer systems. IEEE,
63(9) (September 1975) 1278–1308

10. Becker, M.Y., Sewell, P.: Cassandra: Flexible Trust Management, Applied to Electronic
Health Records Proceedings of the 17th IEEE Computer Security Foundations Workshop
(CSFW'04) (2004)

11. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to distrib-
uted authorization. ACM Transaction on Information and System Security (TISSEC)
(2003)

12. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust management
framework. Proceedings of the 2002 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press (2002) 114–130

13. Li, N., Mitchell, J.C.: Datalog with constraints: A foundation for trust management lan-
guages. Proceedings of the 5th International Symposium on Practical Aspects of Declara-
tive Languages (2003) 58–73

14. Bandmann, O., Damy, M., Firozabadi, B.S.: Constrained Delegation, Proceedings of the
2002 IEEE Symposium on Security and Privacy (S&P'02) (2002)

15. Kanellakis, P.C., Kuper, G.M., Revesz, P.Z.: Constraint query languages. Journal of Com-
puter and System Sciences, 51(1) (1995) 26–52

16. Star middleware site, http://www.starmiddleware.net
17. Varadharajan, V., Allen, P., Black, S.: An Analysis of the Proxy Problem in Distributed

systems. IEEE Symposium on Research in Security and Privacy. Oakland, CA (1991)
18. Gang, Y., Meng, T, Huai-min, W. etc: An Authorization Framework Based on Con-

strained Delegation, International Symposium on Parallel and Distributed Processing and
Applications (ISPA'2004), Hong Kong, China, LNCS 3358, Springer Verlag (2004) 845–
857

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 259 – 271, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Policy-Driven Routing Management Using CIM

Félix J. García Clemente, Jesús D. Jiménez Re, Gregorio Martínez Pérez,
and Antonio F. Gómez Skarmeta

Departamento de Ingeniería de la Información y las Comunicaciones,
University of Murcia, Spain

{fgarcia, jdjimenez, gregorio, skarmeta}@dif.um.es

Abstract. Policy-based network management is intended to provide a
system-wide and unified view of the network and its services and applications.
This includes the combined management of network services as different as
security, QoS or routing. However, while for IPsec and QoS there are clear
models to define the semantics that a policy specification or language should
implement, this is not equally true in the case of routing policies. This paper is
intended to provide some results on the definition, modelling and deployment
of routing policies using the Common Information Model (CIM). We also
present the most relevant details of the implementation of our policy-driven
routing management system, which has been successfully tested and used for
the configuration of several relevant IPv6 IXes deployed as part of the three
years Euro6IX (European IPv6 Internet Exchanges Backbone) EU IST research
and deployment project.

1 Introduction and Motivation

One of the main goals of policy-based management is to enable network, service and
application control and management at a high abstraction layer. Using a policy
language, the administrator specifies rules that describe domain-wide policies which
are independent of the implementation of the particular network node, service and/or
application. It is, then, the policy management architecture that provides support to
transform and distribute the policies to each node and thus enforce a consistent
configuration in all the elements involved. This is a prerequisite for achieving a mean
to dynamically constrain and regulate the behaviour of a system without the human
cooperation.

Researchers have proposed multiple approaches for task-specific policy
representation. They range from formal policy languages that a computer can easily
and directly process and interpret, to rule-based policy notation using an if-then-else
format.

The IETF provides information models for specifying policies that are independent
of any implementation or encoding. In this sense, the IPsec Configuration Policy
Information Model [1] presents an object-oriented information model for IP Security
(IPsec) policies and the QoS Policy Information Model (QPIM) [2] presents a similar
model for QoS policies. Both information models are based on the core policy classes
defined in the Policy Core Information Model (PCIM) [3] and in the Policy Core

260 F.J.G. Clemente et al.

Information Model Extensions (PCIMe) [4]. Both, PCIM and PCIMe derive from and
use classes defined in the DMTF Common Information Model (CIM) [5]. Moreover,
the IPsec Model and QPIM define the semantics of IPsec policy and QoS policy,
respectively. In fact, these models define the semantics that a policy specification or
language should implement according to the IETF.

However, IETF lacks an information model for routing. Although it defines the
Routing Policy Specification Language (RPSL) [6] which is a language to specify
routing policies, is not based on any particular model and, moreover, there is no
definition of a model to be used over it.

Thus, the definition, modeling and deployment of a model for routing policies
based on a well-recognized standard, such as CIM, will enable the intra- and
inter-domain management of different network services (such as, IPsec, QoS and
routing) in a uniform manner.

This paper is intended to provide the results of modeling routing policies using
CIM. It also describes how to take advantage of the Policy-based Network
Management (PBNM) paradigm to develop such modeling. The last part of the paper
is devoted to report on the development of the proposed modeling using for this some
components deployed as part of the Euro6IX (European IPv6 Internet Exchanges
Backbone) EU-funded IST project [8].

2 Representing Routing Policies in CIM

The Common Information Model (CIM) is an approach from the DMTF (Distributed
Management Task Force) that applies the basic structuring and conceptualization
techniques of the object-oriented paradigm to provide a common definition of
management-related information for systems, networks, users, and services. The
major benefit of specifying routing policy rules in this way is that an organization can
utilize a common model that can be shared amongst all network nodes.

Policy model provides a framework for specifying configuration and operational
information in a scalable way using rules composed of conditions and actions. It
includes, among other elements, policy rules, policy groups, and policy conditions
and actions, both in generic and vendor-specific form.

We propose a set of classes and associations to extend the CIM Policy Scheme to
express routing policies (see Figure 1 for their representation in UML). Our proposal
is based on the reposition of the class RoutingPolicy of CIM Network Scheme in CIM
Policy Scheme.

RoutingRule is used to implement routing policies. It defines a common connection
point for associating conditions such as PacketFilterCondition and
PolicyTimePeriodCondition, and network actions (RoutingAction). One of the most
important uses of this class is to change the routing policy by changing values of
various attributes in a consistent manner.

RoutingAction is the base class for the various types of network actions. There are
essentially three types of actions: forward the traffic unmodified, forward the traffic
but modify either the attributes describing the route and/or other attributes that define
how to adapt the traffic (e.g., its ToS –Type of Service– byte settings), or prevent the
traffic from being forwarded. The class properties of RoutingAction correspond with
the class properties of RoutingPolicy.

 Policy-Driven Routing Management Using CIM 261

BGPRouteMapsInRoutingPolicy defines the BGPRouteMaps that are used by a
particular RoutingRule object. BGPRoutingPolicy is a specialization of the
Dependency association, and defines the relationship between a BGPService and the
RoutingRule that control it. FilteredBGPAttributes is a specialization of the
Component aggregation, which is used to define the set of BGP Attributes that are
used by a particular RoutingAction.

(See Policy Model)

Policy

(See Policy Model)

PolicySet

(See Policy Model)

PolicyRule

RoutingRule

(See Policy Model)

PolicyCondition

PacketFilterCondition

(See Policy Model)

PacketConditionInNetworkRule

1..n

*

(See Policy Model)

PolicyAction

Action: uint16 {enum}
AttributeAction: uint16 {enum}
BGPAction: uint16 {enum}
BGPValue: string
RemarkAction: uint16 {enum}
RemarkValue: string
ConditioningAction: uint16 {enum}
OtherConditioningAction: string
ConditioningValue: string

RoutingAction

BGP
RoutingPolicy

*

*

(See Network Model (BGP))

BGPAttributes

FilteredBGPAttributes

*

Hosted
BGPAttributes

AutonomousSystem

(See Network Model (Systems))

1

BGPRouteMap

(See Network Model (BGP))

*w

BGPRouteMaps
InRoutingPolicy

*
HostedBGPRouteMap

1

*w

BGPService

(See Network Model (BGP))

Fig. 1. UML Diagram of Routing policy

3 Mapping CIM to XML

The CIM schema is independent of any implementation. However, for an information
model to be useful, it has to be mapped into some implementation. Thus, as Figure 2
shows, CIM can be mapped to (or represented as) several structured specifications.
According to our approach, the CIM schema can be mapped to structured
specifications such as XML, which can then be used to take advantage of XML
technology and related tools. Other specifications such as MOF/CIM (Managed

262 F.J.G. Clemente et al.

Object Format/Common Information Model) for WBEM (Web-Based Enterprise
Management), MIB (Management Information Block) for SNMP (Simple Network
Management Protocol) and PIB (Policy Information Block) for COPS (Common
Open Policy Service) are not considered because they do not use XML, which is a
key requirement in the design of the overall routing policy management framework.

However, although policies are defined and managed initially in XML, they can be
finally implemented and enforced in real devices using any of the other proposed
formats, as the XML specification can be transformed to an equivalent MIB or PIB,
for example, without loosing any semantics. This is because of the use of an
information model that provides the semantics and basic conceptualization regardless
the specific syntax in use.

CIM Meta Model
(class, property , association ,…)

CIM Models
(core, common, extensions)

Meta Model
Level

Models Level

WBEM
Implementation

Level XMLPIBMIB

Fig. 2. CIM modeling levels

There are two main different models for mapping CIM into XML: schema
mapping and metaschema mapping. DMTF defines a metaschema mapping for the
representation of CIM elements and messages in XML [7]. This mapping defines a
XML scheme that is used to describe the CIM metaschema, where both CIM classes
and instances are valid XML documents for that schema. In other words the XML
schema is used to describe in a generic fashion the notion of a CIM class or instance.
In fact, in this approach CIM element names are mapped to XML attribute or element
values, rather than XML element names.

The second approach, schema mapping, defines an XML Schema to describe the CIM
classes; in this approach CIM Instances are mapped to valid XML documents for that
schema. Essentially this means that each CIM class generates its own XSD fragment
whose XML element names are the same that the corresponding CIM element names.

The metaschema mapping was mainly adopted by the DMTF, as it only requires one
standardized DTD for the whole CIM regardless the version of this information model
used in one particular implementation. However, our research identified several
benefits related to the use of the schema mapping rather than the metaschema. The
most important ones were more validation power and a more intuitive representation.

To build automatically such XML schema from any CIM version we designed an
XML transformation using XSL Transformations (XSLT) [18]. XSLT is a language
for transforming XML documents into other XML documents.

For our purpose, the main design principles identified as part of this mapping
process were:

 Policy-Driven Routing Management Using CIM 263

- Every CIM class generates a new XML element.
- Every CIM generalization (inheritance) generates the declaration of a new

XML extension element.
- Every CIM key property generates a new XML <key> (or <unique>) element,

which allows the unique identification of each XML element (i.e., CIM
instance).

- Every CIM association is expressed in XML as entry references; this is the
most suitable general-purpose mechanism currently available.

- A single XML database will host no more than one CIM implementation, and
therefore the namespace is the same for all CIM instances stored in this
database.

An example of the output of the mapping for a routing policy is presented in
section 5.

4 Policy-Driven Routing Management System

We propose a policy-based routing management as depicted in Figure 3. This
architecture was designed as an evolution of the IETF approach to policies, but
providing some new features, as the complete use of XML-related technologies and
tools in the policy life cycle.

PEP

Policy
Console

Border Router CIM-based Route Server

PDP

Policy Repository

PMT

Access

Access

Definition

Distribution

Notification and
monitoring

Fig. 3. CIM modeling levels

This architecture is composed by these four main functional elements:

- Policy Management Tool (PMT) that allows the administrator to develop
routing policies making use of the Policy Console.

- Policy Repository that is used by the management tool (PMT) to store the
policies and by the decision points (PDPs) to get them. The IETF suggests the
use of a Lightweight Directory Access Protocol (LDAP). Due to our proposal

264 F.J.G. Clemente et al.

of use XML technologies, a more appropriate solution is to store routing
policies in an XML native database, as such we will describe at section 6.

- Policy Decision Point (PDP) in charge of interpreting the policies stored in the
policy repository, recuperating the set of rules for a particular PEP,
transforming them into a format that can be understood by the PEP, and
distributing them to the PEP.

- Policy Enforcement Point (PEP) is a component running on a border router that
can apply and execute the different policies received from the PDP.

The proposed architecture is independent of any particular policy, so it could be
used in the provision of security policies, QoS policies, or any other kind of policies.

5 Example of Routing Policy

The following example shows the mapping of the RoutingAction class of CIM
Schema into XML Schema (which follows the general steps explained in section 3):

<xs:complexType name="CIM_RoutingAction" >
<xs:complexContent>
<xs:extension base="CIM_PolicyAction" >
<xs:sequence>
<xs:element name="Action" type="xs:string"/ >
<xs:element name="AttributeAction" type="xs:uint16" />
<xs:element name="BGPAction" type= xs:uint16" />
<xs:element name="BGPValue" type="xs:string" />
<xs:element name="RemarkAction" type="xs:uint16" />
<xs:element name="RemarkValue" type="xs:string" />
<xs:element name="ConditioningAction" type="xs:uint16" />
<xs:element name="OtherConditioningAction" type="xs:string" />
<xs:element name="ConditioningValue" type="xs:string" />
</xs:sequence>
</xs:extension>
</xs:complexContent>
</xs:complexType>

As it is shown, the CIM class is mapped in a XS type extending the type
CIM_PolicyAction, and each class property is mapped into a different XS element.
The CIM_PolicyAction and basic types (i.e., string and uint16) are defined in other
XS documents.

A practical example of policy combining both routing concepts and QoS concepts
is the following one:

If (IP source address = 155.0.0.0/8) and (IP source Port = 80)
then changing the DSCP value = 40

Differentiated Services Code Point (DSCP) value is related with differentiation of
services in IPv4 and IPv6 network, as quality of services aspects. Therefore this rule
implies that all web traffic (port 80) from the A class 155.0.0.0/8 network will be

 Policy-Driven Routing Management Using CIM 265

established to DSCP value equals to 40. Here the value 40 is just provided as a basic
example, and there is no intention to mean any high-level business objective.

Since the routing policy is very verbose, we only present a fragment of the
mapping.

<CIM_IPHeadersFilter>
<HdrIPVersion>4</HdrIPVersion>
<HdrSrcAddres>155.0.0.0</HdrSrcAddres>
<HdrSrcMask>255.0.0.0</HdrSrcMask>
<HdrSrcPortStart>80</HdrSrcPortStart>
<HdrSrcPortEnd>80</HdrSrcPortEnd>
</CIM_IPHeadersFilter>
<CIM_RoutingAction>
<RemarkAction>1</RemarkAction>
<RemarkValue>40</RemarkValue>
</CIM_RoutingAction>

The RemarkAction equals 1 identifies the value “Change DSCP” and the
RemarkValue identifies the new value for the DSCP.

6 Deployment of a PBNM Framework for Routing Purpose

The design and implementation of the policy-based network management (PBNM)
system now presented have been developed by the University of Murcia as part of the
EU IST Euro6IX project [7]. The main objective of the project is to support the rapid
introduction of IPv6 in Europe. In this sense, one of the UMU contributions to the
project has been the development of a general PBNM functional architecture [8] (with
IPv6 support) which allows the management of various kinds of network aspects, like
VPN-IPsec, QoS and multihoming. The last contribution has been the integration of
the routing model presented as part of this paper.

Figure 4 shows the general architecture and the elements which made up the
implementation. The management architecture is composed of 5 main elements
(Policy Console, PMT, Policy Repository, PDP and PEP) which are described as
follows.

6.1 Policy Console

The policy console represents the entry point to the architecture. Our proposal is using
a simple internet browser to access (i.e. Firefox, Netscape Navigator or Internet
Explorer).

In order to protect the communication between the Policy Console and the Policy
Management Tool, a secure connection is required, which provides confidentiality,
data integrity, and a mutual authentication between the policy administrator using the
Policy Console and the PMT server. HTTP protocol combined with SSL (i.e., HTTPS
protocol) using X.509 certificates is a good approach to obtain these objectives and
therefore PBNM system uses them for securing this communication.

266 F.J.G. Clemente et al.

XML DatabasePMTPolicy Console

http + SSL
Routing Policies

XML-RPCApache
Tomcat

- Internet Browser
- Client certificate

JSP
Pages

Apache
Tomcat

PDP

eBGP

R1

AS1

PEP

XML Routing Policy

R2

AS2
PEP

COPS-PR

COPS-PR

Network area
telnet, ssh

telnet, ssh

Fig. 4. PBNM deployment architecture

The policy administrator must present an X.509 certificate to gain access to the
policy management tools. His private key and/or certificate could be stored in an
encrypted file in his PC or in his smart card. This cryptographic information is issued
previously by a valid Certificate Authority (CA). A Public Key Infrastructure (PKI) is
necessary to provide support for it. The PBNM framework uses the UMU-PKI [10],
although any other PKI software can be used.

6.2 Policy Repository

For storing XML policies, we have chosen to use a XML native database. The benefit
of a native solution is that we do not need to worry about mapping XML policies to
some other data structure (e.g., SQL). We also gain in flexibility through the semi-
structured nature of XML and the schema independent model used by these databases.
This is especially valuable when we have very complex XML structures (i.e.,
complex policies) that would be difficult to map to a more structured database.

Specifically, the UMU-PBNM uses Apache Xindice 1.1 database [11]. This
version could be downloaded as a Tomcat Web Server Application (WAR) and
therefore we have utilized the actual PMT infrastructure (Tomcat) for its installation.

One of the main advantages of Xindice according to our research is that it
implements the concept of collections. Policies are stored in collections that can be
queried as a whole, which increase the extensibility of the policy management as part
of the DB.

Xindice uses XPath notation for its query language and XUpdate for its update
language. Both PMT and PDP servers store/retrieve policies in/from the database
using an interface based on XML-RPC and Java.

 Policy-Driven Routing Management Using CIM 267

6.3 Policy Management Tool (PMT)

The PMT provides to the administrator the mechanisms for creating, modifying or
deleting CIM policy documents. It is done by means of a high-level language or a
graphical interface. In our case, we have developed a complete graphical web
application that is accessible from the Policy Console Terminal. It has been
implemented using JavaServer Pages (JSP), JavaBeans and Java Servlets technologies
and it runs over Tomcat web server, which is IPv6-enabled and works well from its
version 5 (previous versions have some problems when dealing with different IPv6
security realms).

Inside the PMT server, authorized network administrator can create, modify,
and/or delete different types of CIM policies, and monitor how network end nodes are
behaving.

Routing policies (in the same manner as IPsec, QoS and multihoming policies)
could be created from the routing templates. The template concept represents a high-
level representation and grouping of predefined policy values so the creation of new
policies is easy.

Other interesting concept is the role. A role represents a logical group of network
nodes that are managed in a similar way. PMT allows the network administrator to
create, edit and/or delete network roles. Moreover allows the assignment of these
roles to the current policies.

Clearly the main objective of PMT is the policies creation. With this objective in
mind, PMT have been implemented by two main components as it is showed in
Figure 5.

Policy GUI

Interface
Label
(JSP)

JavaBeans
Objects

Servlets
Core

XML Policy Validator

JavaBeans
Objects

Servlets
Core

DB Manager

Authorization
Manager

Fig. 5. PMT components

268 F.J.G. Clemente et al.

6.4 Communication Between PDP and PEP

Various alternatives have been analysed for the communication between the PDP and
any PEP. A first approach is based on the use of Simple Network Management
Protocol (SNMP). SNMP is an application layer protocol that facilitates the exchange
of management information between network devices. In this case, our network
components are the PDP and PEP elements. Although SNMP is a good protocol for
implementing the outsourcing model and also for monitoring purposes, it lacks of
appropriate mechanisms for implementing the provisioning model.

COPS-PR is the protocol recommended by the IETF to transport provisioning
policy data between PDP servers and PEP clients. Therefore, as part of PBNM design
and implementation, we have developed a complete COPS provisioning
implementation, called UMU-jCOPS (University of Murcia Java COPS). It has been
completely developed in Java, allowing the use of any operating system to run an
implementation of PDP or PEP. Furthermore it is IPv6 enabled, so any operation can
be performed using this new network protocol. Both the PDP and PEP contains
UMU-jCOPS core libraries integrated inside.

6.5 Policy Decision Point (PDP)

The Policy Decision Point (PDP) is the PBNM component that applies the policy
documents to the network nodes. It retrieves the CIM routing policies from the Policy
Repository and uses them to generate the low-level policy decisions to be sent to PEPs.

PDP has been implemented using Java 1.4.x and XML technology. Figure 6 shows
the internal PDP components.

Config File
<XML>

PDP Config

PDP Server

COPS Agent MONITOR DB Manager

Policy
Validator

Fig. 6. Internal PDP components

The PDP obtains its configuration (i.e., type of policies, database path, digital
certificate path, etc.) from an XML file. This file is store in memory by the PDP
Config component. PDP Server launches the PDP Monitor and the COPS PDP Agent.
The PDP Monitor component maintains a list of PEPs connected to a given PDP,

 Policy-Driven Routing Management Using CIM 269

whereas COPS PDP Agent, that is the integrated UMU-jCOPS implementation,
performs communication with the set of PEP connected to it. The PDP monitor also
takes decision about the specific policies to distribute to the PEP nodes. For that
purpose, the PDP monitor component uses the DB Manager component allowing to
access the Xindice policy database through XML-RPC requests. This components
uses XML:DB API [12] for Java to access to Policy Repository.

The Policy validator module uses the XML schemas, which have been created
previously, to validate a high-level policy after the PDP retrieves it from the XML
policy database and starts generating policy decisions.

6.6 Policy Enforcement Point (PEP)

PEP clients enforce the policy decisions taken by the PDP to the policy-managed
network nodes like PC Routers o CISCO Routers. The PEP Component could be
integrated itself inside the Router or It could be placed outside of the router (playing
the role of a PEP Proxy). In this case, a communication protocol between the PEP
proxy and the router, such as SSH or Telnet is necessary to enforce the policy.

In the same way as the PDP server, PEPs controlling the Routing devices has been
implemented using Java 1.4.x and XML technologies. Figure 7 shows the internal
components of the PEP.

Config File
<XML>

PEP Config

PEP Server

COPS Agent MONITOR

Time Periods
Checker

Transformer

Quagga
Transformer

CISCO
Routing

ROUTER
Agent

Fig. 7. Internal PEP components

The PEP (the IP Routing-based device) obtains its configuration (i.e., PEP role,
PDP IP address, digital certificate path, etc.) from a XML file. This file is stored in
memory by the PEP Config component. PEP Server, that is the core internal
component, launches the PEP Monitor and the COPS PEP Agent. COPS PEP Agent,

270 F.J.G. Clemente et al.

that is the integrated UMU-jCOPS implementation, performs communication with the
PDP and obtains its Routing Policy.

PEP Monitor checks the current policy’s validity. If policy is valid (TimePeriod
Checker is the component to do it), then PEP Monitor launches the suitable PEP
Transformer that it has to convert it to the specific configuration format used by the
device that it is controlling. (CISCO Routing or Quagga Routing implementation
[13]). PEP Transformer uses a set of XSL Transformation which has been developed
to do the XML transformation to suitable configuration files. In this manner, every
XSL (Extensible Stylesheet Language) contains a particular technology
transformation for particular operating system architectures.

So far, we have created XSLT transformations for CISCO IOS Routers [14],
Quagga BGP-4 protocol and Quagga Route Server model. Quagga implementation
has been tested in PC Routers with Linux 2.6.x operating system and FreeBSD 5.x.

Quagga is a routing software suite, providing implementations of OSPFv2,
OSPFv3, RIPv1, RIPv2, RIPv3 and BGPv4 [15][16] for Unix platforms, particularly
FreeBSD, Linux, Solaris and NetBSD Routing Software Suite. The release tested is
0.98.0, although the latest releases can also be used.

If the PEP is not integrated inside the Router element (as it is the case of the
CISCO Router) then Router Agent module takes care of communication with router
using SSHv2 protocol (if router supports it) or through a telnet session.

7 Conclusions and Future Work

Policy-based network management (PBNM) is an emerging technology addressing
open issues that are crucial for the deployment and evolution of network services and
applications. For this the definition of common models indicating the semantics that a
policy specification or language should implement regarding a network service is
quite relevant. In the case of IPsec or QoS, for example, this issue has been mostly
addressed during the last years, but in the case of routing policies just a few models
have been defined. This paper provides a modelling for routing policies based on the
CIM information model as well as the details of how it has been applied in a
particular PBNM architecture.

Acknowledgements

This work has been partially funded by the EU Euro6IX (European IPv6 Internet
Exchanges Backbone, IST-2001-32161) IST project and EU POSITIF (Policy-based
Security Tools and Framework, IST-2002-002314) IST project.

References

1. Jason, J., Rafalow, L., Vyncke, E.: IPsec Configuration Policy Information Model, RFC
3585 (2003)

2. Snir, Y., Ramberg, Y., Strassner, J., Cohen, R., Moore, B.: Policy Quality of Service
(QoS) Information Model, RFC 3644 (2003)

 Policy-Driven Routing Management Using CIM 271

3. Moore, B., Ellesson, E., Strassner, J., Westerinen, A.: Policy Core Information Model -
Version 1 Specification, RFC 3060 (2001)

4. Moore, B. (Ed.): Policy Core Information Model Extensions, RFC 3460 (2003)
5. Common Information Model (CIM) Standards, DMTF, http://www.dmtf.org/standards/

cim
6. Alaettinoglu, C., Villamizar, C., Gerich, E., Kessens, D., Meyer, D., Bates, T.,

Karrenberg, D., Terpstra, M.: Routing Policy Specification Language (RPSL), RFC 2622
(1999)

7. Web-Based Enterprise Management (WBEM) Initiative Standards, DMTF,
http://www.dmtf.org/standards/wbem

8. Euro6IX (European IPv6 Exchanges Backbone) IST Project, http://www.euro6ix.org
9. The University of Murcia Policy-Based Network Management System (UMUPBNM).

http://pbnm.dif.um.es
10. The University of Murcia Public Key Infrastructure (UMU-PKI). http://pki.dif.um.es
11. The Apache Xindice XML database, http://xml.apache.org/xindice/
12. The XML :DB Initiative for XML Databases. http://xmldb-org.sourceforge.net/
13. Quagga Routing Suite. http://www.quagga.net
14. The CISCO Company. http://www.cisco.com/
15. Bates, T., et al.: Multiprotocol Extension for BGP-4, RFC 2858 (2000)
16. Rekhter, Y., Li, T.: A Border Gateway Protocol 4 (BGP-4), RFC 1771 (1995)
17. XML Schemas. http://www.w3.org/XML/Schema
18. XSL Transformations Version 1.0. http://www.w3.org/TR/xslt
19. Perez, G.M., Skarmeta, A.F.G.: Policy-Based Dynamic Provision of IP Services in a

Secure VPN Coalition Scenario, IEEE Communications Magazine (2004)

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685,, pp. 272 – 285, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Secure Hybrid Operating System
“Linux over Fenix”

Dmitry P. Zegzhda and Alex M. Vovk

Information Security Centre of Saint-Petersburg Polytechnical University,
P.O. Box 290, K-273, Saint-Petersburg, 195251

dmitry@ssl.stu.neva.ru

Abstract. The article discusses an approach to the construction of secure data
processing systems based on the hybrid operating system technology, making it
possible to use several different operating systems simultaneously on the same
computer and arrange for an interaction between those. The Fenix secure
operating system developed at the Software Security Laboratory(SSL) of the St.
Petersburg State Polytechnical University (SPSPU) is proposed to be used as a
host operating system, while the popular Linux OS — as a guest operating
system, to ensure compatibility with commonly used applications.

1 The Problem of Integration Between the Facilities of
Information Protection and Processing

In the course of their development information technologies infiltrate the areas where
the most crucial demand to information processing is that of security. In order to
entrust the information system with processing of confidential information whose
protection is vital for the security of the country, a guarantee that the security features
will function properly should be provided. And the only way of guaranteeing this is to
make use of proprietary security features developed in-house, because it is only in this
case that the full In this situation a problem emerges on the borderline between the
information technologies and security features, both undergoing continuous
development — the problem of integration between the domestically produced
facilities for information protection and the imported facilities for information
processing. This problem is of special importance for the software because the latter
is developing at a very high rate — the operating systems serving as the environment
for applications to function in, change every couple of years.

In this situation a problem emerges on the borderline between the information
technologies and security features, both undergoing continuous development — the
problem of integration between the domestically produced facilities for information
protection and the imported facilities for information processing. This problem is of
special importance for the software because the latter is developing at a very high
rate — the operating systems serving as the environment for applications to function
in, change every couple of years.

In order to deal with this problem the following contradictory requirements should
be met:

 Secure Hybrid Operating System “Linux over Fenix” 273

1. in order that the security features could successfully function, performing the tasks
assigned to them, it is imperative that they should have control over all information
interactions in the system, with no exception;

2. in order that the information system could be successfully operated, it should both
have the required functionality and meet the requirements to the modern IT
products, i.e. it should be compatible with the solutions offered by other
manufacturers, it should be user-friendly, it should be able to provide access to the
resources of the World Wide Web etc.;

3. security features should not lag behind the data processing functions in the extent
of their development, however, it is impractical to develop new protective
measures for each novel information technology, since it will tie up enormous
resources.

The solution for the outlined problem should be sought in the development of the
system architecture which could combine various system and application components
with security features in such a way that all the requirements formulated above would
be met.

2 Security of Information Technologies Through Secure
Operating Systems

For the modern computer systems the only way to ensure total control is to introduce
security features at the operating system level. This method of solving the problem
uses the systemic approach to the issue and guarantees results, though it involves
certain expenses. However, in this case the funds will be spent directly on protective
functions and not on the alterations made to the applications, which will inevitably
reduce their functionalities, the applications themselves becoming obsolete in the
process. On the contrary, the secure OS will be up-to-date as long as the problem of
IT security persists, and the ready availability of the source codes and of the full set of
design and operation documents will make it possible to monitor the security of
software codes.

This approach has been implemented in the Fenix secure operating system[1]
developed at the SSL of the SPSPU, making use of an original technology which
allows both to eliminate the setbacks of existing systems and obtain a comprehensive
mechanism of access control. The main objective of the project was to develop an
original secure OS to meet the domestic requirements and information security
standards, which could serve as the foundation for building a broad class of
information systems for critical purposes.

The production of a secure OS is an indispensable precondition for the solution of
the problem of IT security, however, it is not a final solution. The principal problem
which all new OS face (and the secure ones in particular) when introduced, is the lack
of a sufficient choice of user-defined application software which could be used in
working with the protected resources. Writing new applications for such OS or
importing the existing ones is a practically impossible task, in view of the time, funds,
and intellectual resources needed.

This is why the only way out of this deadlock is the creation of a secure operating
system to provide for the security of the processed information in conformity with the

274 D.P. Zegzhda and A.M. Vovk

strictest requirements of domestic and international standards, at the same time
designed for use together with the existing systems and applications in the way they
are, without any changes or alterations. This approach alone will make it possible to
deal with both special problems of protecting individual data processing complexes
and to obtain a radical solution to the problem in the shape of a comprehensive secure
OS serving as a basis for the construction of secure systems of various degrees of
complexity.

3 Methods to Ensure Compatibility of the Secure OS with Popular
Applications

There are several approaches to the problem of building a secure operating system
capable of running applications of the commonly used OS, at the same time providing
the required protection of the information resources used by these applications. Let us
discuss these approaches, their advantages and disadvantages.

1. Attainment of a full binary compatibility of the secure OS and the popular OS at
the level of the application code and the application programming interface (API).
This is a task of ultimate complexity, because such compatibility cannot be found
even among the products by well-known manufacturers, who have immense
resources and capacities at their disposal. For example, no one has yet succeeded
(despite numerous efforts) in achieving full compatibility of OS of UNIX and
Windows families on the level of the binary code and the API. If such
compatibility is ever attained, it will be only at the expense of reproducing the
architecture of popular systems down to the minute details, inevitably receiving as
the legacy all inherent problems and bottlenecks connected with the security issues,
making it impossible to solve the problem in question — to create a secure system.

2. Emulation of the application programming interfaces of commonly used OS by the
software of the secure OS. In this case re-compilation of applications for the new
environment will be needed. If emulation is performed correctly, the application
should not be able to notice that it is running in a foreign environment, since it will
interact with the same API. Taking into account the sophisticated APIs of modern
OS, this solution looks rather complicated and labor-intensive.

3. Embedding the security features in an open-source OS. This road looks very
tempting because the results can be obtained quickly, but it will demand
continuous reworking of the modified product, which will always stay behind the
original version, losing in compatibility. In case the architecture of the original
product is changed radically, there will be a stage when it will be impossible to
introduce the required alterations. This is why this approach ultimately does not
show much promise.

4. Hybrid OS. If the source codes of the OS are open, a much simpler and less labor-
intensive solution, besides, allowing to achieve a better degree of compatibility,
will be to modify the source code of the OS in such a way that it could be run as a
common user process within the secure OS. This approach will provide for a full
compatibility with the popular OS, because it will be used “as is”, wholly with its
architecture and APIs, and it will not involve extra expenses — what we need is to
modify an open system in such a way that it could became operable in the process

 Secure Hybrid Operating System “Linux over Fenix” 275

environment of the secure OS. Since the popular OS now becomes an ordinary
process within the framework of the secure OS, then from the standpoint of
security this option looks like the preferred one.

Let us discuss what the hybrid OS technology consists in, and how it can be used
for the construction of secure systems compatible with the applications of popular OS.

4 The Technology of Hybrid Operating Systems

The essence of the hybrid operating systems technology consists in the fact that
within the framework of one operating system (called “host”) an environment is
created where another operating system (called “guest”) can function, which makes it
possible to start several different operating systems on the computer simultaneously
and switch between them without rebooting the computer. The essence of the hybrid
system technology is that there are one or several virtual machines set up on the
computer running under the control of the basic (‘host”) operating system, and each
of those makes it possible to run a (“guest”) system of its own.

The virtual machine(VM) includes all the devices required for the operation of the
guest OS: the processor, RAM, disc drives, network devices, I/O devices. These
devices are emulated by the VM using the resources of the actual computer system
through addressing the services offered by the host OS. The resources to be used by
the VM are either delivered for the monopolist use by the VM and excluded from the
main pool of resources (like RAM), or used by the host and the guest systems
together — like it is with the processor, drives and the network. It is obvious that
these opportunities can be offered at the expense of sharing the resources of the actual
computer, so the requirements to the hardware will be higher.

In the hybrid system the host OS controls the hardware of the computer system,
while the guest OS has no access to the hardware, interacting only with the VM. This
way the host OS will be in full control of the operation of the guest OS, at the same
time remaining fully transparent for the user of the guest OS.

The main purpose of the VM is to isolate the guest OS from the hardware and to
create for it an appropriate computing environment on the basis of the application
programming interface of the host OS. At that the VM will be able to set up various
hardware configurations — for instance, it can be predetermined how much of RAM
this or that VM will get and whether it will have access to the network.

5 Related Works

The central mechanism in our work is the VM, which allows secure OS to take
control over the common OS and its applications. Extensive discussion of VMs and
their properties is found in seminal work by Goldberg [2, 3] and more contemporary
work on Disco [4] and VMware [5, 6]. More recently, Chen [7] argues for routine and
extensive use of VMs for security purposes.

A more general argument about the inherently limiting nature of committing to a
single OS abstraction has been made by the extensible OS community, perhaps most

276 D.P. Zegzhda and A.M. Vovk

concisely in arguing for exokernels [8]. Exokernels and VMs are in many ways quite
similar.

Grizzard in [9] proposes a Trusted Immutable Kernel Extension (TIKE) by way of
a VM. Using a host operating system as a trusted platform, a self-healing system uses
existing intrusion detection systems and corresponding self-healing mechanisms to
automatically heal the guest operating system once a compromise has occurred.

Garfinkel presents a closed-box abstraction for trusted computing through the use
of a VM monitor(Terra) for isolation and security [10].

Recently, the idea of isolated environments has become available in the form of
commodity platforms implementing TCPA. [11], which related to our conception of
combining trusted and untrusted components in one hybrid system. But TCPA is only
a hardware mechanism for trusted computing, lacking a vision for support of trusted
computing in operating systems.

In recognition of the need for OS support for trusted computing, Microsoft began
development of its NGSCB (formerly Palladium) architecture [12, 13]. This work is
the most similar to ours in that it provides a “whole system” solution to the problem
of trusted computing. NGSCB works by partitioning the platform into two parts
(“trusted” and “untrusted”) each of which runs a different operating system. It
achieves this through what can be seen as a very special purpose hybrid system that
only supports two VMs. The untrusted(guest) is one of today’s commodity operating
systems (e.g. Windows) while the trusted(host) part is a dedicated trusted operating
system (the “nexus” in NGSCB parlance).

NGSCB differs from Linux over Fenix most prominently in its security
architecture. Linux over Fenix is a combination two full-power operating systems, in
contrast, the trusted part of NGSCB is a dedicated operating system designed to run
small, high-assurance programs called “agents.” Agents work in conjunction with
code on the untrusted side of the system, providing all of the security-critical
functionality that programs on the untrusted side need (e.g. sensitive key storage).

6 “Linux over Fenix” Hybrid OS

The hybrid OS technology can be used for the construction of a secure operating
system where the secure host OS would provide for the security, and the guest OS —
for compatibility with applications and the user interface. What is required for this
purpose is, first, the possibility of starting the guest OS as a common user process
within the secure OS, and, second, the possibility of access by the applications of the
guest OS to the resources of the secure OS under control of the embedded security
features. Thus the multitude of applications of the secure OS is further expanded by
both existing applications of the guest OS and those under development.

An example of a secure hybrid system is furnished by the solution developed by
the Department of Information Security of the SPSPU School of Technical
Cybernetics, which received the name “Linux over Fenix” secure hybrid system. The
secure Fenix OS, having a special architecture and implementing a flexible model of
access control to the information resources, plays the part of the secure OS. Within
the environment provided by this OS, copies of the modified “Linux” kernel are run,
adapted for operation in the user mode in the Fenix OS environment. Each user has at

 Secure Hybrid Operating System “Linux over Fenix” 277

his disposal a personal copy of the Linux environment, fully isolated from the others.
To access the information resources of the secure Fenix OS the driver of the file
system of the modified Linux kernel is used, it redirects the calls for the resources of
the Fenix secure OS, remaining under control of the Fenix security features.

Linux over Fenix

Linux Processes

Linux Virtual Machine for Fenix Environment

Bash - commands
processor

Midnight
commander

(file manager)

Adapted Linux Kernel

Gateway for Fenix Internal
Virtual Network

Gateway for Fenix
Resources Access

Memory control Exceptions Control

Lynx WEB-browser
Apache WEB-

server

Gateway for Linux
Resources Access

Fig. 1. The Structure of the ”Linux over Fenix” Hybrid System

This solution makes it possible to expand the multitude of applications to be run
under the Fenix with a vast multitude of applications for the popular Linux OS. This
is how the problem of creating a secure system compatible with commonly used
applications finds its solution, because all security functions are implemented with the
Fenix, while all the Linux functionalities are open for application processes. The
Linux OS functioning under continuous control of the Fenix security features, having
no access to the hardware, and the security of the Fenix OS does not sustain any
damage because the code of the Fenix security features was never changed.

6.1 “Fenix for Linux” Virtual Machine

Linux OS, functioning in the Fenix environment, is an ordinary Fenix OS process,
which includes the “Fenix for Linux” VM, a modified Linux kernel and the Linux
user processes (see Fig. 2). The Fenix VM for Linux includes:

1. A memory control module which makes it possible to map the required physical
page to the required virtual address.

2. An exception and interrupt control module which can handle processor exceptions
and interrupts in the user mode of the Linux VM.

At every particular moment of time in the virtual address space of the VM there are
pages of the Linux OS kernel and the pages of the current Linux user process. For
each Linux OS process a list of pages in use is kept, which is modified as the memory
is allocated/freed. As soon as the time slice allocated for the current Linux process
expires, the Linux kernel removes the pages belonging to the process being phased

278 D.P. Zegzhda and A.M. Vovk

out from the virtual address space, and maps the pages which belong to the new
process being switched over to, to the same addresses.

Fenix Security Mechanisms

Fenix Common Process

Linux Processes

Fenix Microkernel

Linux Virtual Machine

 bash
Midnight

commander -
file manager

Hardware

Adapted Linux Kernel

Fenix Common Process

Linux Processes

Linux Virtual Machine

Lynx WEB-
browser

Apache WEB-
server

Adapted Linux Kernel

Fenix Resources

Fig. 2. The Architecture of the “Linux over Fenix” Secure Hybrid Operating System

The VM should handle certain processor exceptions and interrupts — for instance,
timer interrupts or paging errors. When an exception or an interrupt related to the VM
process occurs, the Fenix kernel transfers control to the VM, to handle the situation.
In the case when the VM handles the interrupt or the exception incorrectly, the
integrity and stability of the Fenix OS will not be damaged — the process of this VM
will be terminated.

6.2 Security

Security features of the hybrid operating system should be dealing with the two main
issues: they should protect the components of the operating systems (both kernels and
processes) from interfering with each other, and control the access to the host system
resources by the guest system applications.

In the Fenix environment Linux functions in the user mode as an ordinary user
process. This means that Linux cannot disturb the operation of the Fenix OS kernel
and of other applications run in the Fenix environment.

More than that, the Fenix VM for Linux using the mechanisms of segment
boundaries, privileges and virtual memory can isolate the Linux kernel from the
Linux user processes and the Linux user processes from one another. To deal with this
problem the full scope of potentialities offered by the processors of IA-32 architecture
is used for memory protection.

1. Protection of the Fenix kernel from the Linux kernel. The Fenix kernel is protected
from the Linux kernel by the paged memory (the Fenix kernel is executed in

 Secure Hybrid Operating System “Linux over Fenix” 279

privileged pages, the Linux kernel — in user pages). The Linux VM is an ordinary
process of the Fenix OS and does not have access to the internal structures of the
Fenix OS kernel.

2. Protection of the Linux VM from the Linux processes. The Linux VM is protected
from the Linux processes by memory segmentation and segments privileges.

3. Protection of the Linux processes from one another. The lower three gigabytes of
the virtual address space of the VM are used to run Linux processes. Before
switching from one process to another the memory used by the first process is
removed from the virtual address space of the VM. The memory used by the new
process is mapped to the same virtual address space, and only after that the control
can go over to the new process. Thus, the Linux OS processes can have access only
to their address space, without any access to the virtual address spaces of other
Linux OS processes and, therefore, cannot interfere with their execution.

4. Protection of the Fenix kernel from Linux processes. The Linux OS processes are
run at the third privilege level in the segment limited to three gigabytes, and have
no access to the internal structures of the Fenix kernel; therefore, they cannot
interfere with its operation or affect other Fenix processes.

5. Protection of applications of the secure Fenix OS from the Linux VM. Protection
of the applications of the secure Fenix OS from both the Linux VM and Linux
kernel is provided by the secure Fenix OS kernel, which isolates the address spaces
of Fenix tasks and, respectively, the Linux VMs using segment and page protection
of address spaces.

Thus, the components of the hybrid system form a hierarchy: “Fenix kernel” —

“Linux VM” — “Linux process”, where every component is in full control of the
lower level components and protected from their interference.

The architecture of the secure Fenix OS, based on the concept of universal
information resources and total control of interactions between all system
components, makes it possible to deal with the problem of control over the access of
Linux applications to all kinds of protected information resources under control of the
secure Fenix OS using the built-in security features.

1. Control of the access to the terminals of the secure Fenix OS. The terminal which
can display confidential information and accept commands from the user to
process it, is one of the protected information resources controlled by the security
features of the secure Fenix OS. The guest Linux OS does not have direct access to
the secure Fenix OS terminal. The only way for Linux OS applications to display
information or to receive a command from the user console is to access the
programmable interface of the secure Fenix OS. Every such time the secure Fenix
OS, after the appropriate authorization procedures, will make a decision on
whether the access to the terminal for the Linux process will be granted or denied.

2. Control of the access to the information resources of the secure Fenix OS by the
Linux OS and its applications. The file system driver of the modified Linux OS
kernel is used as a gateway for the access to the information resources of the secure
Fenix OS, it maps their file system in Linux and translates the events to the secure
Fenix OS. Since from the standpoint of the secure Fenix OS architecture the Linux
VM represents an ordinary user process, so, when these resources are accessed, a
usual Fenix access control procedure takes place according to the security pattern

280 D.P. Zegzhda and A.M. Vovk

in operation within the system. Thus, this gateway allows the applications to run
within the framework of the Linux VM, to access directories, files and other
information resources located in the total namespace of the secure Fenix OS under
the control of its security features.

3. Control of internetworking for the Linux OS and its applications. To ensure the
computer system security it is essential to control not only the access to the local
resources of the system, but also the internetworking. In Fig. 3 the architecture for
a secure network of the hybrid “Linux over Fenix” OS is shown.

Fenix common process Fenix common process Fenix applications

Fenix Internal Virtual Network

Linux network applications

Linux Virtual Machine

FTP-client WEB-
browser

Adapted Linux Kernel

Linux network protocols
stack

Gateway for real network access

Linux network applications

Linux Virtual Machine

FTP-server WEB-server

Adapted Linux Kernel

Linux network protocols
stack

Fenix network
protocols stack

Real
Network

Fenix Security
Mechanisms

Fig. 3. The Architecture for a Secure Network of the Hybrid “Linux over Fenix” OS

The internal virtual network represents a hub combining network interfaces of
Linux VMs and the network interface of the secure Fenix OS into a common virtual
network which can be connected to the real external network via a special gateway
performing all the functions of network security. Besides, network security features
can be implemented on each virtual network interface connected to the internal
network. Network security features include filtering the traffic at the level of TCP and
IP; it is also possible to provide encryption and VPN facilities. Undesirable
interactions both in the virtual network and with the external network can be
prohibited. Thus, when Linux OS applications interact with a network, the security
features of the secure Fenix OS will be in full control of all internetworking, both in
the internal virtual network and in the external network.

 Secure Hybrid Operating System “Linux over Fenix” 281

Thus, the secure hybrid Linux over Fenix OS ensures both the security of all
components of the host and the guest OS and the security of information resources
under control of the secure host Fenix OS, as well as of internetworking of the guest
Linux OS and its applications.

6.3 Compatibility

The Fenix for Linux VM has a high level of compatibility with the original Linux OS.
This is achieved due to the fact that the Fenix for Linux VM does not attempt to
emulate the Linux functionality, but represents a standard Linux 2.4 kernel, slightly
modified to make it possible to run it as an ordinary secure Fenix OS process. These
modifications involve a small number of modules and can be easily replicated in the
later versions of the Linux kernel.

6.4 Power

Linux applications running in the Fenix for Linux VM demonstrate practically the
same power level as they would if run in the original Linux OS. This is achieved
because the responses to the system calls of the Linux kernel are not emulated, and
they are executed in exactly the same way as when operating in the original Linux
OS. The existing small overhead is associated only with the operation of the secure
Fenix OS security mechanisms, but it becomes manifest only when an attempt to
access protected resources is made, and not all the time while the Linux application is
running. At that this overhead is not higher than in the case when this application is
exported to the Fenix environment.

7 The Model of Access Control of the Secure Hybrid Linux over
Fenix System

The access control mechanisms in the hybrid system are described by the following
model:

The secure hybrid system G is the set tuple: G = {S, R, AC, CR, Op, P}, where:
S — the set of the subjects of the secure hybrid system. S = SF∪SL , where SF is the

set of the subjects of the secure Fenix system, and SL - the set of the subjects of the
Linux operating system.

R is the set of the system resources. R = {RF, RL}, where RF are multiple resources
of the secure Fenix system, and RL - the multiple resources of the Linux operating
system. RL = {RiL, RoL}, where RiL are the nonshared resources with the secure Fenix
OS – multiple resources of the Linux operating system, inaccessible for the subjects
SF of the secure Fenix system, while RoL are the shared resources with the secure
Fenix OS - multiple resources of the Linux operating system, accessible for the
subjects SF of the secure Fenix system. The secure hybrid Linux over Fenix OS
incorporates a uniform system of access control of the subjects to the resources. And
it does not matter what type the resource is — the access control system interacts with
all types of resources in a uniform manner. Thus, the subjects are also resources SF∈RF
and SL∈RL.

282 D.P. Zegzhda and A.M. Vovk

AC is the set of algorithms of access control of subjects S to resources R. AC =
{ACF, ACL}, where ACF is the algorithm of access control to resources RF of the
secure Fenix OS, and ACL — the algorithm of access control to resources RL of the
Linux OS.

The algorithms of access control in Linux over Fenix, in dependence of the types
of objects and resources are shown in Fig 4.

 RF RoL RiL

SF ACF ACF ACL –

SL ACF ACL ACL

Fig. 4. The Algorithms of Access Control in the Secure Hybrid Linux over Fenix OS in
Dependence of the Types of Subjects and Resources

Op is the set of operations of the system. Op = {OpF, OpL}, where OpF are multiple
operations which can be performed by the subjects of the secure Fenix system SF over
the resources of the secure Fenix system RF and the resources of the Linux operating
system RoL, and OpL — multiple operations which can be performed by the subjects
of the Linux operating system SL over the resources of the secure Fenix system RF
and the resources of the Linux operating system RL. The set of operations OpF =
{deallocation, reading, writing, acquisition of security attributes, setup of security
attributes, generation, deletion}. The set of operations OpL = {deallocation, reading,
writing, acquisition of security attributes, setup of security attributes, generation,
deletion}.

P is the set of permissions. P = {PF, PL}, where PF are multiple permissions which
the subjects of the secure Fenix system SF may have in regard to the resources of the
secure Fenix system RF and in regard to the resources of the Linux operating system
RoL, while PL are multiple permissions which the subjects of the Linux operating
system SL may have in regard to the resources of the secure Fenix system RF and in
regard to the resources of the Linux operating system RL. PF = PdF PmF, where PdF
are discretionary permissions, and PmF — mandatory permissions. PdF = {reading,
writing, addition, execution}, PmF = {reading, writing}. PL = {reading, writing,
execution}.

CR is the resource container. All resources RF and RoL are aggregated in resource
containers. During authorization the access control algorithm interacts not with the
resource directly, but with the container CRR, where the resource R is aggregated.
Access control algorithms are abstracted from both the types of resources aggregated
in the containers and from the client requesting access to the resources. This makes it
possible to ensure isomorphism of access control both from the client requesting
access (secure Fenix OS application, or Linux OS application) and from the resources
(resources of the secure Fenix OS or resources of the Linux OS).

This way the actions of the Linux VM are transformed into uniform requests to the
resource containers controlled by the Fenix security features. All calls of the subjects
SL of the Linux VM for resources RF of the secure Fenix OS, with no exception, are
controlled by the access control algorithm ACF of the secure Fenix OS. Linux OS
operates under control of the secure Fenix OS security pattern and cannot bypass it.

 Secure Hybrid Operating System “Linux over Fenix” 283

In the secure hybrid Linux over Fenix OS multiple permissions which subject S
has in regard to resource R can be written down as follows: P = AC(S, R, Op) = ACF
(SF, RF,OpF) ACF (SL, RF,OpL) ACL (SL, RL,OpL) ACF (SF, RF,OpF) ACL (SF,
RF,OpF). As the access to the resources can take place only through resource
containers CR, a necessary condition for the access of subjects S to resources R is ∃
CRR for the given type of resources R.

8 Using the Hybrid Secure Linux over Fenix OS

The hybrid secure Linux over Fenix OS can be employed as a platform for
workstations and servers with several isolated environments for processing
information of different confidentiality levels or gateways connecting information
systems of different confidentiality levels.

As an example, let us discuss how the hybrid Linux over Fenix system can be used
to solve the problem of setting up a workstation to process information of different
confidentiality levels and arrange for its connection to Internet(Fig. 5). Several
isolated from one another Linux VMs can be run on behalf of different users.

Fenix common process Fenix common process

Linux network applications

Linux Virtual Machine

Adapted Linux Kernel

Linux network protocols
stack

Linux network applications

Linux Virtual Machine

File manager Text Editor

Internet

Fenix common process

Linux network applications

Linux Virtual Machine

FTP-server WWW-
server

Adapted Linux Kernel

Linux network protocols
stack

Local
Network

 Fenix ResourcesFenix Internal Virtual Network

Gateway for real network
access

Fenix Security
Mechanisms

Fenix Internal Virtual Network

Gateway for real network
access

Adapted Linux Kernel

Gateway for Fenix
Resources Access

12 3

FTP-client WEB-
browser

Fig. 5. A Workstation Based on the Hybrid Secure Linux over Fenix OS for Processing
Confidential Information and Work with the Local Area Network and the Internet

284 D.P. Zegzhda and A.M. Vovk

For instance, one VM can be started with the permissions of a highly privileged
user, enjoying full rights to process confidential information, and work in it, making
use of the whole range of data processing facilities incorporated in the popular Linux
OS. At that, to avoid leaks of confidential information, this VM should be fully
banned from the network access (both to the intranet and the Internet).

Another VM could be run with the permissions of a not so highly privileged user,
who will have limited access to the confidential information, and used for working
with the resources of the local intranet — for example, for furnishing a restricted
amount of information using Linux standard WWW- and FTP-services.

Finally, the third VM could be started with the permissions of an unprivileged user
without any access to the confidential information, who can, therefore, freely work in
the Internet using standard Linux features (like the Web-browser and ftp-client). This
VM is used for the activities which can lead to the system being compromised and
infiltrated by viruses and “Trojans”. However, even in this situation only this VM will
suffer damage, and the confidential information, inaccessible for this user, will remain
intact.

This way we have succeeded in the construction of a system wherein the user can
process confidential information, share it over the local area network at his discretion,
access the World Wide Web, at the same time being sure of the system security,
because the VM distributing the information over the local area network has limited
privileges, and the VM working with the Internet is fully isolated from the
confidential information.

9 Conclusion

The advantages of using the hybrid operating system technology for building secure
information systems on the basis of the secure Fenix OS and the popular open-source
Linux OS makes it possible to implant the following properties in the system:

1. Total control over all information interactions and information flows by the trusted
security features from the secure Fenix OS range, thus providing a high level of
security.

2. No possibility to bypass or override the security features, because the Fenix
security facilities directly interact with the hardware platform, while the Linux
facilities, on the contrary, do not have access to it.

3. The set of accessible applications can be expanded on the account of Linux
applications, which makes it possible to use the Linux over Fenix hybrid system
practically everywhere where Linux is used.

4. Minimum overhead for security — the only code run in addition to the commonly
used Linux is the code of the secure Fenix OS security features.

References

1. Zegzhda, D.P., Stepanov, P.G., Otavin, A.D.: Fenix Secure Operating System: Principles,
Models and Architecture // Proceeding of International Workshop on Mathematical
Methods, Models and Architectures for Network Security Systems. Information
Assurance in Computer Networks. Springer (2001) 207–218

 Secure Hybrid Operating System “Linux over Fenix” 285

2. Goldberg, R.: Architectural Principles for Virtual Computer Systems. PhD thesis, Harvard
University (1972)

3. Goldberg, R.: Survey of virtual machine research. IEEE Computer Magazine, 7 (June
1974) 34–45

4. Bugnion, E., Devine, S., Rosenblum, M.: Disco: running commodity operating systems on
scalable multiprocessors. In Proc. 16th ACM Symp. Operating Sys. Principles (Oct. 1997)

5. Sugerman, J., Venkitachalam, G., Lim, B.: Virtualizing I/O devices on VMware
workstation’s hosted virtual machine monitor. In Proc. 2001 Ann. USENIX Tech. Conf.,
Boston, MA, USA (June 2001)

6. Waldspurger, C.A.: Memory resource management in VMware ESX Server. In Proc. 2002
Symp. Operating Sys. Design and Implementation (December 2002)

7. Chen, P.M., Noble, B.D.: When virtual is better than real. In Proc. 2001 Workshop on Hot
Topics in Operating Sys. (HotOS-VIII), Schloss Elmau, Germany (May 2001)

8. Engler, D., Kaashoek, M., O’Toole, J.: Exokernel: Anoperating system architecture for
application-level resource managment. In Proc. 15th ACM Symp. on Operating Sys.
Principles (Dec. 1995)

9. Grizzard, J., Dodson, E., Conti, G. Levine, J., Owen, H.: "Towards a trusted immutable
kernel extension (TIKE) for selfhealing systems: a virtual machine approach," in Proc. 5th
IEEE Information Assurance Workshop (June 2004) 444–446

10. Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., Boneh, D.: “Terra: a Virtual Machine-
Based Platform for Trusted Computing,” in Proceedings of the nineteenth ACM
Symposium on Operating Systems Principles, ACM Press (2003) 193–206

11. Trusted Computing Platform Alliance. TCPA main specification v. 1.1b. http://www.
trustedcomputing.org/

12. Carroll, A., Juarez, M., Polk, J., Leininger, T.: Microsoft Palladium: A business overview.
http://www.microsoft.com/PressPass/features/2002/jul02/0724palladiumwp.asp (August 2002)

13. Microsoft next-generation secure computing base—technical FAQ. http://www.microsoft.
com/technet/treeview/default.asp?url=/technet/security/%news/NGSCB.asp (February 2003)

A Formal Description of SECIMOS
Operating System∗

Zhouyi Zhou1,2,3, Bin Liang4,5, Li Jiang1, Wenchang Shi1, and Yeping He1

1 Institute of Software, Chinese Academy of Sciences, Beijing 100080, PRC
2 Graduate School of the Chinese Academy of Sciences, Beijing 100049, PRC

3 College of Computer and Communications, Hunan University,
Changsha HN 410082, PRC

4 Department of Computer Science and Technology, Tsinghua University,
Beijing 100084, PRC

5 Beijing Venus Info Tech Inc, Beijing 100081, PRC
{zhouyi04, jiangli02, wenchang}@ios.cn

liangbin@venustech.com.cn

yphe@ercist.iscas.ac.cn

Abstract. The application of formal methods in secure operating sys-
tem experiences a procedure of development and maturity with the em-
inence and development of secure operating system itself. According to
Common Criteria and United States Department of Defenses Trusted
Computer System Evaluation Criteria (TCSEC), high security level se-
cure operating system should introduce formal methods in the process
development and evaluation. Security in Mind Operating System (SEC-
IMOS) is a customizable secure operating system developed by Institute
of Software, Chinese Academy of Science. In this work, we formally model
the security policies using Z specification language and informally proved
the correspondence between policies and top level functionalities. As a
result, we summarize the gist to choose a formal description language for
modeling a secure operating system and possibility of use Isabelle/HOL
as a formal tool.

1 Introduction

Formal methods have played a more and more important role in the develop-
ment of software and hardware systems. By describing some logic relations in a
system using strict mathematical language, one can prove the system conforms
to a given rule. Formal methods can also make reliability proofs on complex
software and hardware system so as to discover design faults that can not be
discovered by test and simulation previously. Formal methods can better control
software and hardware products’ development and provide a criterion for those
products [1] [2].

∗ This work is jointly supported by National Basic Research Program of China (973)
under Grant No. G1999035802, National Natural Science Foundation of China under
Grant No. 60373054 and National High-Tech Research and Development Program
of China (863) under Grant No. 2002AA141080.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 286–297, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

A Formal Description of SECIMOS Operating System 287

The research of secure operating system begins in 1967’s Adept-50 project.
From that time on, the theories, technologies, and methods are established step
by step. Adept-50 is also the first attempt to implement multi-level military se-
cure mathematical model on running systems. A most influential result in the
infancy stage of secure operating system research is Bell&LaPadula model (BLP)
proposed by Bell and LaPadula in 1973. They give a formal description and an
informal notation of BLP and the interpretation of its implementation in Multics
system [3]. This is the beginning of application of formal methods in secure oper-
ating system. The UCLA Data Secure UNIX formally realizes BLP model later
and uses XIVUS’s theory prover to do formal proves. In the year 1985, United
States’ Department of Defense published the complete edition of Trusted Com-
puter System Evaluation Criteria (TCSEC)[4]. TCSEC have 7 different security
evaluation levels: D, C1, C2, B1, B2, B3 and A1. Each level corresponds to a set of
particular security characters and insurances. United States Army Secure Oper-
ating System [5] is a family of operating system developed according to TCSEC.
There are in fact two different systems: a TCSEC C2 level operating system and
a TCSEC A1 level operating system. ASOS A1 operating system constructs for-
mal specification and proofs in two levels: Abstract Security Model and Formal
Top-Level Description. ASOS developed a flow analysis tool working in Gypsy
Verification Environment to analysis convert channels in the system design. An-
other TCSEC A1 level secure operating system Logical Coprocessing Kernel
(LOCK) [6] is developed by United States National Security Agency (NSA) also
uses Gypsy specification language and GVE as its formal tool [7]. There is plenty
of other secure operating systems use formal method to insure design consistence,
but none of them has reached such a high security level as ASOS and LOCK do.

In the process of developing Security in Mind Operating System (SECIMOS),
we use Z specification language to formalize the secure policy models and use
ordinary English to describe top level security functionalities and informally
prove the correspondence between the policy model and top level security func-
tionalities. The rest of the paper is organized as follows, the basic architecture is
discussed in section 2, the Z specification of the secure policy models is discussed
in section 3, we compare several of formal tools and their potential for secure
operating system use in section 4, and we conclude our paper in section 5.

2 Basic Architecture of SECIMOS

Security in Mind Operating System (SECIMOS)[8] is a customizable secure op-
erating system developed by Institute of Software, Chinese Academy of Science
based on Linux 2.6 kernel which has already absorbs LSM (Linux Security Mod-
ule) framework as an indispensably part. This project makes uses of four secu-
rity policies each of which is implemented as a separate module Fig. 1. These
four modules are: module for Multilevel Security policy (MLS), module for Dis-
cretionary Access Control (DAC), module for Controlled Privilege Framework
(CPF) (This is used to control the behaviors of Trusted Process), module for
Privileged User (PUSER). To solve the policy conflicts, SECIMOS assign each
module an unsigned 16 bit “order” and an unsigned 8 bit “type”. The “order”

288 Z. Zhou et al.

field of each module indicates the module’s invoking order of the policy module
chain. The “type” field of each module has one of following value: null module
which means the module does not make decision, grant module which means
grant the access right even it is not allowed by the modules invoked later, con-
straint module which means the denial result be returned to the enforcement
part immediately, grant-constraint module which means immediately return the
decision to the enforcement part. SECIMOS enables runtime changing a mod-
ule’s type and order to resolve conflicts, and is an effective step towards the
adaptive secure operating system. This paper doesn’t discuss the principles of
LSM and module coordinator further. We will introduce four policy models used
SECIMOS rest of this section. In current implementation of SECIMOS all se-
curity policy modules are constraint modules. The system will deny an access
request if any one of four modules denies the request. This greatly alleviate the
job of formalization of SECIMOS as a whole because the security assurance is
distributed in series.

Fig. 1. Basic Architecture of SECIMOS

2.1 Mandatory Access Control (MAC) Policy Model

Our MAC policy model takes [9] approach which is a refinement of BLP model
for networks [10]. Below, the set of security properties associated with our model
are presented. Otherwise specially point out, the notions such as subjects set S,
objects set O, set of access modes A , security level mapping function level are the
same as in [10] or [3]. In our model, level function class f consists of four level
functions: level(O), level(S), v-max(S) and a-min(S). Functions level(O) and
level(S) are the same as before. However, the current-level(S) function is replaced
by two new functions, v-max(S) and a-min(S). v-max(S) represents the maxi-
mum sensitivity at which a subject may view an object and a-min(S) represents
the minimus sensitivity at which a subject may alter an object. It is required that
for all subjects S : level(S) ≥ v-max(S) and v-max(S) ≥ a-min(S). The subset
of security levels defined by inclusive range between v-max(S) and a-min(S) is

A Formal Description of SECIMOS Operating System 289

denoted by the set ran(S). The set of trusted subjects are those subjects where
v-max(S) �= a-min(S) and the set of untrusted subjects are those subjects where
v-max(S) = a-min(S). The Tmach generalzation of the ∗-property is:

Definition 1. A State v = (b, M , f) satisfies this generalization of the ∗-
property iff, for each triple (S, O, x) ∈ b:

1. x = r or w ⇒ v-max(S) ≥ level(O) and
2. x = a or w ⇒ level(O) ≥ a-min(S).

2.2 Discretionary Access Control (DAC)

Discretionary Access Control is based on identifier discrimination. The DAC
decide whether or not to grant access right to certain object like file and directory
etc to a subject according the object’s owner and subject’s identity. The DAC
secure policy module (Fig. 2) of SECIMOS is constructed over the traditional
DAC mechanism of Linux. It introduces Access Control List (ACL) to further
strengthen the DAC mechanism.

Fig. 2. Architecture of DAC Module

The ACL semantic rules are compatible with POSIX.1e+2c standard. Each
ACL is composed of a group of rules to store the one subject or a group of
subjects’ access rights to a given object.

2.3 Controlled Privilege Framework (CPF)

To make a secure operating system usable, there must have some processes
which is free of the control of Mandatory Access Control. These processes are
named trusted processes. To regulate the behavior of trusted process, SECIMOS
introduces a State-based trusted process restriction module: Controlled Privilege
Framework [11]. By analysis the source code, CPF module divides the lifetime
of the process into several so-called privilege states according to eight values:
uid, euid, suid, suid, gid, egid, sgid and fsgid. CPF assign each privilege state of
the process a set of capabilities and controlled system calls.

290 Z. Zhou et al.

Fig. 3. Privilege States Transition of Wuftpd (CPF)

In the system test, we select Washington University’s wuftpd as an example
(Fig. 3). At the beginning, wu-ftpd’s daemon process’s user ids’ are all 0 (root),
this corresponds to State1 in figure 3. When there is a connect request, a new
service process is established, after the user’s identity has been authenticated,
the new process’s effective user id (euid) is set to login in user’s id and the
process transits to State3 in figure 3. When root privilege is needed, process will
transit to State2. Finally State4 is sensitive state for execve system call. In this
state, also the process is assigned the privilege to call execve, but there will be
privilege parameters to constrain the programs it can execute.

2.4 Power User Security Module

In traditional Linux operating systems, there exist two kinds of users: the ordi-
nary user and the super user root. Ordinary user has limited privilege, while root
has sovereign power. Root can perform any operations on the objects in the sys-
tem; use any resource in the system. This contradicts the basic security principle:
the principle of minimal privilege. SECIMOS fine grain the root privilege into 10
privilege user roles. Each privilege role can only perform the allowed operation
in predefined scope. We do not formalize the Power User Security Module.

3 Formal Description of Secure Policy Models

We choose Z specification language [12] to descript our secure policy models:
MAC, DAC and CPF. Because the specification is very lengthy, we only describe
the most instructive parts.

3.1 Formal Description of MAC Secure Policy Model

As mentioned in section 2, our MAC secure policy model uses the TMACH
modification of original BLP model. According to TMACH, the set of subjects
is made up of unshared sets of trusted subjects and untrusted subjects:

A Formal Description of SECIMOS Operating System 291

UnTSubject : PSubject
TSubject : P Subject

Subject = UnTSubject ∪ TSubject
UnTSubject ∩ TSubject = ∅

When a subject want to access a object, it must firstly get the access right
from the decision subsystem of the policy. If granted, the subject, object and
access type triple will add to current access set of system:

AddNewAccessTriple
ΔState
R? : Req1

b′ = b ∪ {new : AccessTriple |
new .S = R?.S ∧ new .O = R?.O ∧ new .x = R?.x}

f ′ = f
H ′ = H

According to our policy, the subject can get the read access right to the
object if and only if the subject’s security level vmax dominates the object’s
security level.

ReadPass
State
R? : Req1

R?.ra = get
R?.x = r
R?.S ∈ dom f
R?.O ∈ dom f
(f R?.S).vmax dominate (f R?.O).vmax

As mentioned before, whenever a subject in system wants to access an object,
it must first request the access right from decision subsystem. After validated
the request, the decision subsystem will add the subject, object and access type
access-triple into current access set, otherwise, the State keeps invariant.

Rule GetRead =̂ (ReadPass ∧ AddNewAccessTriple ∧ Pass)
∨ (ReadDeny ∧ Invariant ∧ Deny)
∨ (¬ (ReadPass ∨ ReadDeny) ∧ Invariant ∧ Unknown)

In above definition, ReadDeny has the same structure as ReadPass while
ReadDeny represents the condition that the get read request should be rejected.
Invariant is a schema which indicating that the system state is kept unchanged.
Pass,Deny,Unknownare simply schemas representanswer to the get read request.

There are many other rules in our formal specification. Because the limitation
of space, we only list another rule ChangeObjectRange here. Under following
condition, a subject’s request of change a object’s security level can be granted:

292 Z. Zhou et al.

1. if the requesting subject is a trusted subject, or

2. the subject’s security level dominate the object’s security level and the goal
security level’s vmax equals amin (can not make the object a trusted subject)
and the new security level should not violate the ∗-property of current access
set and the new security level should keep the hierarchy rule that every
object’s security level should dominate its directory parent’s security level.

ChangePass
State
R? : Req3

R?.ra = change
R?.S ∈ dom f
R?.O ∈ dom f
R?.O /∈ Subject
(R?.range).vmax = (R?.range).amin
R?.S ∈ UnTSubject ⇒ (R?.range).vmax dominate (f R?.O).vmax
∀Triple : AccessTriple | Triple ∈ b ∧ Triple.O = R?.O •

(Triple.x = r ⇒ (f Triple.S).vmax dominate (R?.range).vmax) ∧
(Triple.x = a ⇒ (R?.range).amin dominate (f Triple.S).amin) ∧
(Triple.x = w ⇒

((f Triple.S).vmax dominate (R?.range).vmax
∧ (R?.range).amin dominate (f Triple.S).amin))

∀Opar : Object \ Subject | Opar ∈ dom f • R?.O ∈ H (Opar) ⇒
(R?.range).vmax dominate (f Opar).vmax

∀Ochd : Object \ Subject | Ochd ∈ dom f • Ochd ∈ H (R?.O) ⇒
(f Ochd).vmax dominate (R?.range).vmax

According to this rules, we can write security invariant and security theorems:
A system’s state is a secure state if and only if every access-triple in state’s access
set satisfy ∗-property:

SecureState
State

∀ p : AccessTriple | p ∈ b ∧ p.x = r •
(f (p.S)).vmax dominate (f (p.O)).vmax

∀ p : AccessTriple | p ∈ b ∧ p.x = a •
(f (p.O)).amin dominate (f (p.S)).amin

∀ p : AccessTriple | p ∈ b ∧ p.x = w •
(f (p.S)).vmax dominate (f (p.O)).vmax
∧ (f (p.O)).amin dominate (f (p.S)).amin

A Formal Description of SECIMOS Operating System 293

Following theorem says that the rule ChangeObjectRangeSecure translate
secure state to secure state:

theorem ChangeObjectRangeSecure
Rule ChangeObjectRange ∧ SecureState ⇒ SecureState ′

The theorems like above in SECIMOS can all be proved using Z/EVES [13]
tools. The proof scripts are lengthy and proof time is long (20 minutes to prove
above theorem).

3.2 Formal Description of DAC Secure Policy Model

The state of DAC is made up of the current access set, a function ACL that
represent the access control list in the system, a function Owner that maps an
object to its owner.

State
b : P AccessTriple
ACL : OBJECT → (USER → PPERM)
Owner : OBJECT → USER

The decision subsystem of ACL security model grant access permission, if
and only if the request perm and the requestor: User is in the access control list
of the object to be accessed.

PermApprove
State
R? : Req1

R?.ReqPerm ∈ (ACL R?.O)(R?.User)

GetAccess operation add to current access set new access-triple.

GetAccess
ΔState
R? : Req1
D ! : Decision

ACL′ = ACL
Owner ′ = Owner
b′ = b ∪ {Triple : AccessTriple | Triple.User = R?.User ∧

Triple.O = R?.O ∧ Triple.x = R?.ReqPerm}
D ! = Approve

PermCheck is the state transition rule for DAC secure policy model.

PermCheck =̂ (PermApprove ∧ GetAccess) ∨ (¬ PermApprove ∧ AccessDeny)

GivePerm and RescindPerm describe the rule for add a entry to object’s
access control list and remove a entry from object’s access control list.

294 Z. Zhou et al.

GivePerm
ΔState
R? : Req2

R?.Caller ∈ PrivUser ∪ {Owner(R?.O)}
R?.ra = give
b′ = b
ACL′ = ACL⊕ {R?.O (→ {R?.User (→ (ACL R?.O)(R?.User) ∪ {R?.ReqPerm}}}
Owner ′ = Owner

RescindPerm
ΔState
R? : Req2

R?.Caller ∈ PrivUser ∪ {Owner(R?.O)}
R?.ra = rescind
b′ = b
ACL′ = ACL⊕ {R?.O (→ {R?.User (→ (ACL R?.O)(R?.User) \ {R?.ReqPerm}}}
Owner ′ = Owner

3.3 Formal Description of CPF Secure Policy Model

As mentioned in section 2, CPF is a state based trusted process control frame-
work. In the /etc/smos/cpf directory of SECIMOS operating system, there ex-
ists a configuration file prog.conf. In the file prog.conf, there will be a Prog-
PrivTableEntry for each privilege state of each trusted program. prog refers to
the disk program like “wuftpd”, pstate is the privilege state and priv info is
various of capabilities and operating parameters a process of program prog have
in privilege state pstate.

ProgPrivTableEntry
prog : Prog
pstate : PState
priv info : P(Priv × PParam)

On the other hand, the system state as a whole consists of the ProgPrivTable
made up from ProgPrivTableEntries, b: the current access set and several of
privilege mapping functions. For example, Proc PState maps one of the process
in system to the privilege state that process is current in.

State
ProgPrivTable : P ProgPrivTableEntry
User Priv : User → PPriv
Proc PState : Proc → PState
Proc User : Proc → User
Proc Prog : Proc → Prog
Proc Creds : Proc → P(Priv × P PParam)
b : P AccessTuple

A Formal Description of SECIMOS Operating System 295

The description of secure state in CPF is lengthy, and we don’t discuss it
here. There are also many theorems about secure invariant of CPF secure policy
model which can be proved by Z tools for example Z/EVES [13].

4 Comparison of Formal Methods for Secure Operating
Systems

There are more than two hundred of formal tools existing today. According to
the verification approach taken, they can be divided into two categories: Model
Checking and Theory Proving. Model checking mainly depends on constructing
the finite state model of system and verifying the desired property of the model.
The verification of model checking is automatic and speedy. SPIN [14] and SMV
[15] are the most famous tools of model checking. The above two model checking
tools are used in NASA’s space craft projects to check software fault. Model
checking has the unconquerable shortcoming of combinatory exploding, and not
suitable for complicated state transformation systems such as secure operating
systems as a whole (model checking can apply the limited formalization on some
parts of secure operating system). A theorem proving system includes a set of
axioms and a set of induction rules, the verification produce is to prove given
property of system start from system axioms using the induction rules. Theorem
proving is usually human-machine interactive: people should give proof hints to
machine during the proving steps. Theorem proving methods can describe and
verify systems with infinite states. The most influential theorem proving tools
is Gypsy specification language and GVE (Gypsy Verification Environment) [7].
The high security level operating systems ASOS and LOCK all use Gypsy and
GVE as formal methods. The reason to choose Gypsy is that it clearly maps the
specification to implementation. But GVE has shortcomings in secure theorem
proving: GVE is not adaptable, after small change in specification, the proof
procedure as whole needs to be rewrite from beginning, and Gypsy is not suitable
for divide and conquer prove for large problem space. Z specification language
gives a clean and punctual specification to state based systems, the Z/EVES has
many nice features in proof management. On the other hand, Z/EVES’s proof
power is greatly impaired by its deficiency in handling of recursive date types and
recursive function proving. Another formal tool, Isabelle/Isar [2] used mainly in
protocol verification is a good candidate for formalizing secure operating systems.
It is an open source project written by ML. It supports many computational
logics such as HOL (High Order Logic) and FOL (classical and intuitionistic
first order logic). Its good qualities on recursive definition and theorem proving
reflect the characteristic of its underlining ML language. Following is a mutual
recursive definition of Tmach [9] based secure lookup:

constdefs
ReadDirJudgement :: "States => Objects => (’a,’b’,’c)env => uid ⇒ bool"
"ReadDirJudgement State1 AccessSubject file’ Accessuid ≡
(snd (GetRead State1 (|SubjectinTriple = AccessSubject, ObjectinTriple =
FileObject(attributes(file’)), AccessMode = Readable |))) ∧

296 Z. Zhou et al.

(Accessuid = 0 ∨
Accessuid = owner (attributes(file’)) ∨
Readable ∈ others (attributes(file’))

)"

ReadDirJudgement is a isabelle description of function that judges if a sub-
ject is allowed to read a dir by MAC (Mandatory Access Control) and the usual
Unix file permission constraint.

consts
lookup_secure :: "States => Objects => uid ⇒ (’a,’b,’c)env => ’c list =>

(’a,’b,’c)env option × States"
lookup_secure_option :: "States => Objects => uid ⇒ (’a,’b,’c)env option

=> ’c list => (’a,’b,’c)env option × States"

primrec (lookup_secure)
"lookup_secure State1 AccessSubject AccessUid (Val a) xs = (if xs = [] then

(Some (Val a), State1) else (None, State1))"
"lookup_secure State1 AccessSubject AccessUid (Env b es) xs = (let State3

= (GetReadTran State1
AccessSubject (Env b es)); judgement = (ReadDirJudgement State1

AccessSubject (Env b es) AccessUid) in
(case xs of
[] => (Some (Env b es), State1)

| y # ys =>
if (~judgement)

then
(None, State1)

else
lookup_secure_option State3

AccessSubject AccessUid (es y) ys
))"

The function lookup secure search recursively from the specified directory
until the operation is not permitted or the string of path name is exhausted and
the file is got. At the same time, the transition of system state is recorded.

Based on this definition, we can define many delicate theorems about recur-
sive properties of system and prove them.

5 Conclusions

During the formalization of SECIMOS, we strengthen the idea that formal works
is a indispensable part of developing secure operating systems. During the for-
malization procedure, we find some design faults in Linux Security Module and
report the bugs to corresponding mailing-list. We write more than 30 security
theorems and 40 auxiliary lemmas in order to prove them. The intermediate
proof results are more than 150’000 lines long. We encountered many difficul-
ties in theorem proofing; many of them are insurmountable using current Z
tools. This is not expected in the pre-design stage of SECIMOS when we are

A Formal Description of SECIMOS Operating System 297

investigating existing formal methods. From that experience and long-time re-
investigation, we propose Isabelle/Isar as a good candidate in further developing
of Chinese secure operating systems.

References

1. Leveson, N.G.: Geust Editor’s Introduction: Formal Methods in Software Engi-
neering. IEEE Transactions in Software Engineering. September (1990) 929–931

2. Wenzel, M.: Isabelle/Isar - A Versatile Environment for Human-Readable Formal
Proof Documents. PhD thesis. Institute für Informatik, Technische Universität
München. (2002)

3. Bell, D.E., La Padula, L.J.: Secure Computer System: Unified Exposition and
Multics Interpretation. MITRE Report, MTR-2997 Rev.1. (1976)

4. CSC-STD-001-83, Department of Defense Standard. Department of Defense
Trusted Computer System Evaluation Criteria. National Computer Security Cen-
ter, Ft. Meade, MD. USA (1985)

5. Waldhart, N.A.: The Army Secure Operating System. 1990 IEEE Symposium on
Security and Privacy (1990) 50–60

6. Saydjari, O.S.: LOCK: An Historical Perspective, 18th Annual Computer Security
Applications Conference (2002) 96–108

7. Good, D., Akers, R., Smith, L.: Report on Gypsy 2.05. Tech. Rept. ICSCA-CMP-
48. Institute for Computer Science and Computing Applications. The University
of Texas at Austin (1986)

8. Wu, Y., Shi, W., Liang, H., Shang, Q., Yuan, C., Liang, B.: Security On-demand
Architecture with Multiple Modules Support. Information Security Practice and
Experience, First International Conference.Singapore (2005) 121–131

9. Mayer, F.L.: An Interpretation of a Refined Bell-La. Padula Model for the Tmach
Kernel. Fourth Aerospace Computer Security Applications Conference (1988)

10. Bell, D.E.: Secure Computer Systems: A Network Interpretation. Second Aerospace
Computer Security Conference (1986) 32–39

11. Liang, B., Liu, H., Shi, W., Wu, Y.: Enforcing the Principle of Least Privilege
with a State-Based Privilege Control Model. Information Security Practice and
Experience, First International Conference.Singapore (2005) 109–120

12. Spivey, J.M.: Understanding Z: A Spcification language and its formal semantics,
volume 3 of Cambridge Tracts in Theoretical Computer Science. Cambridge Uni-
versity Press (1988)

13. Meisels, I., Saaltink, M.: The Z/EVES Reference Manual (for Version 1.5). Tech-
nical Report, TR-97-5492-03d. ORA Canada. (1997)

14. Havelund, K, Lowry, M., Penix, J.: Formal Analysis of A Space Craft Controller
Using SPIN. IEEE Transactions on Software Engineering. Vol. 27, no. 8 (2001)
749–765

15. Pecheur, C., Simmons, R.: From Livingstone to SMV: Formal Verification for Au-
tonomous Spacecrafts. In Proceedings of First Goddard Workshop on Formal Ap-
proaches to Agent-Based Systems. NASA Goddard (2000) 103-113

A Theoretical Model for the Average Impact
of Attacks on Billing Infrastructures

Fabrizio Baiardi and Claudio Telmon

Dipartimento di Informatica, Università di Pisa,
L.go B.Pontecorvo 3, 56125 - PISA
{baiardi, claudio}@di.unipi.it

Abstract. The 0-delay is a mathematical model to evaluate the average
impact of attacks on a billing infrastructure, that is an infrastructure that
supports the billing of a set of users for some service. The model describes
the search for vulnerabilities as a competition between a set of attackers
and one of defenders, that are interested, respectively, in attacking and
patching the infrastructure. As implied by its name, the model assumes
that both the attack and the patching occur as soon as the vulnerability
is discovered. The model assumes that the impact increases with the size
of the vulnerability window, the time in between the discovery of the
vulnerability by an attacker and by a defender and it relates this size to
the numbers of attackers and of defenders. After describing the model,
we describe some applications and generalizations.

1 Introduction

A billing infrastructure is any networked system deployed to bill a set of users for
some service supplied either by the same system or by a distinct one. Well-known
examples are public utility infrastructures such as those for the distribution
of electric power or water, where a meter measures the amount of power or
water distributed to the user. Through the infrastructure, the meter sends the
running total to a database that is used to compute the user bill. The revenue
of the infrastructure owner is the overall amount of the bills. The lifetime of a
billing infrastructure is fairly long because most of its components are physically
distributed on a wide area so that their update is expensive.

We assume a proactive attitude of the infrastructure owner that does not
wait for someone else to find vulnerabilities and are interested in the defini-
tion of a mathematical model to drive the owner investment in the search and
the elimination of vulnerabilities after the infrastructures has been deployed
[1,2,3,5,7,12,13,14,15,17,19,25]. For these reasons, we are focused on vulnerabil-
ities that enables attacks [3,5,7,19] resulting in losses in the revenue and neglect
other impacts of attacks, such as denials of service. We assume that two sets
of people compete in the search of vulnerabilities: attackers and defenders. The
goal of a defender is to patch the infrastructure [10] to prevent an attack. In-
stead, attackers are interest in attacks to reduce the user bills. The number of

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 298–310, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

A Theoretical Model for the Average Impact of Attacks 299

defenders depends upon the investment in security of the owner after the de-
ployment. In a billing infrastructure, the loss of revenues due to a vulnerability
V, i.e. the impacts of attacks exploiting V, depends upon the vulnerability win-
dow of V [8,26,27]. This window is the interval of time from when an attacker
discovers V till when a defender finds V as well. The proposed model, 0-delay
model, evaluates the loss in the revenue in terms of the window size and of the
numbers of attackers and of defenders. As implied by its name, the model as-
sumes that both the patching and the attacks are immediately executed as soon
as either the defenders or the attackers find a vulnerability. The model may be
integrated with game theory [21] to define an optimal allocation of attackers and
defenders to the search of vulnerabilities. The model also enables the owner to
determine whether to deploy the infrastructure even if some vulnerabilities have
not been removed because he/she is willing to accept the average impact of the
attacks enabled by the remaining vulnerabilities. Lastly, the model may be used
to evaluate the advantages of open source components vs. proprietary ones with
a ”security through obscurity” approach [5,6].

The importance of a quantitative evaluation of attack impacts has often
been stressed [5,17,18,23,25]. [25] presents a survey of current approaches and
introduces the notion of market price of vulnerability. This notion cannot be
immediately applied to a billing infrastructure where this price depends upon the
service billed rather than the infrastructure components. [16] applies game theory
to information warfare while [21] applies an insurance inspired methodology to
optimally allocation a set of defenders to minimize the impact of a terrorist
attack on a set of targets. The competition between defenders and attackers in
the search for vulnerabilities has previously been considered in [9,23] but these
works are focused on the disclosure policy rather than on attack impacts. Some of
our assumptions are similar to those of [23] to compute the probability of finding
a vulnerability. [9] considers the search for vulnerabilities and a social planner
that decide when a vulnerability is disclosed. Coherently with the evaluation
of disclosure policies, it assumes that a vulnerability is discovered by a benign
user, i.e. a defender, rather by an attacker. Furthermore, most of the works on
vulnerabilities and attacks considers general-purpose systems rather than billing
infrastructure.

Sect. 2 introduces the 0-delay model and shows how it defines the average
impact of an attack as a function of the numbers of attackers and defenders
as well as of the vulnerability window. For the sake of simplicity, at first a
simplified version of the model is introduced. Then, a more general version is
defined by relaxing some of the constraints. Sect. 3 briefly outlines some alter-
native developments of our work. At first, we consider an infrastructure with
several vulnerabilities and we show that, also in this case, the impact is always
a function of the numbers of attackers and defenders searching for distinct vul-
nerabilities. Lastly, we show how our model may contribute to the debate on
”security through obscurity” and on the adoption of open source components.

300 F. Baiardi and C. Telmon

2 The 0-Delay Model

After discussing its main underlying assumptions and constraints, we present
the 0-delay model in some details, Then, the model is generalized by removing
some of the initial constraints.

2.1 Underlying Assumptions

Besides the one implied by its name, the most important assumptions underlying
the 0-delay model concerns the existence of one vulnerability, denoted by V,
and that the billing infrastructure is deployed even if V has not been removed.
The former will be discussed in the next section. The latter, in general, it is
satisfied because it may be not cost effective to deploy the infrastructure only
after removing any vulnerability. Furthermore, the infrastructure owner has a
proactive attitude towards the search for vulnerabilities. Given the existence of
V and the proactive owner attitude, two sets of people are searching for V, the
attackers and the defenders. The attackers search for V to define and implement
an attack, the defenders, instead to patch the infrastructure.

In the 0-delay model, time is considered as a sequence of intervals with the
same size δt, in the following at time t means during the t-th interval. If a
defender finds V, in the same interval, the patch is defined and applied to the
infrastructure. We assume that the time to develop a patch is independent of the
number of defenders and that δt is larger than the time to start and complete the
patching process. If a defender finds V at time t, any attack implemented after
t fails. If, instead, an attacker finds V at time t before any defender, then at the
same time the attack occurs and the loss begins. The loss ends only when, and
if, the defender finds V and patches the infrastructure. Notice that δt depends
upon the considered infrastructure and that it cannot be reduced at pleasure
because it should suffice both to define and execute an attack and to define and
apply the patch. The probability of discovering V is the same for any interval,
although it may be different for an attacker and for a defender. This problem
will be detailed in the following.

A further assumption concerns the absence of information exchange between
the attackers and the defenders or within each set during the search. Hence, no
information from other people is available to speed up the search. However, as
soon as the attack has been discovered, it is immediately broadcast to anyone
that can implement it and all the attacks are immediately executed. This is a
worst-case for the defenders because any delay in the execution of attacks reduces
the loss. Furthermore, if the attacks are not simultaneous, the detection of one
attack may simplify the search of the defenders.

The model assumes that the impact of an attack is proportional to the size
of the vulnerability window and that lifetime of the infrastructure is unbounded,
i.e. the infrastructure is updated only to remove any vulnerability. The latter
is realistic only for the long-term components of the infrastructure, such as the
hardware of an ATM or a meter in the user house. Hence, the model should

A Theoretical Model for the Average Impact of Attacks 301

be applied to vulnerabilities of these components only. Notice that the two as-
sumptions jointly imply that, in principle, there is no bound on the impact of
a successful attack because this impact is proportional to the size of the vul-
nerability window but this size is unbounded if the defenders do not remove a
vulnerability discovered by an attacker.

2.2 The 0-Delay Model

Here and in the following, the terms impact of attacks and loss in the infrastruc-
ture revenue are considered as synonymous and will be freely interchanged, The
0-delay model makes it possible to compute I(na, nd), the impact of an attack
as a function of na and nd, the numbers of attackers and of defenders. I(na, nd)
is positive if and only if the size of the vulnerability window is positive and it is
proportional both to this size and to the number of successful attacks. This is
summed up in the relation:

I(na, nd) =
{

nsaA · U lossA · (td(nd) − ta(na)) if td(nd)− ta(na) ≥ 0
0 if 0 ≥ td(nd) − ta(na)

where:

– ta(na) is the time when one of the na attacker discovers both V and A, the
attack enabled by V;

– td(nd) is the time when one of the nd defenders finds V and patches the
infrastructure,

– td(nd) - ta(na)is the size of the vulnerability window,
– nsA is the number of instances of A that are successfully executed. nsA

is always larger than na, that is nsA = ψ · na, ψ ≥ 1. In turn, ψ is a
decreasing function of the resources and the skills to execute A and it reaches
its maximum if A can be fully automated by proper programming tools [29]

– U lossA is the loss in the infrastructure revenue for unit of time due to each
attack that is an instance of A.

The 0-delay model assumes that nsa · U lossA is a constant.

If Aver(R) denotes the average value of the random variable R, then

Aver(I(na, nd)) = nsA · U lossA ·Aver(td(nd) − ta(na))

In the following, we drop the dependency from the number of attackers or of
defenders from both ta(na) and td(nd) and replace td(nd)-ta(na) by either td-ta
or simply by vw. We are interested in the positive values of vw because these are
the only cases where A is successfully executed. Instead, anytime vw <0 there
is no loss, because the loss is zero.

Aver(vw), the average size of the vulnerability window depends upon P (vw =
i > 0|na, nd), the probability that vw = i if there are na attackers and nd
defenders. This probability is a function of both Pd(nd,t) and Pa(na, t) the

302 F. Baiardi and C. Telmon

probabilities that the attackers or the defenders find V exactly at time t i.e. that
td=t (or that ta=t). In turns, Pd(nd,t) and Pa(na, t) are a function of Pd(nd)
and Pa(na), the probabilities that, respectively, at least one of the nd defenders,
or one of the na attackers, finds V in a single time interval. Since both Pd(nd)
and Pa(na) are time independent, we have that:

Pd(nd, t) = (1− Pd(nd))t−1 · Pd(nd)

Pa(na, t) = (1− Pa(na))t−1 · Pa(na)

Taking into account that each attacker and each defender works in isolation,

Pd(nd) = 1− (1 − Pd(1))nd
Pa(na) = 1− (1− Pa(1))na (1)

where Pd(1) and Pa(1) are, respectively, the probabilities that a defender and
an attacker finds V in one interval of time. In the following,we assume that
Pd(1) = Pa(1) so that each attacker and each defender have the same probability
of finding the vulnerability in one interval.

This assumption neglects that a defender can access an amount of the infor-
mation on the infrastructure larger than the one of the attacker and that this
asymmetry should, at least in principle, simplify the search of the defender. To
model this asymmetry while preserving Pd(1) = Pa(1), the number of defend-
ers may be multiplied by a constant factor ϕ, ϕ ≥ 1 before applying the 0-delay
model. In the following, we assume that the number of defenders has already
been multiplied by ϕ and drop the dependency of the probabilities from Pd(1)
and Pa(1).

The previous consideration shows that the following relation holds:

P (vw= i|na, nd)= lim
N→∞

N−i∑
ta=1

(1−Pa(na))ta−1·Pa(na)·(1−Pd(nd))ta−1+i·Pd(nd)

This defines the probability that vw = i as the limit of the sum of the
probabilities of all the cases where:

1. an attacker finds V at ta,
2. the first defender find V at td=ta+i,
3. both ta and td belong to the range 1..N.

Under these condition ta is, at most, equal to N-i because td always belongs
to 1..N. Furthermore, we can consider the limit of the sum as N, the upper
bound on td goes to infinity because we have assumed an unbounded life of the
infrastructure. From a practical point of view, this introduce an error that is
acceptable anytime the life of the infrastructure will be much larger than δt.

It can be proved that:

P (vw = i > 0|na, nd) = Pa(na) · Pd(nd) · (1− Pd(nd))i

1− (1 − Pa(na))
· (1− Pd(nd))

A Theoretical Model for the Average Impact of Attacks 303

Starting from this result, we can compute P (vw = 0|na, nd), the probability
that the size of the window is zero because the defenders discover the vulnera-
bility before the attackers:

P (vw = 0|na, nd)=1−
∞∑
i=1

P (vw = i|na, nd)=
Pd(nd)

(1− (1− Pa(na))) · (1− Pd(nd))

Taking into account that a loss occurs if and only if vw ≥ 1, we have that

Av(I(na, nd)) = U lossA · nsA ·
∞∑

i=1

i · P (vw = i|na, nd)

that can be further simplified to

Av(I(na, nd))=U lossA ·nsA ·Pa(na)
1− Pd(nd)

Pd(nd) · (1− (1− Pa(na)) · (1 − Pd(nd)))

By replacing Pd(nd) and Pa(na), according to (1), and then both Pd(1) and
Pa(1) by p, we have that

Aver(I(na, nd)) = U lossA · nsA · (1− (1− p)na) · (1− p)nd

(1− (1− p)nd) · (1− (1− p)na+nd)

Taking into account that p is fairly small because δt is small, we can exploit
(1− q)n ≈ 1− q · n and rewrite the equation for the average impact as follows:

Aver(I(na, nd)) ≈ U lossA · 1− p · nd

p · nd · (1 + nd
na)

The approximation (1 − q)n ≈ 1 − q · n may be applied to the probability
that no loss occurs as well. In this way, we can deduce that:

P (vw = 0|na, nd) ≈ 1
1 + na

nd

Hence, the probability that no loss occurs

– depends upon the ratio between the number of attackers and of defenders
rather than upon both the number of attackers and the one of defenders

– is independent of the probability that an attacker or a defender finds V.

To increase the accuracy of the approximation, we can reduce δt so that p is
reduced too. However, δt cannot be arbitrary small because it has to be larger
than both the time to define and implement an attack and the one to patch the
infrastructure.

By deriving Aver(I(na, nd)) with respect to nd and na, we can verify that
lower number of defenders and/or larger number of attackers always result into
larger impacts because of larger vulnerability windows.

304 F. Baiardi and C. Telmon

2.3 Loss as a Function of the Time of the Discovery

The 0-delay model may be applied also to compute Aver(I(na, nd, t))the aver-
age loss as a function of the time t when a defender discovers V. This loss is
interesting because it defines an upper bound on the owner investment in the
checks to be executed to discover attacks that may have occurred before t, i.e.
before patching the infrastructure [22]. These checks are the first step to recover
the loss due to the attacks but, since they may be rather expensive, an estimate
of the loss enable the owner to choose whether it is more convenient to simply
accept any loss that may be occurred before t.

Because of the assumptions of the 0-delay model, we have that

Aver(I(na, nd, t)) = U lossA · nsA ·Aver(Svw(k|t, na, nd))

where U lossA and nsA have the usual meaning and Svw(k|t, na, nd) is the prob-
ability that the size of the vulnerability window is k provided that the defenders
have discovered V at time t.

Aver(Svw(k |t, na, nd)), the average size of the windows depends upon
P (vw = k > 0|td = t, na, nd), the probability that vw = k provided that there
are na attackers, nd defenders and td=t. Since td=t and vw=k jointly imply
ta=t-k, because if the attackers discover V at t-k and the size of the vulnera-
bility window is k, then the attackers have discovered V at time t-k, we have
that

P (vw = k|td = t, na, nd) = P (ta = t− k|td = t, na, nd) (2)

Since the probability that the attackers finds V is independent of the one
that the defenders finds V, the following equality holds:

P (ta = t− k|td = t, na, nd) = P (ta = t− k|na, nd) · P (td = t|na, nd)

By replacing the equality in the right hand size of (2), we have that

P (ta = t−k|td = t, na, nd) = (1−Pd(nd))t−1 ·Pd(nd)·(1−Pa(na))t−k−1Pa(na)

.
We apply now the 0-delay model to compute the average size of the vulner-

ability window. According to the model, Aver(Svw(k|t, na, nd)) is equal to

(1− Pa(na)) · (1− Pd(nd))t−1 · Pa(na) · Pd(nd) ·
t−1∑
k=1

k · 1
(1− Pa(na))k

To simplify this expression, we exploit the fact that an estimate of the impact
is important only when V has been discovered after a fairly long time from the
infrastructure deployment. In fact, if the infrastructure is patched shortly after
being deployed, the loss cannot be very large because the size of the window is
bounded by the time from the deployment. Hence, we are interested in the loss
if the value of ta is large and, in this case, the following approximation holds

A Theoretical Model for the Average Impact of Attacks 305

t−1∑
k=1

k

(1− Pa(na))k
≈ 1− Pa(na)

Pa(na)2

By applying this approximation, we have that

Aver(Svw(k|t, na, nd))≈((1−P (nd))·(1−P (na)))t−1 ·Pa(na)·Pd(nd)·1 − Pa(na)
Pa(na)2

Lastly, we exploit again (1) to replace the values of the probabilities that
an attacker or a defender finds a vulnerability as well as the approximation
(1− q)n ≈ (1− nq). In this way, the formula for Aver(Svw(k|t, na, nd)) may be
simplified as following

Aver(Svw(k|t, na, nd)) ≈ (nd · (t− 1) + na · t) · nd

na
≈ (nd + na) · nd

na
· t

Lastly, by exploiting the previous approximation, we have that

Aver(I(na, nd, t)) = U lossA · (nd + na) · nd · t

2.4 Generalization of the Model

This section generalizes the 0-delay model by removing some of the constraints
previously introduced.

At first, we consider the interval of time between discovering the vulnera-
bility and patching of the infrastructure. In most cases, the time to produce
and validate the patch or to update some components will be larger than zero.
The associated delay increases with the number of the infrastructure compo-
nents to be corrected. Consider, as an example, the vulnerabilities in the WEP
authentication scheme. Hence, the delay DP between the discovery of the vul-
nerability and the complete patching of the infrastructure may be fairly larger
than zero. We assume that DP is not fixed but that it does not depend upon
other parameters of the model. Let MDP be an upper bound on DP.

To take DP into account, we update the definition of the vulnerability window
and properly increase its size. Hence, if the defenders discover the vulnerability
at td and the infrastructure is patched at td + MDP then vw = td− ta + MDP .
Obviously, the average value of the new delay can be computed by adding MDP

to the previous one. Furthermore, any delay DA between the discovery of V and
the execution of the attacks exploiting V can be handled in the same way. If
MDA is the upper bound on the time to discover an attack, in the most general
case, we have that

vw = td− ta + MDP −MDA = td− ta− (MDA −MDP)

To compute the corresponding average loss, we consider that now the prob-
ability of a window with a size equal to td− ta− (MDA−MDP) is the the same
of a window with a size (td− ta) in the 0-delay model.

306 F. Baiardi and C. Telmon

The previous discussion shows that the framework of the 0-delay model can
handle constant delays both in the patching and in the attack, provided that all
the attacks are executed simultaneously. Hence, constant delay may be a more
appropriate name for the model.

Let us consider now the constraint on the simultaneous execution of attacks.
As already mentioned, this is a worst case for the defenders because any delay in
the execution of attacks reduces the loss. By relieving this constraint, the overall
number of attacks does not change but attacks may occur at distinct times. As
an example, at each interval, someone could implement Att and then inform i
other people so that the number of attacks at t is i times that at t− 1. If V has
been discovered at ta and Natt(t) denotes the overall number of attacks executed
at t, t > ta we have that

NAtt(t) =
it−ta+1

i− 1
In the most general case, if fa(t) is the number of attacks executed at t, t > ta

NAtt(t) =
t−ta∑
tv=0

fa · (ta + tv)

δaa, the size of the interval to execute all the attacks, satisfies the following

NAtt(δaa + ta) = nsA

To compute the loss, we notice that two cases have to be considered if vw>0:

1. td > ta + δaa, if the defender discovers V after all the attacks have been
executed,

2. ta + δaa > td, if the defender discovers V before all the attacks have been
executed.

In case 1), the overall loss results from the sum of two components. The first
one is the loss due to attacks in in the interval (ta+δaa, td) that is equal to

U lossA · nsA · (td− ta− δaa)

The other component is the loss in the interval (ta, ta+stca) that is equal to

U lossA ·
δaa∑
t=0

fa(t) · (δaa− t)

because it is proportional to (δaa-t).
In case 2), the overall loss is

U lossA ·
td−ta∑
t=0

fa(t) · (td− ta− t)

This shows that, as in the 0-delay model, we can pair each size of the vulnerability
window with a loss. Then, the average impact can be computed if we take into
account that the probability of a loss is the same of the size of the window.

A Theoretical Model for the Average Impact of Attacks 307

In a further case, the overall number of attacks reaches nsA asymptotically.
As an example, the number of attacks in an interval of time sharply increases
after discovering V and then approaches zero in a few intervals of time after this
maximum. This behavior may be modeled by a Weibull distribution so that the
number of attacks executed at ta + δt, δt > 0, is nsA ∗W (δt) where

W (δt) = 1− e−(δt
α)γ

α and γ determine both the shape of W(t) and the standard deviation. The
latter goes to zero as γ increases. In this case, the overall loss in the revenues
may be approximated as

U lossA · nsA · vw · (1 − e−(vw
α)γ

)

Again, this value may be computed starting from the probability distribution of
the window size.

3 Future Developments

This section briefly outlines some developments of our work by discussing the
case of an infrastructure with several vulnerabilities. Then, we also how the 0-
delay model can contribute to the debates on ”security through obscurity” and
on the security advantages of open source components. A further, fundamental,
problem to be considered concerns the validation of the theoretical model results
against those of some real billing infrastructure. Access to real data is fairly
complex because it is well known that owners are not willing to reveal such data.

3.1 Infrastructure with Several Vulnerabilities

In an infrastructure with several vulnerabilities, the worst case for the defender
is when the vulnerabilities are independent, because the discovery of one vulner-
ability does not improve that of discovering the other ones. In the case of such
an infrastructure, we assume that attackers and defenders may be assigned to a
vulnerability. This is not a contradiction even if no a priori information on the
vulnerabilities is available, because we assume that each attacker and each de-
fender consider just one component of the infrastructure. Hence, two defenders
or two attackers are assigned to distinct vulnerabilities if they consider distinct
components. This assumption implies that each vulnerability is always paired
with exactly one component even if it arises because of the interactions among
several components. The component a vulnerability Vi is paired with determines
two important parameters namely the loss in the infrastructure revenue for unit
of time due to attacks enabled by Vi and the probability pi of finding Vi. If
these parameters are known, the 0-delay model, or the constant-delay one, can
be applied to compute the average loss due to Vi or the number of defenders to
be assigned to Vi to reduce such a loss under some predefined threshold.

However, the most interesting problem to be solved is the relation among
the loss due to each vulnerability and the overall allocation of attackers and

308 F. Baiardi and C. Telmon

defenders to the various vulnerabilities. Two cases have to be considered. In the
first one the number of attackers allocated to a vulnerability is known when
allocating the defenders to the same vulnerability, and the other way around. In
the other, more interesting, case the allocations of attackers and of defenders are
chosen simultaneously. In this case, the allocation of a resource, i.e. an attacker
or a defender, to the search for vulnerabilities can be modeled as a strategy
game with two players, the attacker and the defender. The attacker manages a
pool with na resources, the attackers, while the defender, i.e the infrastructure
owner, manages a pool with nd resources, the defenders. The move of each player
defines a tuple with n integers, one for each vulnerability and the i-th integer
of the tuple defines the resources allocated by the player to the corresponding
vulnerability.

The complete definition of the game requires those of utility functions of
both players. Both functions always depend upon the resources allocated to
each vulnerability, but alternative definitions are possible. As an example, the
utility of the attacker may be the average loss of the infrastructure, i.e. to the
sum of the average impacts of attacks enabled by the vulnerabilities, while that
of the defender may the inverse of this function. This defines is a zero sum game
where the loss of a player is the utility of the other one. In other cases, the utility
functions may be defined in terms of the probability that no loss occurs.

In all these cases, we can exploit the main results of game theory, starting
from the Nash equilibrium, to define an optimal strategy for each player [22].
It is worth noticing that a worst case for the defender arises anytime the de-
fender allocates a few resources to a vulnerability, say Vj and, simultaneously,
the attacker allocates a large number of resources to the same vulnerability. The
0-delay model shows that these allocations result into a large impact due to Vj

because of the large difference between the numbers of attackers and of defenders.

3.2 “Security Through Obscurity” and Open Source

The 0-delay model supports the introduction of some mathematical considera-
tions into the discussion of ”security through obscurity”. This philosophy favors
proprietary solutions with respect to open source ones, under the assumption
that the lack of information on the infrastructure obstacles the search for vulner-
abilities of the attacker. In this way, the attacker has to study a ”live” system,
which is much more dangerous. As discussed in the previous section. 0-delay
models the asymmetry between the attackers and the defenders through the
constant ϕ that multiplies the number of the resource of the defender so that
we may assume that the probability of finding a vulnerability is the same for
each resource. In a ”closed” solution, and if the number of the resources of the
attacker is constant, ϕ increases the number of the resources of the defender to
take into account the larger amount of information these resources can access.
As a consequence, in an infrastructure exploiting a proprietary solution, if the
technical skills of the attackers and of the defenders are comparable, ϕ will be
larger than one and inversely related to public information on the infrastructure
or on the considered component.

A Theoretical Model for the Average Impact of Attacks 309

Instead, the main advantage of the adoption of an open source, or at least
an off-the-shelf, component, is that the number of resources searching for a vul-
nerability may become much larger than the pool managed by the defender. In
fact. the search for the vulnerabilities may involve also other instances of the
component in distinct infrastructures. As a counterpart, the number of attack-
ers may increase as well, because other people may be interested in attacking
distinct instances of the component. However, if the open source component is
widely adopted, the defender is fairly sure that, independently of the strategy
to allocate his/her resources, all the vulnerabilities in all the components will be
covered because other people are searching for them. Hence, it is highly unlikely
that very few defenders are searching for a vulnerability and that it will not
arise the dangerous case considered at the end of Sect. 3.1 where a few defender
resources are allocated to a vulnerability. We stress that an open source com-
ponent cannot guarantee by itself the existence of a larger pool of resources for
either the attacker or the defender because the sizes of these pools depend upon
the adoption of the component in distinct systems, i.e. being open source is a
necessary but not sufficient condition for larger pools of resources.

When adopting an off-the-shelf component, the number of resources search-
ing for vulnerabilities may be actually so large that these numbers are almost
independent of the pools managed by, respectively, the attacker and the defender.
This may be a noticeable advantage with respect to a proprietary solution any-
time the number of defenders cannot be very large. Consider, as an example,
a small enterprise where the defenders may also have limited skills in this very
specific field. Instead, if the expected number of attackers is low and they are
low skilled, the adoption of an open source component may be a disadvantage.

Since it is defined in terms of ϕ, na and nd, i.e. the numbers of attackers
and defenders, the 0-delay model makes it possible to compare in a quantitative
way the advantages of a proprietary solution, i.e. a smaller number of attackers
and defenders, against those of a widely adopted open source component, i.e. a
larger numbers of both attackers and defenders. Even if the values of ϕ, na and
nd that are used are just a rough approximation of the real ones, some general
guidelines on the relative advantages of proprietary or open source components
may be deduced from the mathematical framework underlying the 0-delay model.

References

1. Acquisti, A.: Privacy and security of personal information. Economic incentives
and technological solutions, Workshop on Economics of Information Security, Uni-
versity of California, Berkley (2002)

2. Adkins, R.: An Insurance Style Model for Determining the Appropriate Invest-
ment Level against Maximum Loss arising from an Information Security Breach,
Workshop on Economics of Information Security, University of Minnesota (2004)

3. Alberts, C.J., Dorofee, A.J.: An introduction to the OCTAVE method. http://
www.cert.org/octave/methodintro.html

4. Anderson, R.J.: Why Information Security is Hard-An Economic Perspective, 17th
Applied Computer Security Applications Conference (2001)

310 F. Baiardi and C. Telmon

5. Anderson, R.J.: Security Engineering: A Guide to Building Dependable Distributed
Systems. John Wiley & Sons, Inc., first edition (2001)

6. Anderson, R.: Security in Open versus Closed Systems - The Dance of Boltzmann,
CoaseandMoore,Conf.onOpenSourceSoftwareEconomics,Toulouse(France)(2002)

7. Anton, P.S., Anderson, R.H., Mesic, R., Scheiern, M.: Finding and fixing vul-
nerabilities in information systems: the vulnerability assessment and mitigation
methodology, MR-1601, Rand Corporation (2003)

8. Arbaugh, W.A., Fithen, W.L., McHugh, J.: Windows of Vulnerability: A Case
Study Analysis, IEEE Computer (2000) 52–59

9. Arora, A., Telang, R., Xu, H.: Optimal Policy for Software Vulnerability Disclosure.
Workshop on Economics of Information Security, University of Minnesota (2004)

10. Beattie, S., Arnold, S., Cowan, C., et al.: Timing the Application of Security Patches
for Optimal Uptime. 16th USENIX Sys. Administration Conf. (LISA 2002) (2002)

11. Burke, D.A.: Towards a game theory model of information warfare, Master Thesis,
Air Force Institute of Technology (1999)

12. Carini, B.: Dynamics and Equilibria of Information Security Investments, Work-
shop on Economics of Information Security, University of California, Berkley (2002)

13. Deraison,R.:TheNessusAttackScriptingLanguageReferenceGuide,www.nessus.org
14. Frey, B.S., Luechinger, S., Stulzer, A.: Calculating Tragedy: Assessing the Cost of

Terrorism,Inst. for Empirical Research in Economics, University of Zurich (2004)
15. Gordon, L.A., Loeb, M.P.: The Economics of Information Security Investment,

ACM Trans. on Information and System Security, Vol. 5. No. 4 (2002) 438–457
16. Hamilton, S.N., Miller, W.L., Ott, A., Saydjari, O.S.: The Role of Game Theory in

Information Warfare. 4th Information Survivability Workshop, Vancouver, B.C.,
Canada (2002)

17. Hoo, K.S.: How Much Is Enough? A Risk Management Approach to Computer
Security, Ph.D. Thesis, Standford University (2000)

18. Kannan,K.,Telang,R.:AnEconomicAnalysis ofMarket forSoftwareVulnerabilities.
Workshop on Economics of Information Security, University of Minnesota (2004)

19. Krsul, I.V.: Software Vulnerability Analysis, Ph.D. Thesis, Purdue University (1998)
20. Major, J.A.: Advanced Techniques for Modelling Terrorism Risk. Journal of Risk

Finance, Fall (2002)
21. Mercer, L.C.: Fraud detection via regression analysis. Computers & Security, Vol. 9,

no. 4 (1990)
22. Owen, G.: Game Theory, Academic Press, 1995, Third Edition (1995)
23. Rescorla, E.: Is Finding Security Holes a Good Idea?, Workshop on Economics of

Information Security, University of Minnesota (2004)
24. Schechter, S.E.: Quantitatively differentiating system security. Workshop on Eco-

nomics of Information Security, University of California, Berkley (2002)
25. Schechter, S.E.: Computer Security Strength & Risk: A Quantitative Approach,

Ph.D. thesis, Harvard University (2004)
26. Schneier, B.: Full disclosure and the window of vulnerability, Crypto-Gram

http://www.counterpane.com/crypto-gram-0009.html (2000)
27. Schneier, B.: Closing the Window of Exposure: Reflections on the Future of Secu-

rity, Securityfocus.com. http://www.securityfocus.com (2000)
28. Stoneburner, G., Goguen, A., Feringa, A.: Risk management guide for information

technology systems, NIST, Special Publication 800–30 (2001)
29. Schudel, G., Wood, B.: Adversary work factor as a metric for information assurance,

Workshop on New security paradigms, Ballycotton, County Cork, Ireland (2000)
23–30

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 311 – 324, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Analyzing Vulnerabilities and Measuring
Security Level at Design and Exploitation Stages

of Computer Network Life Cycle

Igor Kotenko and Mihail Stepashkin

SPIIRAS, 39, 14 Liniya, St.-Petersburg, 199178, Russia
ivkote@iias.spb.su, stepashkin@computer.edu.ru

Abstract. Vulnerability detection and security level estimation are actual tasks
of protecting computer networks. The paper considers the models and architec-
tures of intelligent components intended for active analyzing computer network
vulnerabilities and estimating its security level. The offered approach is based
on simulation of computer attacks on different levels of detail and intended for
implementation at various stages of computer network life cycle, including de-
sign and exploitation stages.

1 Introduction

According to CERT statistic [1] the quantity of attacks on computer networks, their
complexity and extent of damage, caused by malefactor’s attacks in the Internet,
grows each year. The reason is a low security level of majority of systems connected
to the Internet. The most common failures exist in operating system (OS) and applica-
tions software configuration, software maintenance, user management and administra-
tion, including improperly configured OS and applications, incorrect password policy
and improper access control settings, existence of vulnerable or easily exploited ser-
vices and malicious software (Trojans, worms, etc.). Therefore now vulnerability de-
tection and estimation of security level of computer networks are actual tasks of in-
formation assurance.

A special class of systems exists for solution of these tasks − vulnerability assess-
ment or security analysis systems (SAS) [18, 26]. The contemporary SAS destine to
fulfill checking the system defended against the specified system configuration and
security policy for non-compliance and identifying technical vulnerabilities in order
to correct them and mitigate any risk posed by these vulnerabilities. The main objec-
tive of SAS components is to identify and correct the system management process and
security policy failures that produced the vulnerabilities detected. The other important
functions are security level estimation, supporting effective interface for control of
scanning process, creating reports and automatic updating vulnerability signatures.
The SAS components should scan system, update the system configuration according
to the specified security policy and system configuration and also send inquiries to
modify the security policy if it is necessary. It is a cycle that must be repeated

312 I. Kotenko and M. Stepashkin

continuously. Moreover, it is important to carry out vulnerability assessment and se-
curity analysis during the whole life cycle of computer networks, including initial
stages of analysis and design.

The paper is devoted to creating the models, architectures and prototypes of intel-
ligent components of vulnerability detection and security level estimation which allow
expanding functional capabilities of existing SAS based on penetration testing and
simulation. The main attention is devoted to design stage. We describe the architec-
ture of security analysis system offered and models implemented in this system, in-
cluding the models of attacks, analyzed computer network (estimating the attack re-
sults and the system’s responses to attacks) and security level assessment. The rest of
the paper is structured as follows. Section 2 outlines the approach suggested and re-
lated work. Section 3 describes the architecture of security analysis system developed
and its implementation issues. Section 4 gives an outline of generalized attack model
used for vulnerability assessment and security level estimation. Section 5 describes
the model of analyzed computer network. Section 6 presents the model of security
level evaluation. Section 7 gives an overview of case study used for checking the ap-
proach suggested. Section 8 summarizes the main results and future research.

2 Related Work

In the paper we suggest the approach which is based on mechanism of automatic con-
struction and replaying of distributed attacks scripts by combining known attacks
fragments taking into account various intentions and experience level of malefactors.
The results of attacks allow to calculate different security metrics which can be used
for defining as the common security level of computer network (system) as well as
security levels of its components. This approach can be used at different stages of
computer network life cycle, including design and exploitation stages.

At the design stage, SAS should operate with the model of analyzed computer
network generated from preliminary or detailed design specifications. The main ap-
proaches to vulnerability assessment and security analysis can be based on analytic
calculation and imitation (simulation) experiments. Analytical approaches use as a
rule different risk analysis methods [2, 11, 25, 28, 37, etc.]. Imitational approaches are
based on modeling and simulation of network specifications, fault (attack) trees,
graph models, etc. [9, 10, 11, 14, 17, 22, 32, 33, 34, 35, 38, etc.].

There are a lot of papers which consider different techniques of attack modeling
and simulation: Colored Petri Nets [16], state transition analysis technique [12, 15],
simulating intrusions in sequential and parallelized forms [5], cause-effect model [6],
conceptual models of computer penetration [36], descriptive models of the network
and the attackers [40], structured “tree”-based description [7, 20], modeling surviv-
ability of networked systems [19], object-oriented discrete event simulation [3], re-
quires/provides model for computer attacks [39], situation calculus and goal-directed
procedure invocation [8], using and building attack graphs for vulnerability analysis
[13, 23, 29, 33, 38], etc.

 Analyzing Vulnerabilities and Measuring Security Level 313

As one can see from our review of relevant works, the field of imitational ap-
proaches for vulnerability assessment and security level evaluation has been deliver-
ing significant research results. [32] quantifies vulnerability by mapping known attack
scenarios into trees. In [14] a system architecture injects intrusion events into a given
network specification, and then visualizes the effects in scenario graphs. Using model
checking, Bayesian analysis, and probabilistic analysis, a multifaceted network view
of a desired service is provided. [17] suggests a game-theoretic method for analyzing
the security of computer networks. The authors view the interactions between an at-
tacker and the administrator as a two-player stochastic game and construct a model
for the game. The approach offered in [34] is intended for performing penetration
testing of formal models of networked systems for estimating security metrics. The
approach consists of constructing formal state/transition models of the networked sys-
tem. The authors build randomly constructed paths through the state-space of the
model and estimate global security related metrics as a function of the observed paths.
[38] analyzes risks to specific network assets and examines the possible consequences
of a successful attack. As input, the analysis system requires a database of common
attacks, specific network configuration and topology information, and an attacker pro-
file. Using graph methods they identify the attack paths with the highest probability of
success. [10] suggests global metrics which can be used to analyze and proactively
manage the effects of complex network faults and attacks, and recover accordingly.

At the exploitation stage of computes systems two main groups of methods can be
used: passive (by analyzing logs, configuration files, etc.) and active (based on pene-
tration testing) [4, 21]. There are a lot of different SAS components which operate on
the stage of exploitation. Examples are NetRecon, bv-Control for Internet Security
(HackerShield), Retina, Internet Scanner, CyberCop Scanner, Nessus Security Scan-
ner, etc. The basic lacks of existing SAS are as follows: (1) use of the scanner does
not allow to answer to the main question concerning policy-based systems - “Whether
what is revealed during scanning correspond to security policy?”; (2) the quality of
obtained result essentially depends on the size and adequacy of vulnerability bases;
(3) implementation of active vulnerability analysis on the computer system function-
ing in a regular mode can lead to failures in running applications. Therefore not all
systems can be tested by active vulnerability analysis; (4) existing network security
tools can essentially influence on the results generated by scanners. Quite often the
protection level evaluated from the place where the scanner is located is wrongly con-
sidered as a protection level of the whole network from all types of threats.

3 The Architecture of Security Analysis System

The architecture of security analysis system offered contains the following compo-
nents (fig.1): (1) user interface; (2) module of malefactor’s model realization; (3)
module of scriptset (attack scenarios) generation; (4) module of scenario execution;
(5) data and knowledge repository; (6) module of data and knowledge repository up-
dating; (7) module of security level assessment; (8) report generation module; (9)
network interface.

314 I. Kotenko and M. Stepashkin

At the design stage, the SAS operates with the model of analyzed computer net-
work (system). This model is based on design specifications. At the maintenance
stage, the SAS interacts with a real computer network (system).

Let us describe the functions of basic modules.
The module of malefactor’s model realization determines a malefactor’s skill

level, a mode of actions and an attack goal.
The data and knowledge repository consists of a knowledge base (KB) about ana-

lyzed system, a KB of operation (functionality) rules, and a database (DB) of attack
tools (exploits). This repository contains data and knowledge which are as a rule used
by malefactor when he is planning and realizing attacks.

The knowledge base about analyzed system includes data about the architecture
and particular parameters of computer network (for example, a type and a version of
OS, a list of opened ports, etc) which are needed for scripts generation and attack exe-
cution. This data usually can be received by malefactor using reconnaissance actions
and methods of social engineering.

The knowledge base of operation (functionality) rules contains meta- and low-
level rules of “IF-THEN” type determining SAS operation on different levels of de-
tail. Meta-level rules define attack scenarios on higher levels. Low level rules specify
attack actions based on external vulnerability database. IF-part of each rule contains
(meta-) action goal and (or) condition parts. The goal is chosen in accordance with a
scenario type, an attack intention and a higher level goal (specified in a meta-rule of
higher level). The condition is compared with the data from database about analyzed
system. THEN-part contains the name of attack action which can be applied and (or)
the link on exploit. An example of one of rules is “IF GOAL = “Denial of service”
AND OS_TYPE = “Windows_NT” AND OS_VERSION =4 THEN ping_of_death
(PoD)”. Each rule is marked with an identifier which allows us to determine the
achieved malefactor’s goal. For example, the rule mentioned above defines a denial of
service (DoS) attack “ping_of_death”.

Module of male-
factor’s model re-

alization

Module of attack
scenarios generation

User interface

Module of security
level assessment

Module of scenario
execution

Module of data and
knowledge reposi-

tory updating

Report generation
module

Network
interface

Data and knowledge repository

Fig. 1. Generalized architecture of security analysis system

Analyzed
system

Model of
analyzed
system

KB about analyzed system KB of operation rules DB of attack tools
(exploits)

External DB
of threats

and vulner-
abilities

Design
specifications

 Analyzing Vulnerabilities and Measuring Security Level 315

The low-level rules of this database are generated on the basis of Open Source
Vulnerability Database (OSVDB) [24]. For example, OSVDB vulnerability with id
6117 shown on fig.2 can be translated to the following rule: «IF GOAL = “Buffer
Overflow” AND PRODUCT_BASE_NAME = MDaemon AND
PRODUCT_VERSION_NAME = “2.71 SP1” THEN HELLOEXPL.C». This rule cor-
responds to the exploit helloexpl.c from the DB of attack tools (exploits).

<vuln osvdb_id="6117" osvdb_create_date="2004-04-08 22:45:51"
last_modified_date="2004-05-14 04:56:29">

 <osvdb_title>MDaemon Long HELO Overflow</osvdb_title>
 <disclosure_date>1998-03-11 00:44:45</disclosure_date>
 <discovery_date>0001-01-01 00:00:00</discovery_date>
 <exploit_publish_date>1998-03-11 00:44:45</exploit_publish_date>
 <location_remote>1</location_remote>
 <attack_type_dos>1</attack_type_dos>
 <impact_available>1</impact_available>
 <exploit_available>1</exploit_available>
 <vuln_verified>1</vuln_verified>
 <products>
 <product affected="Affected">
 <vendor_name>Alt-N Technologies</vendor_name>
 <base_name>MDaemon</base_name>
 <version_name>2.71 SP1</version_name>
 </product>
 </products>
 <ext_refs>
….
 <ext_ref type_name="Generic Exploit URL" indirect="0">

http://do wnloads.securityfo-
cus.com/vulnerabilities/exploits/heloexpl.c</ext_ref>

 </ext_refs>
…
</vuln>

Fig. 2. OSVDB vulnerability of the MDaemon Long HELO overflow

The DB of attack tools (exploits) contains exploits and parameters of their execu-
tion. A choice of a parameter is determined by the data in KB about analyzed system.
For example, the program of ftp brute force password cracking needs to know the ftp
server port which can be determined by port scanning.

The module of scriptset (attack scenarios) generation selects the data about ana-
lyzed system from the data and knowledge repository, generates attack scriptset based
on using operation (functionality) rules, monitors scriptset execution and scriptset up-
dating at runtime, updates data about analyzed system.

The module of scenario execution selects an attack action and exploits, prognoses
a possible feedback from analyzed computer network, launches the exploit and recog-
nizes a response of analyzed computer network.

In case of interaction with a computer network a real network traffic is generated.
In case of operation with the model of analyzed system two levels of attack simula-
tion are provided: (1) at the first level each low-level action is represented by its label
describing attack type and (or) used exploit, and also attack parameters; (2) at the sec-

316 I. Kotenko and M. Stepashkin

ond (lower) level each low-level action is specified by corresponding packets of the
network, transport and applied level of the Internet protocols stack.

Network interface provides: (1) in case of operation with the model of analyzed
system − transferring identifiers and parameters of attacks (or network packets under
more detailed modeling and simulation), and also receiving attacks results and system
reactions; (2) in case of interaction with a computer network − transferring, capturing
and the preliminary analysis of network traffic. The preliminary analysis includes: (1)
parsing of packets according to connections and delivery of information about packets
(including data on exposed flags, payload, etc.) and connections; (2) acquisition of
data about attack results and system reactions, and also values of some statistics re-
flecting actions of SAS at the level of network packets and connections.

The module of security level assessment is based on developed taxonomy of secu-
rity metrics. It is a main module which calculates security metrics based on results of
attack actions.

The module of database and knowledge repository update downloads the open
vulnerability databases [30] (for example, OSVDB - open source vulnerability data-
base [24]) and translates them into KB of operation (functionality) rules of low level.

4 Generalized Attack Model

Functioning of SAS is specified by the attack model implemented in the module of
malefactor’s model realization. The model is defined as hierarchical structure that
consists of several levels (fig.3). Three higher levels of the attack model correspond to
an attacks scriptset, a script and script stages. The scriptset level defines a set of gen-
eral malefactor’s intentions (high level goals). This level corresponds to realization of
series of scenarios which can be implemented by a group of malefactors. The script
level defines only one malefactor’s intention. The set of script stages can contain the
following elements: reconnaissance, implantation (initial access to a host), gaining
privileges, threat realization, covering tracks and backdoors creation. Lower levels
serve for malefactor subgoals refinement. The lowest level describes the malefactor’s
low level actions directly executing different exploits.

Two main methods of malefactor’s goal achievement are used in the attack model:
(1) forward and (2) backward inference. Both of these methods use database of function-
ality rules selecting an item in the hierarchy of a general attack model. Forward inference
makes exhaustive or limited search of actions available on a current hierarchy level. Exe-
cuting this inference method, SAS realizes all or limited number of available malefac-
tor’s low level actions for every script stage beginning from the first stage. Backward in-
ference implies generation of optimized chain of actions based on definition of
malefactor intention (goal) beginning from the last action in the line to the first action.

After definition of one or set of malefactor’s intentions SAS goes to next level of
generalized attack model and generates needed scenarios and attack actions.

The malefactor behavior strategy is defined by his model. In this model the male-
factors are classified by knowledge and an experience level into three groups: (1) a
low level (“novice”); (2) a middle level; (3) a high level (“professional”). “Novice”
utilizes for goal achievement the exhaustive forward inference method, middle level
malefactor − limited forward inference method and “professional” − the backward in-
ference method.

 Analyzing Vulnerabilities and Measuring Security Level 317

5 Model of Analyzed Computer Network

The model of analyzed computer network (system) intends for evaluating attack re-
sults and defining system reaction. It contains the following basic components (fig.4):
network interface; module of malefactor actions recognition; module of attack result
evaluation; module of system response generation; database about analyzed system,
database of attack signatures.

Network interface provides: (1) receiving identifiers and parameters of attacks; (2)
transferring attack results and system reactions.

Module of malefactor actions recognition is necessary at realization of detailed at-
tack modeling and simulation, i.e. when malefactor actions are represented as network
packets. Functioning of this module is based on a signature method – the data re-
ceived from the network interface are compared to signatures of attacks from data-
base of attack signatures. Outputs of the module are identifiers and parameters of
attacks.

The knowledge base about analyzed system is created from the specification of
analyzed system and structurally coincides with KB about analyzed system described
in section 3. The difference of these knowledge bases consist in the stored data: KB of
the model of analyzed system contains the results of translating the specifications of
analyzed system; KB related to the generalized architecture of SAS is initially empty
and is filled during the execution of attack scripts.

Formal representation of analyzed system includes the specification of computer
network structure, hosts resources and functions. The structure of a computer network
CN is determined as follows [9]: M

CN
 = < A, P, N, C >, where A is the network ad-

dress; P is a family of protocols used (e.g., TCP/IP, FDDI, ATM, IPX, etc.); N is a set

OS
determination

Port scanning

Implantation Gaining
privileges

Threat
realization

Confidentiality
violation

Availability
violation (DoS)

Integrity
violation

Backdoors
creation

1. Read File
2. Read by Virus
…

1. SYN flood
2. Land
…

Scriptset level (defining a set of general attack intentions)

Script level (determining a general attack intention)

Reconnais-
sance

1. Delete files
2. Delete by Virus
…

…

Script stages

…

Fig. 3. Fragment of generalized attack model

318 I. Kotenko and M. Stepashkin

{CNi} of sub-networks and/or a set {Hi} of hosts of the network CN; C is a set of
connections between the sub-networks (hosts) established as a mapping matrix. Each
host Hi is determined as a pair M

Hi
= <A, T>, where A is the host address, T is a host

type (e.g., firewall, router, host, etc.). The network host resources and functionalities
serve for representing the host characteristics that are important for attack simulation.
These characteristics are represented as follows: MHi = < A, M, T, N, D, P, S, DP,
ASP, RA, SP, SR, TH, etc.>, where A – IP-address, M – mask of the network address,
T – type and version of OS, N – users' identifiers (IDs), D – domain names, P – host
access passwords, S – users' security identifiers (SID), DP – domain parameters (do-
main, names of hosts in the domain, domain controller, related domains), ASP – ac-
tive TCP and UDP ports and services of the hosts, RA – running applications, SP –
security parameters, SR – shared resources, TH – trusted hosts.

The implemented algorithm for module of attack result evaluation is based on us-
ing a set of rules describing what kind of attacks, in what sort of conditions, and with
what probability (possibility) do have success. The input for these rules is an attack
identifier and a set of parameters defining current state of analyzed system. The out-
put is a probability (possibility) of the attack successfulness.

If system description is sufficiently detailed, then the module of attack result
evaluation can give as a rule univocal answer. But at the design stage the system de-
scription as a rule is incomplete. In this case we need to expand the model of attack
result evaluation with meta-rules, or implement coefficients of probability (possibil-
ity) and evaluate the attack result utilizing these coefficients. For example, the rule
which describes Ping of Death attack: “IF ATTACK = PoD AND OS_TYPE = Win-
dows_NT AND OS_VERSION = 4.0 AND ICMP_FILTERING = OFF THEN P= 0.8”,
where PoD – an identifier of DoS-attack “Ping of Death”, P=0.8 means that attack
has success with probability (degree of possibility) 0.8. The OS type, OS version and
the filtering condition are verified using the database about analyzed system.

Response of the information system model on malefactor attacks is a change of its
state and (in some cases) a message directed to attacker (as a system reaction on at-
tack). Each state can be characterized by the attributes describing accessibility of a
system (as a whole one and its certain services), data integrity, data confidentiality,
users and their privileges, etc. The module of system response generation fulfills a set
of rules of the system reaction: {RSR

j}, where RSR
j: Input -> Output & Post-Condition,

DB of attack signatures

 Module of
 system
 reaction

Module of system
response generation

Network interface

KB about analyzed system (computer network)

Fig. 4. Model of analyzed computer network

Specifications of analyzed system (computer network)

Module of
malefactor actions

recognition
Module of attack
result evaluation

 Analyzing Vulnerabilities and Measuring Security Level 319

Input is the malefactor’s activity, Output is the system reaction, Post-Condition is a
change of the system state, & is logic connective “AND”. Thus, the module produces
the response of system to attack (for example, after successful attack on scanning
ports the list of open ports is generated) and updates KB about analyzed system (for
example, if a malefactor creates a new user in the group of administrators or starts a
remote administration service, these changes are reflected in KB).

6 Model of Security Level Evaluation

The functionality of the module of security level evaluation is described by a corre-
sponding model which uses a multi-level hierarchy of security metrics.

The taxonomy of security metrics is based on the attack model developed. The
taxonomy contains as the notions of attack realization actions, as well as the notions
of types and categories of assets (secured objects).

There are four levels of security metrics sub-taxonomy based on attack realization
actions (fig.5): (1) an integrated level; (2) a script level; (3) a level of the script
stages; (4) a level of the threat realization. Each higher level contains all metrics of
lower levels (arrow in fig.5 shows the direction of metrics calculation). Examples of
security metrics for this taxonomy are as follows: number of total and successful at-
tack scenarios; number of total and successful stages of attack scenarios; number of
total and successful malefactor attacks on the certain level of taxonomy hierarchy;
number of attacks blocked by existing security facilities; number of discovered and
used vulnerabilities; number of successful scenario implementation steps; number of
different path of successful scenario implementation, etc.

Security Level

Integrated level
 Security Metrics Examples: number of total and successful attack scenarios.

Script level
 Security Metrics Examples: number of total and successful stages of attack scenarios.

Script stages

Security Metrics Examples: number of total and successful malefactor attacks on each script stage.

Reconnaissance Implantation Backdoors Creation

Attacks

 Security Metrics Examples: Number of discovered and used vulnerabilities;
Number of total and successful malefactor attacks.

 OS determination
 Port scanning
 …

 Password Guessing
 Buffer overflow
 …

…

Fig. 5. Security metrics sub-taxonomy based on attack realization actions

320 I. Kotenko and M. Stepashkin

Second sub-taxonomy is formed taking into account types and categories of as-
sets. Assets are divided on the following types: (1) informational resources (confiden-
tial and critical information); (2) software resources (OS, DBMS, etc.); (3) physical
resources (servers, workstations, etc.); (4) services (web, mail, ftp, etc). There are
several approaches for assets categorizing. We use an approach which is based on di-
viding of assets into groups by confidentiality and criticality levels (fig.6). Examples
of security metrics of this taxonomy are as follows: total score of confidentiality and
criticality of assets that have been successfully attacked; number of confidential and
critical assets that have been successfully attacked, etc.

Evaluation of these metrics is based on attacks results and reaction of the analyzed
system.

7 Case Study

For testing and evaluating our approach we specified, developed and deployed the
computer network which configuration is shown in fig.7. The experiments were car-
ried out using “VMWare Workstation 5.0”, that allows to emulate the work of per-
sonal computers and to form a virtual computer networks.

The network consists of the following three subnets: (1) Internet area including
hosts Internet_host and ISP_DNS with IP-addresses 195.19.200.*; (2) demilitarized
zone including two servers with IP-addresses 192.168.0.*; (3) local area network with
IP-addresses 10.0.0.*. The basic elements of the network are: (1) Internet host with
SAS; (2) Firewall 1 – a firewall between Internet and demilitarized subnet; (3) File
Server and (4) Mail Server – servers, located in the demilitarized subnet; (5) Firewall
2 – a firewall between local area network and demilitarized subnet; (6) DNS server –
a local DNS server, which services the clients from LAN; (7) AAA Server – an au-
thentication, authorization and accounting server; (8) Workstation 1..4 – workstations.

The generalized functional scheme of SAS prototype implemented is presented on
fig.8.

The model of analyzed system uses specification of security policy and system ar-
chitecture, defined on Security Policy Language (SPL) and System Description Lan-
guage (SDL) [27]. SDL and SPL are represented in Common Information Model
(CIM) format. The Common Information Model (CIM) is an approach from the
DMTF to the management of systems, applications, networks and services that

Fig. 6. Security metrics sub-taxonomy based on assets’ categories

Assets categories

By confidentiality level By criticality level

• Top Secret (8-10]
• Secret (5-8]
• For internal utilization (0-5]
• Open [0]

• Critical (8-10]
• Important (2-8]
• Insignificant (0-2]
• Uncritical [0]

 Analyzing Vulnerabilities and Measuring Security Level 321

applies the basic structuring and conceptualization techniques of the object-oriented
paradigm. SDL describes a computer network on the level of network topology and
services. The network topology is described by the classes PhysicalElement, Physi-
calLink, and the ElementsLinked association. The network services are described by
classes ComputerSystem, Service, ProtocolEndpoint, ServiceAccessPoint,
ServiceAvailableToElement, ProvidesEndpoint, HostedAccessPoint, BindsTo.

Fig. 7. The configuration of computer network for case study

External DB of vulner-
abilities (OSVDB)

Network
Interface

DB about
analyzed system

Security Analysis System

Network
Interface

Reports

Model of Analyzed
System

Modules:
 Malefactor’s
model realization
 User interface
 Attack scenarios
generation
 Scenario execution
 Security level as-
sessment
 Report generation
 Data and knowl-
edge repository up-
dating

Module of at-
tack result
evaluation

Module of system
response generation

Data
and

knowl-
edge re-
pository

S
pe

ci
fi

ca
ti

on
 o

f
an

al
yz

ed
 s

ys
te

m

Fig. 8. Functional scheme of SAS prototype

322 I. Kotenko and M. Stepashkin

Let us consider an example of using the SAS prototype for developed case study.
Let we need to determine a security level of the file-server against attacks “denial of
service” when the malefactor’s experience level is a “novice”. To do this we need to
enumerate the necessary assets and its confidentiality and criticality levels (in brack-
ets): (1) Information resources: the information about open ports on file-server (5,2);
the information about used services on file-server (5,2); the information about operat-
ing system of file-server (5,8); the information about users on file-server – names and
groups (5,8); the password of the user “admin” (10, 10); (2) Software resources: oper-
ating system (5,10); physical resources: server (0,10); (3) Services: file-server (0,10).

According to the malefactor’s model realization SAS creates one script consisting
of the following two stages: (1) reconnaissance and (2) threat realization (denial of
service). At a first stage all accessible groups of actions are executed: port scanning,
OS determination, services identification, etc. Actions of each group are executed un-
til a positive result is reached, e.g. port scanning begins with “TCP SYN scan”, in
case of negative result the “TCP connect scan” is executed, and so on. If port scan-
ning and identification of services are successfully completed by the first methods and
three methods of OS determination and five methods of user logins enumeration are
completed by failure, then the security metric of reconnaissance stage can be calcu-
lated as follows: PR=1 - NSA/NA=1 - 2/10=0.8, where NSA – the number of successful
actions, NA– the common number of actions. If at the stage of threat realization the
usage of tenth vulnerability is successful, then the metric of thread realization stage is
PTR=1- NSA/NA=1 - 1/10=0.9. The security metric for the whole script is
(0.8+0.9)/2=0.85. Taking into account that only one script has been generated, the in-
tegral metric is also equal 0.85. The value of security metric depends on the realiza-
tion of malefactor’s model. For example, in case of using backward inference method
of malefactor goal achievement, the total number of actions is decreased; conse-
quently the value of security metric is reduced.

Let us calculate a confidentiality and criticality levels of successfully attacked as-
sets. At reconnaissance stage, the malefactor has received the information which total
level of confidentiality is 10 and total level of criticality is 4. For the information
which the malefactor tried to receive the appropriate levels are (20, 20). After nor-
malization, the losses of confidentiality and criticality are (0.5, 0.2). At thread realiza-
tion stage, the file-server has been successfully attacked (0 points of confidentiality
and 10 points of criticality have been lost), therefore the appropriate losses are (0, 1).
At script level the losses of confidentiality and criticality are as follows: ((0.5+0)/2,
(0.2+1)/2) = (0.25, 0.6). The total security metric can be calculated as difference 1 and
average value of the given coefficients: 1-0.43=0.57.

Let us select by expert evaluation the following security level scale: (1) “green” –
if security level value in an interval [1, 0.8); (2) “yellow” – [0.8, 0.6); (3) “red” – [0.6,
0]. Then the value 0.57 acts as “red” level. As guideline on increase of security level,
the report with instructions about vulnerability elimination is generated. Procedure of
security level evaluation is repeated after eliminating detected vulnerabilities.

8 Conclusion

The paper offered the approach to vulnerability analysis and security level assessment
of computer networks, intended for implementation at various stages of a life cycle of
analyzed computer systems.

 Analyzing Vulnerabilities and Measuring Security Level 323

The basic components of suggested intelligent SAS are the knowledge base of
functionality rules, the model of computer attacks and the model of security level as-
sessment based on developed taxonomy of security metrics. The SAS prototype was
implemented and the experiments were held based on the case-study developed.

The future research will be devoted to improving the models of computer attacks,
the model of security level assessment, and comprehensive experimental assessment
of offered approach.

Acknowledgement

This research is being supported by grant of Russian Foundation of Basic Research
(04-01-00167), grant of the Department for Informational Technologies and Com-
putation Systems of the Russian Academy of Sciences (contract 3.2/03) and partly
funded by the EC as part of the POSITIF project (contract IST-2002-002314).

References

1. CERT/CC Statistics 1988-2005. http://www.cert.org/stats/cert_stats.html
2. Chapman, C., Ward S.: Project Risk Management: processes, techniques and insights.

Chichester, John Wiley (2003)
3. Chi, S.-D., Park, J.S., Jung K.-C., Lee J.-S.: Network Security Modeling and Cyber Attack

Simulation Methodology. LNCS, Vol.2119 (2001)
4. Chirillo J.: Hack Attacks Testing – How to Conduct Your Own Security Audit. Wiley Pub-

lishing (2003)
5. Chung, M, Mukherjee, B., Olsson, R.A., Puketza, N.: Simulating Concurrent Intrusions for

Testing Intrusion Detection Systems. Proc. of the 18th NISSC (1995)
6. Cohen, F.: Simulating Cyber Attacks, Defenses, and Consequences. IEEE Symposium on

Security and Privacy, Berkeley, CA (1999)
7. Dawkins, J., Campbell, C., Hale, J.: Modeling network attacks: Extending the attack tree

paradigm. Workshop on Statistical and Machine Learning Techniques in Computer Intru-
sion Detection, Johns Hopkins University (2002)

8. Goldman R.P.: A Stochastic Model for Intrusions. LNCS, V.2516 (2002)
9. Gorodetski, V., Kotenko, I.: Attacks against Computer Network: Formal Grammar-based

Framework and Simulation Tool. RAID 2000. LNCS, V.2516 (2002)
10. Hariri, S., Qu, G., Dharmagadda, T., Ramkishore, M., Raghavendra C. S.: Impact Analysis

of Faults and Attacks in Large-Scale Networks. IEEE Security & Privacy, Septem-
ber/October (2003)

11. Henning, R.: Workshop on Information Security System Scoring and Ranking. Williams-
burg, VA: Applied Computer Security Associates and The MITRE Corporation (2001)

12. Iglun, K., Kemmerer, R.A., Porras, P.A.: State Transition Analysis: A Rule-Based Intru-
sion Detection System. IEEE Transactions on Software Engineering, 21(3) (1995).

13. Jha, S., Sheyner, O., Wing, J.: Minimization and reliability analysis of attack graphs.
Technical Report CMU-CS-02-109, Carnegie Mellon University (2002)

14. Jha, S., Linger, R., Longstaff, T., Wing, J.: Survivability Analysis of Network Specifica-
tions. Intern. Conference on Dependable Systems and Networks, IEEE CS Press (2000)

15. Kemmerer, R.A., Vigna, G.: NetSTAT: A network-based intrusion detection approach.
14th Annual Computer Security Applications Conference, Scottsdale, Arizona (1998)

324 I. Kotenko and M. Stepashkin

16. Kumar, S., Spafford, E.H.: An Application of Pattern Matching in Intrusion Detection.
Technical Report CSDTR 94 013. Purdue University (1994)

17. Lye, K., Wing J.: Game Strategies in Network Security. International Journal of Informa-
tion Security, February (2005)

18. McNab, C.: Network Security Assessment. O’Reilly Media, Inc. (2004)
19. Moitra, S.D., Konda, S.L.: A Simulation Model for Managing Survivability of Networked

Information Systems, Technical Report CMU/SEI-2000-TR-020, December (2000)
20. Moore, A.P., Ellison, R.J., Linger, R.C.: Attack Modeling for Information Security and

Survivability. Technical Note CMU/SEI-2001-TN-001. March (2001)
21. Nessus Network Auditing. Renaud Deraison. Syngress Publishing, Inc. (2004)
22. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-Based Evaluation: From Dependability

to Security. IEEE Transactions on Dependable and Secure Computing. Vol.1, N.1 (2004)
23. Ortalo, R., Dewarte, Y., Kaaniche, M.: Experimenting with quantitative evaluation tools

for monitoring operational security. IEEE Trans. on Software Engineering, 25(5) (1999)
24. OSVDB: The Open Source Vulnerability Database. http://www.osvdb.org/
25. Peltier, T.R.: Information security risk analysis. Auerbach 2001.
26. Peltier, T.R., Peltier, J., Blackley, J.A.: Managing a Network Vulnerability Assessment.

Auerbach Publications (2003)
27. POSITIF Project leaflet. http://www.positif.org/idissemination.html (2004)
28. RiskWatch users manual. http://www.riskwatch.com
29. Ritchey, R. W., Ammann, P.: Using model checking to analyze network vulnerabilities. Pro-

ceedings of IEEE Computer Society Symposium on Security and Privacy (2000)
30. Rohse, M.: Vulnerability naming schemes and description languages: CVE, Bugtraq,

AVDL and VulnXML. SANS GSEC PRACTICAL (2003)
31. Sademies, A.: Process Approach to Information Security Metrics in Finnish Industry and

State Institutions. VTT Electronics, Espoo. VTT Publications (2004)
32. Schneier, B.: Attack Trees. Dr. Dobb’s Journal, vol. 12 (1999)
33. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and

analysis of attack graphs. Proc. of the IEEE Symposium on Security and Privacy (2002)
34. Singh, S., Lyons, J., Nicol, D.M.: Fast Model-based Penetration Testing. Proceedings of

the 2004 Winter Simulation Conference (2004)
35. Steffan, J., Schumacher, M.: Collaborative Attack Modeling. 17th ACM Symposium on

Applied Computing (SAC 2002), Madrid, Spain (2002)
36. Stewart, A.J.: Distributed Metastasis: A Computer Network Penetration Methodology.

Phrack Magazine, 9 (55) (1999)
37. Storms A.: Using vulnerability assessment tools to develop an OCTAVE Risk Profile.

SANS Institute. http://www.sans.org
38. Swiler, L., Phillips, C., Ellis, D., Chakerian, S.: Computer-attack graph generation tool.

DISCEX '01 (2001)
39. Templeton, S.J., Levitt, K.: A Requires/Provides Model for Computer Attacks. Proc. of

the New Security Paradigms Workshop (2000)
40. Yuill, J., Wu, F., Settle, J., Gong, F.: Intrusion-detection for incident-response, using a

military battlefield-intelligence process. Computer Networks, No.34 (2000)

A Temporal Logic-Based Model for Forensic
Investigation in Networked System Security

Slim Rekhis and Noureddine Boudriga

CN&S Research Lab., University of the 7th Of November at Carthage, Tunisia
smr@certification.tn

nab@supcom.rnu.tn

Abstract. Research in computer and network forensic investigation has
recently addressed the development of procedural guidelines, technical
documents, and semi-automation tools. It has however omitted the need
of formal proof. This work provides a novel approach that formalizes and
automates the proof in digital forensic investigation. First, it brings out
a formal logic-based language, called S-TLA+, to enable reasoning on
systems with uncertainty, by adding forward hypotheses to fulfill poten-
tial lack of details. S-TLA+ is suitable for the description of evidences,
as well as elementary scenarios fragments representing the investigators
knowledge. Secondly, the proposal provides an automated verification
tool, S-TLC, to prove the correctness of S-TLA+ specifications. It checks
whether there are possible hacking scenarios that meet the available dig-
ital evidences, and explores additional evidences. To demonstrate its ef-
fectiveness, the formalized analysis is applied on a compromised host.

1 Introduction

The growth of the number of digital security incidents and the sophistication
of the intrusions techniques made it impossible to completely prevent attacks.
Therefore, it becomes necessary to react efficiently to security incidents. Com-
puter forensic investigation, defined as “preservation, identification, extraction,
documentation and interpretation of computer data” [1], enables achieving these
objectives while performing a post-incident examination: a) evidence collection;
b) attack scenarios and relating security weakness determination; and c) result
argumentation with methods and techniques that are well-tested and proved.

During the recent years, the literature has addressed two main themes: a)
contribution to the development of technical documents specific to the inves-
tigation of various operating systems and b) writing of procedural guidelines
for forensic investigation. It has omitted any need of formalization and proof au-
tomation in digital forensic investigation, reducing consequently the results accu-
racy, and analysis practicality. Formalization allows an explicit and unambiguous
representation of forensic investigator’s knowledge and observations. The proof
automation makes the generated investigation deductions relevant even with a
huge amount of data. It lets investigators argue about complex scenarios without
a need for advanced skills, nor a priori knowledge about the incident causes.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 325–338, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

326 S. Rekhis and N. Boudriga

Formal digital forensic investigation has interested few works that differ ac-
cording to the techniques and methodologies they used. [2] used Colored Petri
Nets to model digital postmortems investigation as a time-line of events. It fo-
cused on determining the set of causes that enabled the security incident to suc-
cess, so that the appropriate countermeasures can be foreseen. Nevertheless, the
methodology does not model incident effects, and does not support hypotheses
formulation when details are missing. [3] presented an automated diagnosis sys-
tem that generates possible attacks sequences using a plan recognition technique,
simulates them on the victim model, and performs pattern matching recognition
between their side effects and log files entries. This technique assumes that attack
activity is logged, which is in contradiction with the fact that complex attack
scenarios may subvert logging daemon and alter logs before hackers leave the
system. [4] used an expert system with a decision tree to search through evi-
dences for potential violations of invariant relationship between digital objects.
The methodology is useful in reducing the amount of data to be analyzed. Nev-
ertheless, it roughly depends on the system time granularity and the degree of
preciseness that the system uses to record time on objects.

This paper extends the work of [5]. First, it brings out a new logic-based
language, entitled S-TLA+. Using a temporal logic of security actions, it offers a
important enhancement of the formal specification language TLA+[6]. S-TLA+

is founded on a logic formalism that let adding forward hypotheses whenever
there is lack of details (information may be corrupted by hackers) to understand
the system. Second, the proposal is completed with an automated verification
tool, called S-TLC, to prove the correctness of S-TLA+ specifications. The tool
is based on the enhancement of the TLC model checker [6, 7]. It is fitted to the
automated diagnosis of digital security incidents.

Our contribution is straightforward. First, the proposed approach is com-
pletely independent from any computer security technology or incident. It al-
lows arguing about sophisticated hacking scenarios as it tolerates potential lack
of details. Second, S-TLA+ takes advantage from the richness of the formal
specification language TLA+ to support advanced description of scenarios and
evidences, namely using temporal modalities.

The remaining of this paper is organized as follows: First, the forensic investi-
gation model is defined in Section 2. Next, Section 3 defines the novel S-TLA logic
and emphasizes on the new concepts and modifications added to TLA. In Section
4, the formal specification language S-TLA+ is defined and demonstrated how
it can be used within forensic investigation. Section 5 presents S-TLC, explains
how it represents states, and describes how hacking scenarios are inferred both
using forward and backward chaining. In Section 6, the proposal is exemplified
by a case study. Finally, the work is concluded in Section 7.

2 The Computer Forensic Investigation Model

Given a set of evidences collected further to the occurrence of a security inci-
dents, the proposal aims to first reconstruct to potential hacking scenarios where

A Temporal Logic-Based Model for Forensic Investigation 327

hypotheses are advanced whenever needed, and secondly, provides any additional
evidences. Alike [8], we consider a hacking scenario as a combination of more
generic and reusable fragments, which are basically described in advance with-
out an a priori knowledge about the whole hacking scenario that is looked for.
Every scenario fragment is depicted by an optional set of hypotheses underlying
the scenario-fragment occurrence, a set of pre-conditions that must be satisfied,
and a set of actions to achieve a sub-goal of the whole scenario objective. The
inclusion of hypotheses is due to the fact that investigation on sophisticated
attack scenarios needs to be tolerant to potential lack of data. The latter is gen-
erated by intruders who want to alter any trace that could prove their identity
or activity.

As the combination of scenario fragments leads to the accumulation of hy-
potheses, care need to be taken from inconsistency introduction. In fact, some
hypotheses are contradictory with each other and could not arise in the same
whole hacking scenario. Moreover as hypotheses are described by a set of rela-
tions between variables and values, two hypotheses using the same variable with
different values might make no sense if grouped together in a scenario.

Figure 1 shows a set of attack scenarios relative to an unauthorized modifi-
cation of access accounts on a remote server. The attack can be achieved after:
1) exploiting a remote vulnerability that grants privileged access; 2) escalating
one’s privilege via local vulnerability exploit, 3) Logging to the system from a
trusted server. The node Log from a trusted server X is composed by a hypoth-
esis stating that a trust relationship is established between servers S and X , a
post-condition stating that the user Usr is being logged to the server X at that
time and an action asserting a telnet connection by the user to the server S .

IP addressprivate key
stole user

action: telnet(Usr,S)
pre−cond: maintain−access(Usr,X)

hyp: trust(X,S)

password
sniff user brute−force

user password
spoof user

unauthorized access
gain to server "X"

remote exploit of vulnarbility
granting privileged access

privilege escalation through
local vulnerability exploit server "X"

log from trusted

remote exploit of a vulnerability
granting unprivileged access

remote login by
user impersonation

Unauthorized gain of root
privilege on server "S"

Fig. 1. Attack scenarios model

3 S-TLA: An Extension to the Temporal Logic of Actions

We provide in the following a Temporal Logic of Security Actions, S-TLA, as
an extension to the Temporal Logic of Actions, TLA. We emphasize only on the
new introduced concepts regarding TLA, as S-TLA embodies TLA and a TLA

328 S. Rekhis and N. Boudriga

specification is indeed an S-TLA specification. TLA was introduced by Leslie
Lamport for the specification of distributed and asynchronous systems [9].

Suppose, for instance, a formal system description that should involve a detail
(value progress) of its n dependent variables, but some of them are unknown.
To overcome such lack of details, it is conceivable to use a formalism that let
enunciate hypotheses whenever needed. As denoted by Figure 2, we want to
make TLA able to describe a system progress from a state s to a state t , further
to the execution of an action A and under a hypothesis HA.

s t
Hypothesis: HA

Action: A
HA

Fig. 2. State transitions under hypotheses

S-TLA Constrained Variables: We introduce a new set of variables, called
constrained variables set VC , to encompass the variables representing hypothe-
ses. Vc is disjoint from sets VF and VR that represent flexible and rigid variables
sets, respectively. Such separation is of great importance since we are looking
during verification phase (c.f. section 5.1) to reach a given system state under
a minimal set of hypotheses. Moreover as a hypothesis, once enunciated, might
affect the system behavior, we assume that a constrained variable, whose value
once set during a system state transition, could not be valued differently after-
wards all through the system behavior.

S-TLA State: As in TLA, a state remains a valuation of all system variables.
Precisely, it is an assignment from the collection Val of values to the set Var =
VF ∪ VR ∪ VC . A state can thus give information on the set of enunciated
hypotheses that let it being reachable from the initial system state.

S-TLA Fictive Value �: As a state is a valuation of all variables, a con-
strained variable should have a value even if there is no enunciated hypothesis
yet. To bridge this gap, a new fictive S-TLA value described by the symbol � is
introduced to represent the value of a constrained variable that up to the moment
was not used to make a hypothesis. Broadly, a state with a constrained variable
whose value is different from � means that there is an enunciated hypothesis to
reach the related state.

S-TLA Assumption Operator ′′: We introduce a new S-TLA operator enti-
tled assumption operator ′′ to denote the value of a constrained variable in the
new state. This operator is different from the TLA prime operator. It changes
the value of a constrained variable only if its value is different from �. We define
assumed and non-assumed variables to refer respectively to new and old state
of constrained variables. In this way, we let VA � {x” | x ∈ VC} be the set of
assumed variables.

A Temporal Logic-Based Model for Forensic Investigation 329

S-TLA Inconsistency: We define an S-TLA inconsistency as a predicate con-
taining constrained variables, constants, and constants operators [9]. Informally,
an inconsistency denotes a combination of hypotheses that must not be observed
inside a system behavior. Semantically it is true or false for a state. If it is true
for a state t , then the system transition on the way to that state should not be
followed. Hereinafter, we denote an S-TLA inconsistency using the symbol ⊥.

S-TLA Action and Hypothesis: An S-TLA action is a conjunct between two
expressions. The former is optional, of type boolean, denotes some hypotheses,
and contains assumed and non-assumed variables. The latter is the old TLA
action containing primed and unprimed variables. Semantically, given an incon-
sistency ⊥, an S-TLA action A is true for a pair of states 〈s , t〉 iff,

– A(∀v ∈ VF : s(v)/v , t(v)/v ′) = true: By replacing each unprimed flexible
variable in action A by s(v); the value of v in state s , and each primed
flexible one by t(v), the boolean resultant expression equals true.

– A(∀v ∈ VC : s(v)/v , t(v)/v ′′) = true: By replacing each non-assumed con-
strained variable v in the action A by s(v) and each assumed constrained
one v ′′ by t(v), the boolean resultant expression equals true.

– ∀v ∈ Vc / s(v) �= � : s(v)/v = t(v)/v : The set of constrained variables
whose values have been stated by a hypothesis (e.g. different from ∇) some-
where before, retain the same value in state s and t .

– ⊥ (t) = false: The predicate ⊥ must not hold in the state t , that is (t �⊥).

S-TLA Specification Formula: We introduce the predicate IsTrueA(⊥) to be
equal true if and only if ⊥ is true further to the execution of action A. We define
NIv(N , ⊥), No Inconsistency on action N as: NIv (N , ⊥) ≡ enabled N ∧
¬IsTrueN (⊥) ⇒ 〈N〉v to states: if action N is enabled and if its execution does
not let inconsistency ⊥ equal true, then action N occurs. We define φ as the
system specification formula that generates an infinite behavior � = 〈s0, s1, s2, ...〉
(denoting the system progression) where no inconsistency ⊥ is holding in any
state si ∈ �. The resultant form is as follows: φ � ∃∃∃∃∃∃ x : Init ∧ �[N]v ∧ L ∧
NIv (N , ⊥). Except the quoted syntactically and semantically modifications, the
remaining TLA notions including Fairness, stuttering, and temporal modalities
are preserved.

4 S-TLA+: A Formal Language for Writing Specifications

We define S-TLA+ as a language for writing specifications in S-TLA, it embodies
TLA+ [6] with some add-ons in the module structure (the lowest granular part
of a TLA+ specification,) and in the constant and non constant operators. TLA+

is the high-level specification language that is based on TLA, and extended by
notations of set theory (Zermelo Fraenkel set theory) and syntactic structur-
ing mechanisms. To describe S-TLA+, we concentrate only on the introduced
modifications as outlined hereinafter:

330 S. Rekhis and N. Boudriga

a) Module-Level constructs: The expression cvariables v1, . . . , vn adds
the declaration of constrained variables, distinguishing them from non-constrained
ones, which remain declarable using variables statement.

b) Non constant S-TLA+ operators: Given a constrained variable h, we
denote by h′′ the value of h in the next state. Moreover, untouched h replaces
the expression h′′ = h

c) Constant S-TLA+ operators: we denote by � a fictive value to rep-
resent the constrained variable value, before a hypothesis is enunciated.

4.1 Standard Form of a S-TLA+ Specification

The first part of Figure 3, [5], illustrates a typical S-TLA+ specification, de-
scribed by module SpecExpl . The specified system is described by formula spec,
while the initial system state is described by predicate Init (no hypotheses are
enunciated as constrained variables g and h are both equal to �). Action A, for
instance, is true for a pair of states 〈s , t〉 if (1) the value that t assigns to x is
1 higher than the value that s affects to x , (2) under the hypothesis g ′′ = 1,
and (3) without t being reached under the hypothesis h′′ = 2 (by the definition
of inconsistency predicate Inc). Finally, the predicate Evd describes a relevant
S-TLA+ system state (a valuation of some system variables) which is of capital
importance especially in fulfilling forensic investigation objectives. Its use will
be demonstrated afterwards in section 4.2.

module SpecExpl
extends Naturals
variables x
cvariables h, g

Init � (x = 0) ∧ (g = �) ∧ (h = �)
A � (g ′′ = 1) ∧ (x ′ = x + 1)∧ untouched h
B � (h ′′ = 2) ∧ (x ′ = x − 1)∧ untouched g
C � (x ′ = x × 3)
Next � A ∨ B ∨ C
Evd � x = 2
Inc � (g = 1) ∧ (h = 2)
Spec � Init ∧�[Next]〈x ,g,h〉∧ni〈x ,g,h〉(Next , Inc)

theorem Spec ⇒ �(x ∈ Nat)

(� |=⊥φ)

⎡⎣ x = 1
g = 1
h = �

⎤⎦ B

⎡⎣ x = 2
g = 1
h = �

⎤⎦

⎡⎣ x = 3
g = 1
h = �

⎤⎦

⎡⎣ x = −1
g = �
h = 2

⎤⎦

⎡⎣ x = 0
g = �
h = �

⎤⎦

A

C

⎡⎣ x = −2
g = �
h = 2

⎤⎦
⎡⎣ x = −3

g = �
h = 2

⎤⎦

B

(� |=⊥φ)A

C

B

A

Fig. 3. Standard form of a S-TLA+ specification and a relative behavior fragment

The second part of Figure 3 describes a fragment from the set of possible
system behaviors relative to formula Spec. For a successive execution of A fol-
lowed by B , two successive hypotheses are generated: g” = 1 followed by h” = 2.

A Temporal Logic-Based Model for Forensic Investigation 331

This is an unacceptable execution as it drives to a state where the S-TLA in-
consistency predicate Inc will be true. Besides, a successive execution of action
A followed by C is legitimate.

4.2 Computer Forensic Investigation Using S-TLA+

A scenario fragment component as modeled in Section 2 matches well the form
of a S-TLA+ action. In fact, pre-conditions, generated hypotheses, and actions
which represent the context of a scenario fragment can be described respectively
by state-predicates, relations between assumed and non-assumed variables, and
relations between primed and unprimed variables.

A digital forensic evidence can take the form of a temporal property (e.g., a
hacked system is issuing every so often an outbound connection to send sniffed
passwords), or an undesirable state of a system component (e.g., an altered file
is a violation of the integrity property). These two forms can be specified in
S-TLA+ using temporal formulas, and state predicates, respectively.

An expected hacking scenario is a disjunction of scenarios fragments (i.e.,
S-TLA+ actions) denoting possible hacking events starting from a state repre-
senting a safe system and ending in a state satisfying the digital evidence(s). The
core S-TLA logic works by infinitely selecting the suitable scenario fragment that
copes with the attained system behavior, such that no inconsistency is holding
and composing it with the previous ones into potential hacking scenarios.

5 S-TLC: A Model Checker for S-TLA+ Specifications

To automate the proof in the context of forensic investigation, we propose S-TLC
as an automated verification tool for S-TLA+ specifications with a stress on the
handling of hypotheses and an improvement in the states space representation.
S-TLC is somehow an extension to the Model Checker TLC[6], which checks S-
TLA+ specifications for errors such as silliness, invariance properties violation,
and deadlock [6–chapter 14]. In the following, we emphasize on the contributions
and changes in S-TLC, namely state computation and scenario inference.

5.1 S-TLC’s States Space Representation

Given two different states that represent respectively a valuation (x = 1) of
the variable x under two possible sets of hypotheses (h = 1 ∧ g = 2) and
(h = 3 ∧ g = 3). Representing a state as a valuation of all its variables (as
in Figure 3) will involve a representation of two different states ((1, 1, 2) and
(1, 3, 3)) in the generated scenarios. We propose a more developed and optimal
representation involving two notions: node core and node label. The core of a node
represents a valuation of the entire non-constrained variables, and the node label
represents the potential sets of hypotheses (a set of hypotheses is a valuation
of the entire constrained variables) under which the node core is reached. The
node label is represented and maintained in a way akin to the one used in the

332 S. Rekhis and N. Boudriga

Assumption Truth Maintenance System (ATMS [10]). Precisely, a node label is
a set of environments and an environment is a set of hypotheses. The previous
example will thus involve only one node represented by 1{(1, 2), (3, 3)} where 1
is the node core, (1, 2) and (3, 3) are both environments, and {(1, 2), (3, 3)} is the
node label. In the following, given a state t , we use tn to denote its corresponding
node core, tc to describe its resulting environment, and Label(G, t) to refer to
its label in graph G.

5.2 Inferring Scenarios with S-TLC

The S-TLC Model Checker is described by Algorithm 1. It employs three data
structures G, UF and UB . The first refers to the reachability directed graph under
construction generated during forward chaining and backward chaining phase.
The last two are FIFO queues, containing states whose successors have not
being yet computed respectively during forward and backward chaining phases.
The algorithm assumes that a configuration file is done as input, it includes
statements denoting that Init is the initial state predicate, Next is the next state
relation, Invariant is a state-predicate to be satisfied by each reachable state,
and Inc is the predicate to be equal false for all states of the system behavior,
it represents the the set of S-TLA inconsistencies. Moreover, the specification is
supposed to be made finite-state. To that effect the configuration file is presumed
to include statements stating that Constraint is a predicate that asserts bounds
on the set of reachable states, and EvidenceState is a predicate characteristic of
a terminal state representing forensic evidences.

To append a node to the graph under construction, the algorithm uses func-
tion Append(G, t , t � s) to add a node t to graph G with a pointer to its
predecessor state s . Besides, a state s is attached to a FIFO queue U using the
function Append(U , s) and detached using the function Tail(U). Moreover, a
node t is joined to an existing node s inside the graph G using the function
Join(G, t � s). S-TLC works in three phases:

Initialization Phase: G, as well as UF and UB are created and initialized
respectively to empty set ∅ and empty sequence 〈〉. During this step, each state
satisfying the initial system predicate is computed and then checked whether
it satisfies predicate Invariant . In that case, it will be appended to G after
computing its label, and pointing it to the null state. If the state does not
satisfy EvidenceState, it will be attached to the unseen queue UF , otherwise,
it will be considered as a terminal state and appended to UB in order to be
retrieved in backward chaining phase.

Forward Chaining Phase: During this phase, the algorithm starts with UF

equal to the set of initial system states. Afterwards and until the queue becomes
empty, state s (representing the tail of UF) is retrieved and its successor states are
computed. From the latter, for every state (denoted by t) satisfying Constraint ,
if Invariant is not satisfied, an error is generated and the algorithm terminates,
otherwise t is appended to G as follows:

A Temporal Logic-Based Model for Forensic Investigation 333

– If tn does not exist in G, it is appended as a new node with a label equal
to tc and a predecessor equal to sn . Then, t is appended to UB if it satisfies
EvidenceState, otherwise it is attached to UF .

– If there exists a node x in G which is the same as tn and whose label includes
tc, then a conclusion could be made stating that t has been added previously
to G. In that case, a pointer is simply added from x to sn .

– If there exists a node x in G that is the same as tn , but whose label does not
include tc, then the node label is updated in the following manner:
1. tc is added to Label(G, x).
2. Any environment from Label(G, x), which is a superset of some other

environment in this label, is deleted to ensure hypotheses minimality.
Formally, an environment E1 is a superset of E2 in the same environment
iff: E1(x) = E2(x) ∨ E2(x) = ∇, where E (x) represents the x th value in
E . An environment (8, 1, 3) is for instance a superset of (∇, 1, 3).

3. If tc is still contained in the label of state x (meaning that it was not
deleted in step (2)) then node x is pointed to sn and node t is appended
to UB if it satisfies EvidenceState. Otherwise, it is attached to UF .

Every node label is provided with the following four properties: 1) Soundness:
a node x holds each environment Ei ; 2) Consistency: None environment Ei in
Label(G, x) is inconsistent, preventing Inc from holding; 3) Completeness: every
environment E is a superset of some Ei ; and 4) Minimality: no environment Ei
is a proper subset of any other.

Forward chaining may generate many slices of global attacks scenarios, a
great majority of them are useless due to further occurrence of inconsistencies or
because they do not lead to evidence generation. Nevertheless, this may generate
additional source of evidences and show the propagation steps of the attack.

Backward Chaining Phase: This phase helps obtaining potential and addi-
tional scenarios that could be the root causes for the set of available evidences.
This phase starts with UB holding the set of terminal states; the ones that sat-
isfied EvidenceState in forward chaining phase. Afterwards, and until the queue
becomes empty, the tail of UB , described by t , is retrieved and its predecessor
states (the set of states si such that (si , t) satisfies action Next) which are not
terminal states and satisfy Invariant (States that do not satisfy Invariant are
discarded because this phase does not aim to check whether a specification is
correct or not but simply to generate additional explanations) and Constraint
are computed. Each computed s is appended to G as follows:

– If sn does not exist in G, a new node (set to sn) is appended to the graph
with a label equal to sc . Afterwards, a pointer is added from tn to sn and s
is appended to UB .

– If there exists a node x in G which is the same as sn , and whose label includes
sc , then s was added previously to G. In that case a pointer is simply added
from tn to sn and s is appended to UB .

– If there exists a node x in G which is the same as sn , but whose label does
not include sc , then the node label of x is updated in the following manner:

334 S. Rekhis and N. Boudriga

1. The environment sc is added to Label(G, x), the label of state x .
2. Any environment from Label(G, x) which is a superset of some other

environments in this label is deleted to ensure hypotheses minimality.
3. If sc is still contained in the label of x then t is pointed to the predecessor

state x and s is appended to UB .

The outcome of the three phases is a graph G of the potential scenarios that
lead to the collected evidences. It embodies different initial system states apart
from the ones described by the specification. In fact, in the context of forensic
investigation, an attack scenario could start from a legitimate system state, as
well as from a previous system incident or instability.

6 Case Study

To make concrete the use of S-TLA+ and S-TLC in digital forensic investigation,
we propose this case study which is an investigation of a standalone (discon-
nected from network) system that is compromised, where an illegal privileged
access is detected. The system ran initially with two users accounts: a root and
an unprivileged user. A straightforward examination by experts shows that the
system security log is altered. The latter no longer contains more than a single
unexpected record showing that the system root has closed its session.

6.1 S-TLA+ Specification Description

The following set of S-TLA+ actions is specified to represent hacking scenarios
fragments. For the sake of readability, we ignore the fragments that will not be
part of the whole expected scenarios.

– LogAsUsr : Using the hypothesis stating that the user password is a well-
known word, an intruder guesses the password and gains access to the system,
raising its privilege localpr from 0 to 1. Moreover, the pair 〈“usr”, “logon”〉
is appended to the sequence log to log such event. Note that 0 means there
is no granted access, while 1 lets a user execute any non administrative
command. Finally, 2 refers to the root privilege.

LogAsUsr Δ= ∧ userhas ′′ = “weakpwd”∧ localpr = 0 ∧ localpr ′ = 1
∧ log ′ = Append(log, 〈“usr”, “logon”〉)

– InstSoft : A user who gained an unprivileged access can install its own soft-
ware, particularly, a vulnerability exploit tool.

InstSoft Δ= localpr = 1 ∧ addsft = “” ∧ addsft ′ = “exploit”

– ExpLclVuln: Hypothesizing that there is a vulnerability in one of the installed
super-user commands that could grant a privileged access, if exploited, the
current user exploits such vulnerability and rises its privilege from 1 to 2.
The system kernel updates sequence log in order to log the event.

ExpLclVuln Δ= ∧ roothas ′′ = “vulnbin” ∧ localpr = 1 ∧ addsft = “exploit”
∧ localpr ′ = 2 ∧ log ′ = Append(log, 〈“root”, “logon”〉)

A Temporal Logic-Based Model for Forensic Investigation 335

Algorithm 1. S-TLC algorithm

Comment: Initialization phase
G ← Ø, UF ← 〈〉 , UB ← 〈〉
S ← {si | si � Init}
For each s ∈ S

do

⎧⎨⎩
if s � Invariant then error , break

if s � Constraint then

{
Append(G, sn , s � null), Label(G, sn) ← sc
if s � EvidenceState thenAppend(UB , s) elseAppend(UF , s)

Comment: Forward chaining phase
While UF �= 〈〉

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ← tail(UF)
T ← {ti | ((s, ti) satisfies the S-TLA+ action Next) ∧ t � Constraint}
Foreach t ∈ T

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if t � Invariant then error , break
if� x ∈ G / tn = x

then

{
Append(G, tn , tn � sn), Label(G, tn) ← tc
if t � EvidenceState then Append(UB , t) elseAppend(UF , t)

if (∃ x ∈ G / tn = x) and tc ⊆ Label(G, x) then Join(G, x � sn)
if (∃ x ∈ G / tn = x) and tc � Label(G, x)

then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Label(G, x) ← Label(G, x) ∪ tc
Delete any superset of hypotheses from Label(G, x)
if tc ∈ Label(G, x)

then

{
Join(G, tn � sn)
if t � EvidenceState thenAppend(UB , t) elseAppend(UF , t)

Comment: Backward chaining phase
While UB �= 〈〉

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ← tail(UB)
S ← {si | ((si , t) satisfies the S-TLA+ action Next) ∧ (si � Invariant , Constraint)

∧(s � EvidenceState)}
Foreach s ∈ S

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if� x ∈ G / sn = x

then

⎧⎨⎩
Append(G, sn , tn � sn)
Label(G, sn) ← sc
Append(UB , s)

if (∃ x ∈ G / sn = x) and sc ⊆ Label(G, x) then

{
Join(G, x � sn)
Append(UB , s)

if (∃ x ∈ G / sn = x) and sc � Label(G, x)

then

⎧⎨⎩
Label(G, x) ← Label(G, x) ∪ sc
Delete any superset of hypotheses from Label(G, x)
if sc ∈ Label(G, x) then Join(G, tn � sn),Append(UB , s)

– OfflBrForce: Hypothesizing that the algorithm used to hash the account’s
passwords is weak, a user reads the file containing the password hashes and
brute-forces the root password off-line (outside the current system). It suc-
ceeds thus in escalating its privilege.
OffBrforce Δ= ∧ roothas ′′ = “pwdhashcomp”∧ localpr = 1 ∧ localpr ′ = 2

∧ log ′ = Append(log, 〈“root”, “logon”〉)

336 S. Rekhis and N. Boudriga

– ChangeID : Hypothesizing that the root password is equal to the user’s, the
user changes its identity to the root by providing the correct password. Con-
sequently, its privilege rises from 1 to 2, and the event is logged.

ChangeID Δ= ∧ roothas ′′ = “pwdequser”∧ localpr = 1 ∧ localpr ′ = 2
∧ log ′ = Append(log, 〈“root”, “logon”〉)

– ExtSoft : Given a software installed on the system for security auditing pur-
pose, the user copies one binary command from those that come with it to
be used maliciously as an exploit tool.

ExtSoft Δ= localpr = 1 ∧ addsft = “audittool”∧ addsft ′ = “exploit”

– CleanLog: A privileged user can clean the log file content.

ClaenLog Δ= localpr = 2 ∧ log �= 〈〉 ∧ log ′ = 〈〉
– DelSoft : A privileged user can delete the whole tools unexpectedly installed.

delSoft Δ= localpr = 2 ∧ addsft �= “” ∧ addsft ′ = “”

– Exit : The user logs off, its privilege goes down to 0 and the event is logged.

Exit Δ= localpr = ∧ localpr ′ = 0 ∧ log ′ = Append(log, 〈“root”, “logoff”〉)
Inconsistency defined as: userhas = ”weakpwd”∧ roothas = ”pwdequser”, states
that a system state should not be reached under a conjunct of the following two
hypotheses: a) the user password is a well-known word and b) the root password
is equal to the user one. In fact, the forensic investigator is sure that the root
password fulfills a strong password policy. The available evidence is described by
predicate EvidenceState Δ= Head(log) = 〈”root”, ”logoff ”〉, which states that
the finite sequence log encloses only one record equal to 〈“root”, “logoff ”〉.

The system under investigation is specified by a S-TLA+ formula Spec simi-
larly to the form described in section 4.1, where Init describes the initial system
state (empty log file, no unexpected tool installed, no granted access).
Init Δ= localpr = 0 ∧ log = 〈〉 ∧ addsft = “” ∧ userhas = ∇∧ roothas = ∇

6.2 Investigation Using S-TLC

Figure 4 describes the results generated by S-TLC until the forward chaining
phase. It outlines two different system states (the ones which are encircled)
satisfying predicate EvidenceState, where one of them shows a new generated
evidence as an exploit tool installed by the malicious user to exploit a local
vulnerability. These two evidences can be generated under two possible set of
hypotheses: 1) the user password is weak and one of the installed system com-
mands contains a vulnerability that grants a privileged access; and 2) the user
password and the password hashing algorithm are both weak. Two main possible
scenarios may be distinguished in this phase:

1. An intruder guesses the weak user password and gains an unprivileged access.
Afterwards, it exploits a weakness in the password hashing algorithm and

A Temporal Logic-Based Model for Forensic Investigation 337

(1, 〈〈“usr”, “logon”〉〉, “exploit”) {(“weakpwd”, ∇)}

LogAsUsr

(1, 〈〈“usr”, “logon”〉〉, “”) {(“weakpwd”, ∇)}

(0, 〈 〉, “”) {(“weakpwd”, ∇)}

Instsoft

OffBrForce

Exit

Exit

CleanLog

ExpLclVuln

DelSoft

(2, 〈〈“root”, “logoff ”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〈“root”, “logoff ”〉〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}

(2, 〈〈“usr”, “logon”〉〈“root”, “logon”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}CleanLog

(2, 〈〈“usr”, “logon”〉〈“root”, “logoff ”〉〉, “”) {(“weakpwd”, “pwdhashcomp”)}

Fig. 4. Scenarios generated in forward chaining phase

(2, 〈〈“root”, “logoff ”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(1, 〈〈“usr”, “logon”〉〉, “audittool”) {(“weakpwd”, ∇)}

(1, 〈〈“usr”, “logon”〉〉, “exploit”) {(“weakpwd”, ∇)}

(0, 〈 〉, “audittool”) {(“weakpwd”, ∇)}

(2, 〈〈“usr”, “logon”〉〈“root”, “logon”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〉, “exploit”) {(“weakpwd”, “vulbin”)}

ExtSoft

ExpLclVuln

CleanLog

Exit

LogAsUsr

Exit

DelSoft

(2, 〈〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}

(2, 〈〈“root”, “logoff ”〉〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}

Fig. 5. Scenarios generated in backward chaining phase

succeeds in escalating its privilege by performing an offline brute-force of
the root password. It cleans its logged activity and logs off from the system.
Fortunately, the latter activity is logged.

2. An intruder guesses a weak user password and logs in to the system, gaining
an unprivileged access. After that, it installs a malicious tool and exploits
a vulnerability in one of the installed super-user commands, obtaining thus
a privileged access. Before cleaning the log file and leaving the system, the
intruder either deletes its installed tool or leaves such kind of evidence.

The generated scenario prevents inconsistency from occurring. In fact, action
ChangeID does not belong to the scenario since it contains a hypothesis that is
inconsistent with the one occurring in LogAsUsr according to the definition of
predicate Inconsistency. The graph of Figure 5 is the graph generated after the
execution of forward and backward chaining phases. For readability reasons, it

338 S. Rekhis and N. Boudriga

shows only the new generated scenarios compared to the ones of Figure 4. Mainly,
a new scenario is added. It strongly resembles to the second one generated in
forward chaining phase, except that the system is initially housing a security
auditing software and the hacker is using one of the commands that come with
such software as an exploit tool, instead of installing its own one.

7 Conclusion

We proposed in this paper a novel formal logic-based language entitled S-TLA+

to achieve a tremendous aspect in digital forensic investigation: the reconstruc-
tion of potential hacking scenarios and the providing of new evidences that could
complement the available ones. S-TLA+ uses a formalism that allows handling
hypotheses whenever there is a lack of details to demonstrate some part of an
attack scenario. We have also described S-TLC as a new automated formal verifi-
cation tool that is able to handle S-TLA+ specifications. Its main advantage lies
in its robustness in managing hypotheses and representing states. Considering
implementing and testing this tool represents a continuation of this work.

References

1. Kruse, W.G., Heiser, J.G.: Computer Forensics: Incident Response Essentials.
Pearson Education (2001)

2. Stephenson, P.: Modeling of post-incident root cause analysis. International Journal
of Digital Evidence, Vol. 2, No. 2 (2003)

3. Elsaesser, C., Tanner, M.C.: Automated diagnosis for computer forensics. tech.
rep., The MITRE Corporation (2001)

4. Stallard, T., Levitt, K.: Automated analysis for digital forensic science: Semantic
integrity checking. Proceedings of the 19th Annual Computer Security Applications
Conference (2003)

5. Rekhis, S., Boudriga, N.: A Formal Logic-based Language and an Automated Ver-
ification Tool For Computer Forensic Investigation. Proceedings of the 20th ACM
Symposium on Applied Computing (SAC 2005) (2005)

6. Lamport, L.: Specifying Systems: The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002)

7. Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. Conference
on Correct Hardware Design and Verification Methods (1999) 54–66

8. Keppens, J., Zeleznikow, J.: A model based reasoning approach for generating
plausible crime scenarios from evidence. Proceedings of the 9th International Con-
ference on Artificial Intelligence and Law (2003)

9. Lamport, L.: The temporal logic of actions. ACM Transactions on Programming
Languages and Systems, Vol. 16 (1994) 872–923

10. de Kleer, J.: An assumption-based TMS. Artificial Intelligence, Vol. 28, No. 2
(1986) 127–162

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 339 – 351, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Vulnerabilities Detection in the Configurations
of MS Windows Operating System

Peter D. Zegzhda, Dmitry P. Zegzhda, and Maxim O. Kalinin

Information Security Centre of Saint-Petersburg Polytechnical University,
P.O. Box 290, K-273, Saint-Petersburg, 195251, Russia
{zeg, dmitry, max}@ssl.stu.neva.ru

Abstract. This paper addresses to the technique of the vulnerabilities detection.
The proposed methodology is applicable to verify property of the operating
system configurations safety. Using our technique it becomes possible to
discover security drawbacks in any secure system based on access control
model of 'state machine' style. We discuss the Vulnerability Criteria Processing
Unit, the automated detection tool, working in MS Windows and calculating the
set of vulnerable settings. Through our case study of model checking in Sample
Vulnerability Checking (SVC), we show how the proposed technique is applied
to verify system security.

1 Introduction

The most important aspect of the computer system is secrecy of information stored in
a system. A secrecy violation was defined in [1] as "an unauthorized person is able to
read or take advantage of information stored in the computer". Reasons of poor data
protection are concealed at abundant errors that expose during system designing,
coding, and administrating. The well-known lacks of security are those of
programming origin, but they are successfully resolved with regular patches and
service packs. At the same time, sophisticated analyses of the operating systems made
by the world-renowned organizations, e.g. CERT or Secunia, testify to the 20 percents
of vulnerabilities caused by incorrect security configuring and adjustment arranged by
users or administrators. We consider errors made at the time of security
administrating as reasons of operating system configuration vulnerabilities (OSCV).

The OSCVs take place after:

• ignoring the security requirements, published by vendors or security experts;
• setting the different security adjustments that implicitly may conflict with each

other or alternate other settings;
• keeping the security settings that may contradict to the company security policy.

The most typical examples of the OSCVs are using of default system security
configuration, accidental folder permissions for the system files, and software
installation to the default paths. For instance, in MS Windows 2000, if there is a
shared folder created by administrator, the system grants 'Full Access' to new object
for 'Everyone'. If administrator is a novice in security, she or he could miss such fault

340 P.D. Zegzhda, D.P. Zegzhda, and M.O. Kalinin

and others could access to somebody's private files. Another example is that
Dr.Watson, the built-in debugger in MS Windows, starts every time after system fault
and creates the dump file C:\Winnt\user.dmp. Now imagine that OE falls down and
Dr.Watson makes the dump. The dump corresponding to OE includes all mail
accounts and passwords as plain text. Besides this, the NT file system (NTFS) creates
a new file with default properties (with default access permissions among them) taken
from the parent folder, e.g. C:\Winnt, and 'Everyone' thus has 'Full Control' over the
dump file and consequently all private email passwords saved in the file. The Linux-
style operating systems obtain the OSCVs of the same sort, e.g. they have a SUID-
programs problem. Such mistakes in configuration of protection environment reduce
every solid and well-engineered security to 'zero'.

To eliminate the OSCVs, administrator has to know and observe all of the system
details on-the-fly, analyze the security bulletins and vulnerability reports, and apply
the security reconfiguring operatively. Therefore, administrator needs to be in good
knowledge of the system inside and control a countless number of the system
securable objects. For instance, we can estimate a great many of the objects of
security interest in the wide-spread MS Windows operating system. There are 36
types of the MS Windows entities that are used with access differentiation. Among
them there are 9 entities of user level (e.g. group accounts, NTFS objects, system
registry), and 27 kernel-level objects (e.g. jobs, processes, threads, objects of
synchronization). Each object in MS Windows refers to the discretionary access
control mechanism — the access control list (ACL). Every entry of ACL is a 32-bit
access mask that provides the access rights. Users and groups obtain up to 37
privileges that allow control of their behavior in the system. What is more, 38 local
security settings specify the computer-native security policy. Thus, even in the
isolated station, a number of security setting combinations exceeds tens of millions.
For administrator, it is an impracticable task to detect OSCVs in such a complex
system as MS Windows. She or he could make a very hard work of analyzing and
monitoring the security settings in 'step-by-step' mode for 'one-by-one' security
setting, but it will take enormously long period. Consequently, to solve a task of
security faultlessness in the operating system, we need a special facility for the
system's vulnerability detection.

This paper discusses the theory and technique of the OSCVs detection in the secure
operating systems. This paper is structured as follows. Section 2 reviews the related
works in security flaws detection conformably to the MS Windows safety. Section 3
introduces our approach applied to the vulnerabilities searching. Section 4 gives a
brief review of our solution to search the OSCVs. Here we also explain an example of
logical specification and OSCVs detection for Sample Vulnerability Checking (SVC)
in MS Windows. Finally, section 5 discusses conclusion of our work.

2 The Related Works

Most of the other works on security assurance in the computer systems relates to the
evaluation of the system safety. CSP [2] is an example which allows a security of the
fixed number of the system processes to be specified and evaluated. Each process is
identified with a security label, and the system security is evaluated in a field of these

 Vulnerabilities Detection in the Configurations of MS Windows Operating System 341

labels. The security calculus is provided with a technique of a parallel programming
language. This approach is useful for the vulnerabilities searching in the flow-related
computer systems: network transactions [3], client-server communications.

In [3], there is presented the UML-based approach for the automated verification of
the security requirements. They have demonstrated a conception of the verification
routines for security constraints associated with the stereotypes of the UML security
extension UMLsec [4]. To do so, the analysis routine extracts information from
different diagram types (class, deployment, and statechart diagrams) that may contain
specific security-related information. The system requirements can be formulated at
the level of the system's security model. But for this work we need to obtain the
UMLsec diagram. Unfortunately, it cannot be obviously built for MS Windows. To
do this, we would have a need for special tool, which will automatically compose the
UML-diagram for a huge number of MS Windows objects. Other ways, the UML-
based approach could not be a reliable and efficient way to check the security
vulnerabilities.

A group at Carnegie Mellon developed a security specification and checking
system called Miro [6]. The Miro system consists of two languages and a collection of
software tools. One specification language is for protection configurations and the
other is for security policies. It is a general system, but the Miro system was
accomplished for the UNIX operating system [7]. The UNIX-style systems are mostly
the open source ones, they operate with a limit number of the objects to be protected.
To investigate the UNIX security thus needs little mind and time expenses.

We have also observed characteristics of the MS Windows-oriented vulnerabilities
detectors (Enterprise Security Manager, Symantec Corp.; Intrusion SecurityAnalyst,
Intrusion Inc.; NetIQ Security Analyzer, NetIQ Inc.; XSpider, Positive Technologies;
Microsoft Baseline Security Analyzer, Microsoft Corp., etc). After analyzes, we have
made some conclusions (it is notable, that the following remarks are independent of
developer's name and product version):

• no solution investigates the system inside. For example, the known products have
an eye on the well-known file paths or the security-critical folders. No one looks at
security of the kernel mode objects;

• no product allows composing the detection criteria. For example, the analyzed
solutions use either the predefined checks or the scripts of the check sequence;

• no detector predicts an effect of the security settings upon the reachable states of
the system.

Therefore, to our knowledge, the general problem of evaluation of security
enforcement including weakness detection in such a complex operating systems as
MS Windows has never been addressed by any author.

3 Vulnerabilities Detection

According to the fundamentals of computer system modeling, we look at the safety of
the system through the safety of the system states. The state is characterized with the
security configuration, which could (or not) contain the OSCV. To detect the OSCV
in the state we need to analyze the security configuration corresponding to the given

342 P.D. Zegzhda, D.P. Zegzhda, and M.O. Kalinin

state. We consider the security configuration of the given state as a complex of
subjects (the active system entities, e.g. users), objects (passive containers of
information, that need a protection, e.g. files), and their security attributes (e.g. access
rights). We add to this schema the term of constraints like a set of access restrictions
given for the 'subject-object-attributes' triple. We call the system to be safe in the
given state, i.e. "something bad never happens in the given state". In other words,
there is no critical OSCV in the given state. In real-life systems, the constraints are
imposed upon the system state through the scope of the system-related security
configuration. Breaking the security configuration produces the OSCV. Criteria, that
help us to delimit the secure and insecure states for the OSCVs checking, we will call
as OSCV-criteria.

If security system has a problem in its security configuration, it means that the
OSCV exists and secret information is leaked by unauthorized access. Assurance that
system exploitation or the administrator's behavior does not result in the unauthorized
access is fundamental for ensuring the system security. An important feature of an
access control in the operating system is an ability to verify the correctness of security
configuration. If the security configuration is set properly, then there is no OSCV in
the system, and the system is thus secure in terms of the given vulnerabilities.

As we see, the OSCVs detection may be accomplished as checking of the security
requirements fulfillment or, in opposite side, as checking of the definite insecure
settings. Consequently, the criteria could be formulated either in terms of positive
(required or "desirable") situation, or in form of negative (denied or "undesirable")
situation. Verbally, in case of positive statement, the criterion specification starts with
the words: "System is secure, if ... [security requirements that need to be in the
system] ... ". In case of negative criteria, the specification of criterion starts with
"System is vulnerable, if ... [vulnerability conditions that need not to be in the
system] ... ".

To make the OSCVs detection a comfortable routine we need both specifications,
because transformation from one mode to another is obvious mathematically but not
trivial for complex computer systems. Let us demonstrate the example of 'negative-to-
positive' transformation hardness. We have the following OSCV-criterion: "System is
vulnerable, if user U obtains right "w" for file F" (fig. 1). We mathematically could
use just a positive specification instead of both modes. To do this, we ought to
transform negative description of OSCV to positive one. Thus, we need to specify
four different positive situations.

The theory of security supplies us with the following basics of OSCVs detection.
Rall defines a set of all possible access rights that the user can obtain for the given

type of securable object. RPA denotes the "required" access rights, that user should
have. If she or he has the "required" rights, the system will be thus secure. RPD is a set
of the "denied" rights, i.e. the access rights that should be forbidden to user. If those
rights are banned to user, the system is considered to be secure. To take into account
the system security settings, we need to introduce the set RS, the number of access
rights, range of which is allowed by the system security settings, RS ⊆ Rall.

Rexcess denotes the "excess" rights, i.e. a subset of rights which are not "necessary"
but allowed by the security settings; and Rmiss marks the "missed" rights, i.e. a subset
of rights which are not enough for user to obtain all of the system-defined rights.

 Vulnerabilities Detection in the Configurations of MS Windows Operating System 343

Rights mask R
bits r w x

Negative specification (spec. of OSCV):

• bit "w" is set

Positive specification (spec. of security requirement):

• bit "r" is set;
• bit "x" is set;
• bits "rx" are set;
• ∅ — no bits are set

Fig. 1. Criteria Enhancement in Specification Transformation

For positive specification of OSCV-criteria, we have declared three conditions of
the system security.

Condition P1. Positive Equity. System is secure (according to the given
criterion), if the set RS of the system-provided rights coincides with the set RPA of the
"required" rights, RS=RPA (fig. 2).

Condition P2. Positive Secrecy. System is secure (according to the given
criterion), if the set RS of the system-provided rights not exceeds the set RPA of the
"required" rights, RS ⊆ RPA (fig. 3).

Condition P3. Positive Availability. System is secure (according to the given
criterion), if the system allows the user to obtain all of the "required" access rights,
RPA ⊆ RS (fig. 4).

To detect the OSCV in positive case, we need to make the following calculus.

Test P1. Rexcess = RS – RPA. If Rexcess ∅, the system is vulnerable, because the
current security configuration allows the user to hold the unauthorized access rights
(fig. 5).

Test P2. Rmiss = RPA – RS. If Rmiss ∅, the system is vulnerable, because the current
security configuration denies the user to possess the required access rights (fig. 5).

To explain the reasons of OSCV given in the form of 'Positive Equity', we need to
make both tests. Thus, we will define inconsistency between the access rights
completely. To check the 'Positive Secrecy', we need to make the Test P1. And to
make 'Positive Availability', we need to accomplish the Test P2.

If Rexcess is not empty, we can conclude that the system is vulnerable, because the
system presents the user rights from Rexcess. If Rmiss is not empty, we can also show the
vulnerable rights, because the user has no the required rights from Rmiss.

344 P.D. Zegzhda, D.P. Zegzhda, and M.O. Kalinin

Rall

RS = RPA

Fig. 2. Condition P1

Rall

RPA
RS

Fig. 3. Condition P2

Rall

RS

RPA

Fig. 4. Condition P3

Rall

RPA
RS

Rexcess = RS - RPA

Rmiss = RPA - RS

Fig. 5. Vulnerability Tests in Positive Mode

For negative specification of OSCV-criteria, we have declared another three
conditions of the system security.

Condition N1. Negative Equity. System is vulnerable (according to the given
criterion), if the set RS of the system-provided rights coincides with the set RPD of the
"denied" rights, RS=RPD (fig. 6).

Condition N2. Negative Secrecy. System is vulnerable (according to the given
criterion), if the set RS of the system-provided rights is not less than the set RPD of the
"denied" rights, RPD ⊆ RS (fig. 7).

Condition N3. Negative Availability. System is vulnerable (according to the
given criterion), if the system allows the user to obtain no more than the "denied"
access rights, RS ⊆ RPD (fig. 8).

To detect the OSCV in negative case, we need to make the following calculus.

Test N1. RPD ⊆ RS. In this case Rexcess = RPD. The system is vulnerable, for the
current configuration does not denies the "denied" access rights (fig. 9).

Test N2. RS ⊆ RPD. We have Rmiss = Rall – RPD. If Rmiss ∅, the system is
vulnerable, because the current security configuration does not allow to the user no
one right from the set of the "required" access rights (fig. 9).

 Vulnerabilities Detection in the Configurations of MS Windows Operating System 345

Rall

RS = RPD

Fig. 6. Condition N1

Rall

RS

RPD

Fig. 7. Condition N2

Rall

RPD

RS

Fig. 8. Condition N3

 Rall

RS

RPD
Rexcess = RPD

 Rall

RPD

RS

Rmiss = Rall - RPD

Fig. 9. Vulnerability Tests in Negative Specification

As in positive case, here we need both tests when we check the 'Equity' condition.
To check the 'Negative Secrecy' we need only Test N1. And we need to provide the
Test N2 to check the 'Negative Availability'.

The above mentioned conditions and tests can be successfully extended to support
users operations, because of granular nature of the sets to be compared.

Therefore, in positive case of OSCV detection, as well as in negative mode, we
need to fulfill the following flowchart:

• parsing the criteria format specifications,
• comparing the sets of the security configurations (according to Conditions above),
• analyzing the results of the sets comparison (according to Tests above).

To make this algorithm a mechanical procedure, we have designed and built a
vulnerability detection tool — the Vulnerability Criteria Processing Unit (VCPU).

4 The Criteria Calculus Procedure

Formal approaches are not intuitive. We do map our technique onto executive
implementation. To automate the OSCVs detection according to the technique
mentioned above, we have developed the Vulnerability Criteria Processing Unit
(VCPU). This utility is a calculus facility for the Safety Problem Resolver, the part of
the Safety Evaluation Workshop (SEW). Original conception of the SEW was
presented in [8], and the current paper discloses the theoretical basis of the SEW's
core component.

346 P.D. Zegzhda, D.P. Zegzhda, and M.O. Kalinin

For its work VCPU uses:

• Safety Problem Specification Language (SPSL): allows to specify the system state,
the access control rules, and the OSCV-criteria, and thus to obtain the formal
model of the evaluated system for further resolving;

• Scopes:
− Model-related System Security State Scope (M3S-scope): specifies the system

security state in SPSL. For example, the scope for MS Windows 2000 contains
the predicates describing all of the securable objects and their attributes, e.g.
users, files, processes, ACLs, owners, hierarchy, memberships, etc. This scope
is generated automatically with the Security Analyzer, the part of the SEW;

− Access Control Rules Scope (ACR-scope): specifies the access control rules in
SPSL. For example, in MS Windows 2000, this scope contains the rules that
regulate the access control to the securable objects and that are realized in the
system reference monitor (e.g. MS Windows SRM). Rules have a form of
Prolog clauses and allow the state transactions resolving and computing of the
authorized accesses for any user;

− State Security Criteria Scope (SSC-scope): expresses the OSCV-criteria in
SPSL. For example, in MS Windows 2000, this scope allows users to set
checking of the Microsoft security requirements or the firm security policy. To
construct this scope we use the Criteria Manager, the part of the SEW facility.

For easy understanding of security specification for the VCPU and OSCVs
detection technique, we show a Sample Vulnerability Checking (SVC) applied in MS
Windows 2000 Professional.

Like on office workstation, our sample computer has the MS Office installed. All
of the MS Word templates of the user documents are located in the given folder, e.g.
C:\Documents and Settings\Administrator\Application Data\Microsoft\Templates.
Now let's imagine the situation when user named 'Administrator' shares her template
with other users. To do it, she grants the access to read and write the template for the
MS Windows built-in group named 'Users'. If the violator, the member of the 'Users'
group changes the Normal.dot template file in the given folder so it contains the
malicious code (e.g. macro-virus). Thus, all new documents of Administrator will be
infected. This is a sample of the OSCV: user has ignored or forgotten the
recommendations to protect the MS Word templates.

Like in any theoretical security model, our security states are the collections of all
entities of the system (subjects, objects) and their security attributes (e.g. ACLs). In
our example, we assume that a target of OSCV-criteria is a C:\Documents and
Settings\Administrator\Application Data\Microsoft\Templates folder. The system
security states may be presented as the M3S-scope.

We have used the State Analyzer component of the SEW [8] to specify the SVC's
security state. The following code example shows the M3S-scope for SVC.

..........[abbreviation]........

subj('s-1-5-21-73586283-484763869-854245398-500',

[type(user),name('administrator'),

 Vulnerabilities Detection in the Configurations of MS Windows Operating System 347

privileges([security,...,remoteinteractivelogon]),

groups(['s-1-5-32-544'])]).

..........[abbreviation]........

subj('s-1-5-32-545',

[type(group),name(['users']),

privileges([shutdown,...,networklogon])]).

..........[abbreviation]........

obj('c:\\documents and settings\\user\\application
data\\microsoft\\templates\\normal.dot',

[type(file),

owner(['s-1-5-21-73586283-484763869-854245398-
500']),inheritance(yes)],

[['s-1-5-21-73586283-484763869-854245398-
500',tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]],

['s-1-5-18',tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]],

['s-1-5-32-544',

tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]],

['s-1-5-32-545',tnn,[0,1]]]).

..........[abbreviation]........

We use the logic Prolog-style predicates to specify the state. This sample state
specifies three entities: two subjects (one user with one group) and one object (the
template file). Every entity is specified in the SPSL format. Each predicate declares
the security attributes of the corresponding unit. For example, user 'Administrator'
owns SID equal to S-1-5-21-73586283-484763869-854245398-500, some system
privileges, and membership in the 'Administrators' group. The second predicate
specifies the group named 'Users', which is characterized with some system privileges
only. The third expression declares the object, the template file C:\Documents and
Settings\Administrator\Application Data\Microsoft\Templates, which is a goal of
vulnerability evaluation. The attributes of this file are: the owner SID, inheritance
flag, and the object's ACL. Each ACL is a set of access control entities, presented in
the form of "SID – 'rights delegation' – 'access bits' ".

In the same manner, using the State Analyzer, we can gather all of the system
objects of the user mode as well as of the kernel mode. For example, the following
predicate specifies the COM-object and its security configuration:

obj('tlntsvr.exe',

[type(com), owner(['s-1-5-32-544']),

348 P.D. Zegzhda, D.P. Zegzhda, and M.O. Kalinin

appID(['{b8c54a54-355e-11d3-83eb-00a0c92a2f2d}'])],

[['s-1-5-32-544',tnn,[0]],['s-1-5-4',tnn,[0]],

['s-1-5-18',tnn,[0]],

['s-1-5-18',tnn,[1]]]).

Access control rules express the restrictions on a system behavior. The system

states transformation is able after the access authorized in kernel mode within the
security subsystem of MS Windows by the system's reference monitor (access control
mechanism). Using an object’s ACL, it compares information about the client and the
information about the object to determine whether the user has the desired access
rights (for example, read/write permission) to that object (for example, a file).
Depending on the outcome of this comparison, the security service will respond to the
client, either serving the object or returning an access-denied failure.

To embody this mechanism, we have investigated the MS Windows inside (e.g.
using the gray-box testing strategy) and looked through innumerous Microsoft Press.
It made us able to re-compose the MS Windows protection subsystem in the form of
logical clauses.

Such specification can be called as the ACR-scope. The following code example
shows the ACR-scope of SVC. For want of paper space, we do not describe all of the
MS Windows ACR-scope in SPSL. We have just prepared a sample of the read access
checking with some comments describing the system reference monitor working:

..........[abbreviation]........

allow_file_read(U, F):-

% System security settings allow user U to traverse

% through containers of file F

 allow_traverse(U, F),

% EPL is effective permissions list

% for user U and file F

 effective_permissions(U, F, EPL),

% Get PL, the list of privileges granted to user U

 privileges_list(U, PL),

% Privilege "Backup files and directories"

% is granted to user U

 (member(backup, PL), !;

% Permission "Read data" is granted to user U

 member(0, EPL),

% Permission "Read attributes" is granted to user U

 (member(7, EPL),!;

 Vulnerabilities Detection in the Configurations of MS Windows Operating System 349

% P is direct container of file F

 container_of_file(P, F),

% Permission "List folder" is granted to

% user U for direct container of file F

 group_permissions(U, P, 0)),

% Privilege "Backup files" is granted to user U

 (member(restore, PL), !;

% Permission "Synchronize" is granted to user U

 member(20, EPL))).

..........[abbreviation]........

The 'read' access to the file is granted, if user has a 'traverse' permission for the

file, or she has a 'Read Data' bit in her ACE referred to the file, or the user's group
membership gives her some abilities to access the file.

The security criteria allow the customer or evaluator to delimit the secure and
insecure states in security model. Criterion may have a form of constraint which states
the necessary condition of the secure state (positive specification). The system is safe
by the OSCV-criteria if all logical goals corresponding to the criteria are true. If some
criterion goal is false, then system breaks the safety conditions specified in the
criterion. In VCPU facility, security criteria can be noted as the SSC-scope. The
special component of the SEW, the Criteria Manager, allows to compose and edit the
vulnerability criteria [8]. The following code example shows the SSC-scope.

..........[abbreviation]........

criterion('Criterion #1: Users are not allowed to edit
the file Normal.dot',

mask,

[obj('c:\\documents and settings\\administrator\\

application data\\microsoft\\templates\\normal.dot'),

inheritance('tnn'),

's-1-5-32-544'(0,1,2,3,4,5,7,8,6,16,17,18,19,20),

's-1-5-18'(0,1,2,3,4,5,7,8,6,16,17,18,19,20)]).

..........[abbreviation]........

The logical predicate denotes one of the OSCV-criteria to be checked in MS

Windows system. It refers to the Normal.dot file. It has the form of "required" access
rights (positive mode of criteria specification). Type 'equity' pays our attention at an
equity condition (Condition P1), i.e. there is the checking of the concrete access
rights to the given Normal.dot object. There is also a condition of safe system: only

350 P.D. Zegzhda, D.P. Zegzhda, and M.O. Kalinin

SYSTEM (its SID equals to S-1-5-18) and 'Administrators' group (S-1-5-32-544) are
allowed to do 'Full Access' to Normal.dot. All other cases are considered to be
vulnerable.

In the mentioned style, we can compose a full range of OSCV-criteria. It becomes
able to handle even context-related conditions, such as "The system is vulnerable, if
Administrator can modify object X, provided she is connected to the local console".
Such conditions are indeed part of Microsoft Windows security model. From the point
of security, all kinds of user's activity in the system (such as connection to the local
console, applications running, etc) are mapped to Win32API functions calls operated
with the Windows recourses. List of functions calls and set of resources maintained
by the Windows security (so named as securable objects) are defined in MSDN.
Because of monitoring a variety of operations over the securable objects, we can
analyze the user's activity in the system.

We have the VCPU's input with a triple (M3S-scopc, ACR-scope, and SSC-scope)
written in SPSL. Then we have run the resolving program for SVC. The VCPU makes
calculus using our vulnerabilities detection technique. It takes the M3S-scope and
finds the target object mentioned in the SSC-scope. Then it calculates the sets of the
"pure" access rights taking into account all other security settings, e.g. privileges,
ownerships, and etc. To do this VCPU uses the ACR-scope. Then it compares the
rights sets, and makes the result tests for vulnerabilities using the SSC-scope and
ACR-scope (Test P1 and Test P2). After the running procedure, we have got a result
file — the security evaluation Report. The following text example shows the report
file for our SVC.

*** SYSTEM SAFETY RESOLUTION ***

CRITERION #1:

Users are not allowed to edit the file Normal.dot

>> VIOLATION DETECTED:

subject group <Users>

has unauthorized permissions

 bits [0, 1]

 [Read Data, Write Data]

for object(s) file c:\documents and settings\

 administrator\

 application data\

 microsoft\templates\

 normal.dot

..........[abbreviation]........

 Vulnerabilities Detection in the Configurations of MS Windows Operating System 351

The result for checking criterion 1 is the OSCV found. It means that there is some
incorrectness in the security setup followed with security violation. After analyzing
the unsafe state, VCPU discloses nature of security flaw, detecting subjects, objects,
and their attributes that lead to protection weakness. The evaluation verdict is "system
is unsafe by the given criterion", because members of 'Users' have the 'Read Data' and
'Write Data' access in the ACL, corresponding to Normal.dot.

5 Conclusion

In this paper, we addressed to formal basics of OSCVs verification approach for
secure operating systems. We discussed a technique of the vulnerabilities analysis and
a formal processing tool, the VCPU. All these allow to specify the system security-
related elements and proof the system safety.

The VCPU facility brings our vulnerability checking method to practice. The
targets of its applications (being integrated into SEW toolkit) are the computer
systems based on the granular security: the operating systems, DBMSs, and firewalls.
Our approach is very useful for administrators and security officers to monitor the
system securable resources (files, shared folders, printers, accounts, etc). It allows any
user to discover security of her or his system in the depth, and thus open the 'holes' in
the protection. The OSCVs, as mentioned, represent a very serious problem in the
modern operating systems. Contemporary systems operate with a huge number of
security settings, and the user needs some tools that could explain the whys and
wherefores of security weaknesses. The VCPU utility makes this process closer to
person than ever, because while logical resolving it marks the clause that caused fault
of OSCV-criterion, and supplies user with a true reason of the security flaw.

References

1. Saltzer, J., Schroeder, M.: The Protection of Information in Computer Systems. Proceedings
of the IEEE, Vol. 63(9) (1975) 1278–1308

2. Hoare C.A.R.: Communicating Sequential Processes. Communications of the ACM, vol.
21(8) (1978) 666–674

3. Banatre, J.-P., Bryce, C.: A Security Proof System for Networks of Communicating
Processes, Irisa Research Report, #2042, 60 pp. (1993)

4. Jaurjens, J., Shabalin, P.: Automated Verification of UMLsec Models for Security
Requirements. 7th International Conf. on the UML (2004) 365–379

5. Jaurjens, J.: UMLsec: Extending UML for secure systems development. UML 2002,
Vol. 2460 (2002) 412–425

6. Heydon, A., Maimone, M.W., Tygar, J.D., Wing, J.M., Zaremski, A.M.: Miro: Visual
Specification of Security. IEEE Transactions on Software Engineering, 16(10) (1990)
1185–1197

7. Heydon, A., Tygar, J.D.: Specifying and Checking Unix Security Constraints, In UNIX
Security Symposium III Proc. (1992) 211–226

8. Zegzhda, P.D., Zegzhda, D.P., Kalinin, M.O.: Logical Resolving for Security Evaluation,
MMM-ACNS (2003) 147–156

Hybrid Intrusion Detection Model Based on
Ordered Sequences

Abdulrahman Alharby and Hideki Imai

Institute of industrial Science, The university of Tokyo,
4-6-1, Komaba, Meguro-ku, Tokyo, 153-8505 Japan

alharby@imailab.iis.u-tokyo.ac.jp

imai@iis.u-tokyo.ac.jp

Abstract. An algorithm for designing hybrid intrusion detection sys-
tem based on behavior analysis technique is proposed. This system can
be used to generate attack signatures and to detect anomalous behavior.
The approach can distinguish the order of attack behavior, and over-
come the limitation of the methods based on mismatch or frequencies,
which performs statistical analysis against attack behavior with asso-
ciation rules or frequent episode algorithms. The preprocessed data of
the algorithm are the connection records extracted from DARPA’s tcp-
dump data. The algorithm complexity is analyzed against a very known
algorithm, and its complexity is decreased greatly. Using the proposed
algorithm with transactions of known attacks, we found out that our
algorithm describes attacks more accurately, and it can detect those at-
tacks of limited number of transactions. Thus, any important sequence is
considered and discovered, even if it’s a single sequence because the ex-
traction will cover all possible sequences combinations within the attack
transactions. Four types of attacks are examined to cover all DARPA
attack categories.

Keywords: intrusion detection, continuous pattern, discontinuous pat-
tern, data mining.

1 Introduction

Over the past decade, the number as well as the severity of computer attacks
has significantly increased. CSO magazine conducted a survey on the 2004 cy-
ber crimes, the survey shows a significant increase in reported electronic crimes.
Compared to the previous year, more than 40% of intrusions and electronic
crimes are reported. Also, 70% of the respondents reported at least one elec-
tronic crime or intrusion was committed against their organization [1]. According
to collected statistics, electronic crimes have an incredible impact on economy.
Reports say that electronic crimes have cost more that $600 million in 2003.

IDSs are considered as powerful security tools in computer systems environ-
ments. These systems collect activities within the protected network and analyze
them in order to detect intrusions. System activities are usually collected from

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 352–365, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Hybrid Intrusion Detection Model Based on Ordered Sequences 353

two main sources, network packet streams and host log files. Once the infor-
mation is collected, the detection algorithm starts looking for any evidence for
intrusions existence.

There are two general methodologies of detection used by IDSs: misuse and
anomaly detection [2,3]. Misuse detection systems such as STAT [4] look for a
known malicious behavior or signature, once it is detected an alarm is raised
for further actions. While this type is useful for detecting known attacks, it
can’t detect novel attacks, and its signatures database needs to be upgraded
frequently. The main feature of this model is its low false alarm rate. Anomaly
detection models (e.g. IDES [5]) compare reference model of normal behavior
with the suspicious activities and flag deviations as anomalous and potentially
intrusive. Unlike misuse detection, anomaly detection systems identify unknown
intrusions. The most apparent drawback of these systems is the high rate of false
alarms. The two detection approaches can be combined to detect attacks more
efficiently. There are various types of detection models (e.g. [6], [7], and [8]).
Among these techniques, ADAM: Audit data analysis and mining, association
rules data mining [9,10], and classification data mining [11,12,13] are the main
used algorithms.

Following this introduction, we provide a background on the related work,
and a briefing of our contribution. Section 2 then presents the proposed algo-
rithm. In Section 3, the experiments are explained, including: data set model,
details of learning and detection phases. Finally, Section 4 summarizes this pa-
per’s main conclusions.

1.1 Related Work

There has been extensive considerable work in representing and recognizing nor-
mal or malicious activities. Henry et al. in [14] proposed an approach that uses a
time-based inductive machine (TIM) to generate rule-based sequential patterns
that characterize the behavior of a user. This approach, to some extent, is sim-
ilar to our approach in that both can be used to offer a simplified view of a set
of complex data. There are, however, some fundamental differences between the
two approaches: first, Henry’s approach conducts a heuristic search to find the
rules that satisfy certain given criteria, while our approach is mainly used for the
evaluation of generated patterns. Second, Henry’s model uses only continuous
patterns, while our model combines both continuous and discontinuous patterns.
Third, in the case of using our model as Anomaly detection, deviation from the
norm in TIM is detected by matching the two sides of the rule, while in our model
deviation is conducted by the summation weights of the matched patterns.

The most efforts that contribute to the current proposal are proposed by Kim
and Wenke lee in [15] and in [16] respectively. While Kim proposed a new in-
trusion detection classification using data mining based on CTAR which consid-
ers temporal attribute of audit data. Wenke applied data mining with frequent
episode algorithm, and structure statistic features. Wenke built his detection
model based on RIPPER classifier. In the following, we summarize some draw-
backs that have been noticed in these two approaches: First, although some

354 A. Alharby and H. Imai

intrusion behaviors depend on frequent episode or temporal attribute, analysis
based on statistical features may not reflect the different features relationship
in the context of time order. e.g., attacks with features appearing only once in
the records, and attacks based on features that don’t have frequent connection
records or features that occur only once in an attack. Second, both detection
methods of Wenke and Kim were designed to detect mainly Probe and DoS
attacks. Current efforts of intrusion detection focus on detecting attacks with
no clear evident features, such as application layer attacks or what are called
in DARPA dataset remote to local and user to root attacks. Third. the most
important, using statistical analysis would lead to lose order actions. Because
attack evident features spread over many records, we need a technique to search
the records vertically, and dig out the records for each single itemset sequences
that may reflect attack features, that is continuous and discontinuous based data
mining.

1.2 Our Contribution

The objective of this paper is to treat the systems ordered actions differently.
Our approach uses the continuous and discontinues patterns to characterize the
system behaviour. We used the proposed technique to extract some attacks sig-
natures, and also to build an anomaly detection classifier. To classify a new se-
quence into either normal or intrusive, our proposed classifier converts the new
sequence into a number of patterns and then calculates the similarity between
these patterns and those of the training sequences. There are some advantages
to applying this method to intrusion detection: First, without affecting the de-
tection rate, limited and reasonable deviations from the norm are allowed, thus,
false positive rate is significantly reduced. Second, foremost advantage is that
this technique aims to discover all important possible patterns within the se-
quence. Third, in case of using this technique for building attack signature, it
can deal with any kind of attack attributes such as time, numerical, categorical,
and free-text.

2 Proposed Algorithm

2.1 Notations and Definitions

This section defines concepts that are central to this article, including the fun-
damental notions and definitions.

Definition 1 (Notions).

– C (k,l): used to represent the set of candidate sequences of k elements and l
stars.

– L(k,l): The sequences set that have a support value bigger than the given
minimal support where the sequence length is k and it has l stars.

Hybrid Intrusion Detection Model Based on Ordered Sequences 355

– SupL(k,l): The super large set, SupL(k,l), used to store the list of all sup-
ported sequences of both types continuous and discontinuous.

– Pattern: also called sequence, it is a number of ordered actions. the pattern
X can be shown as (x1, x2, .., xn), each xj means an item or element.

– record: single instance of an attack. If an attack is involved in multi-instances,
then we say attack records for all involved instances.

Definition 2 (continuous patterns). Suppose a pattern Si extracted from
the sequence Xi = {x1, x2, ..., xm} and contains some actions, that is, Si =
{s1, s2, ..., sl} which may reflect ordered commands executed by a program run
on a computer machine. The pattern Si can be classified as continuous pat-
tern if all contained elements appear in consecutive positions of the sequence
Xi, such that, there is an integer r such that; s1 = xr , s2 = xr+1, ..., sd =
xr+l−1. For example, the continuous pattern (s3, s4) occurs in sequence: X1 =
(s1, s2, s3, s4, s5, s6).

Definition 3 (discontinuous patterns). We say that Si is a discontinuous
pattern if the elements of that pattern don’t appear in consecutive positions of
the sequence Xi, that is, if there are existing integers r1 < r2 < ... < rl such that
s1 = xr1 , s2 = xr2 , ..., sl = xrl

. For example, the pattern (s1, ∗, s4) in sequence:
X1 = (s1, s2, s3, s4, s5, s6) is a discontinuous pattern.

Definition 4 (star patterns). Star pattern is a pattern that contains one
star or more as part of its elements. In a discontinuous pattern, hidden elements
represented by star “ ∗ ” which is defined as a variable number of intermediate
elements. The star pattern never starts or ends by “ ∗ ”. For example, if we
have a sequence Xi = {x1, x2, x3, x4}, we may have these continuous patterns
(x1, x2), (x2, x3, x4), and (x1, x2, x3), or this discontinuous pattern (x1 ∗ x3, x4).
Because of the definition of the “ ∗ ”, the pattern (x1 ∗ x3, x4) implicitly has two
other patterns: (x1, x3, x4), and (x1, x2, x3, x4).

2.2 Data Analysis and Patterns Generation

DARPA 1998 off-line data sets [17] developed to evaluate any proposed tech-
niques for intrusion detection. These data prepared and managed by MIT Lincoln
labs, sponsored by DARPA, and contain contents of every packet transmitted
between hosts inside and outside a simulated military base. There were a collec-
tion of data including TCPDUMP and Basic security module (BSM) audit data
of a victim Solaris machine. Both types are used in this work. While we used
BSM data to model users normal behavior, we preprocessed and used tcpdump
data set to model attack behavior. tcpdump records consist of a number of at-
tributes as items of sequences, and these items include class attribute and other
attributes, which are shown in Figure 1.

The aim of the proposed algorithm is to find out all frequent patterns from an
attack records. Compared with CTAR or even with traditional Apriori algorithm,
the proposed algorithm mines two types of sequences, one is continuous, and the

356 A. Alharby and H. Imai

………………

loadmodule172.016.113.050172.218.117.0692320504telnet

Normal192.168.001.001192.168.001.005801106http

Class

Attack/Normal

Dest

IP address

Src

IP address

Dest

Port

Src

Port

Service

Fig. 1. Dataset records, each one has a number of attributes. Class attribute has two
categories, normal or attack. The rest of the attributes have many values.

other is discontinuous. The algorithm includes two steps, the first step is to search
large-sequences of the first type of patterns, and the second step is to search the
second type of patterns. In the following, the steps are summarized as follows:

– All attribute values in records database are considered as candidates to
1-element-zero-star-sequence-itemset, C (1,0). After generating C (1,0), the
records database is scanned vertically. If the elements of C (1,0) are con-
tained in any instance, then the support of that element adds 1. Insert any
element with support value greater than the given minimal support in 1-
element-zero-star-sequence-large-itemset, L(1,0), and store the results in a
temporary database.

– Each two elements from two different attributes in L(1,0) are combined to
form 2-element-sequence-itemset-zero-star, C (2,0). The records database is
scanned for all patterns existing in C (2,0). When the support value of a
pattern exceeds the given minimal support it inserts in 2-element-sequence-
large-itemset-zero-star, L(2,0). We find out all k -element-large-zero-star
L(k,0) and store in a temporary database in turn. And then, we list all large-
zero-star-sequence, L(1,0), L(2,0),..., L(m,0), and store them in a common
database called super large sequences set, SupL.

– After generating all possible L(k,0), we extract all discontinuous patterns.
First, from the temporary database of L(3,0) we found out 2-element-1-star-
sequence C (2,1) by replacing the second item of the pattern by star. And
then the records are scanned vertically for each pattern existing in C (2,1),
the patterns that have a support value exceeding the given minimal support
are inserted in 2-element-zero-star-sequence-large-itemset, L(2,1). We then
found out all 2-element-l -star-large-itemset L(2,l), and list all large-l -star-
sequence, L(2,1), L(2,2), ..., L(2,l). We do the same thing for all k -element-
large-zero-star L(k,0) in turn. The resulting sets add to SupL database. These
steps are shown in Figure 2.

In order to describe the algorithm clearly, we will take the example of an
attack that includes 5 items and generate all possible sequences, which are shown
in figure 3.

2.3 Complexity Analysis

The proposed algorithm is very different from Apriori algorithm [18]. First, dis-
continuous sequences are not considered in Apriori algorithm. Second, item-

Hybrid Intrusion Detection Model Based on Ordered Sequences 357

Input: Extracted transactions from Original records.
Output: SupL; L(k,l) for all ks and ls

//Generate all possible candidate patterns of 1-element-sequence
C(1,0) = gen (Original records)
//Extract 1-element-sequences that have support value bigger than the min support
L(1,0) = subset (C(1,0))

For (2 ≤ k ≤ m)
C(k,0) = gen (L(k-1,0)) //Generate all combinations of L(k-1,0)
L(k,0) = subset (C(k,0)) //Extract all supported continuous patterns

For (1 ≤ l ≤ m-2)
C(k,l) = gen (L(k,0)) //Generate all combinations L(k,0) with star
L(k,l) = subset (C(k,l)) //Extract all supported discontinuous patterns

Fig. 2. Proposed algorithm

CDEBCDABC3-items-sequence

DECDBCAB2-items-sequence

EDCBA1-item-sequence

……

Attack pattern: ABCDE

A*C*E2-star-1-item-sequence

A*E1-star-3-item-sequence

AB*EA*DE1-star-2-item-sequence

ABC*EAB*DEA*CDE1-star-1-item-sequence

Discontinuous sequences:

5-items-sequence

4-items-sequence

Continuous sequences:

ABCDE

BCDEABCD

Fig. 3. Pattern extraction trees

record data is scanned vertically instead of horizontally. Among other steps,
we found calculating the support value is the most time-consuming step, al-
gorithm of support calculating is shown in Figure 4. Thus, the proposed algo-
rithm reduces the complexity of continuous and discontinuous patterns mining
greatly.

The Apriori algorithm built based on an iterative technique, where k -itemsets
are used to generate (k+1)-itemsets. First, supported 1-itemset is generated, i.e.
L(1,0). Then, L(1,0) is employed to generate the set of frequent 2-itemsets, i.e.
L(2,0), which is used to find L(3,0), and so on until all supported k -itemsets
are extracted. The next process consists of two actions; joining and pruning.
First, the join step: To generate L(k,0), a candidate set k -itemsets is extracted
by joining L(k -1,0) with itself, where items of L(k -1,0) can be joined if their

358 A. Alharby and H. Imai

Input: i=1, j=1, sequence x, pattern t
Output: sum, number of t included in x
number(String[] x, int i, String[] t, int j){
if (x[i]=(“ ∗ ”)) i++; // If we have a star, skip it, it was already used
// If the star was the last character, found another match.
if (i = m AND x[i] = (“ ∗ ”)) return ++sum;
if (j = n) {return sum;}
if (i = 0 AND j = 0) sum = 0;

// The “ i > 0 ” test simulates a starting star.
if (i > 0 AND x[i - 1] �= (“ ∗ ”)) {

if (x[i] = (t[j]) AND i = (m - 1)) { sum++;}
else if (x[i] = (t[j])) { number(x, i + 1, t, j + 1); } }

else {
for (int p = j; p < n; p++) {
if (x[i] = (t[p]) AND i = (m - 1)) {sum++;}
else if (x[i] = (t[p])) { number(x, i + 1, t, p + 1); }
}

} return sum; }

Fig. 4. An algorithm to find out how frequent is each pattern within a certain number
of records

first (k -2) items are similar. This set of candidate is denoted C (k,0). Second,
the prune step: C (k,0) is a superset of L(k,0), that is, its elements may or may
not be frequent, but all of the frequent k -itemsets are included in C (k,0), even
if C (k,0) is very large. In fact any (k -1)-itemset that is not frequent cannot
be a subset of a frequent k -itemset. Hence, if any (k -1)-subset of a candidate
k -itemset is not in L(k -1,0), then the candidate cannot be frequent either, and
so, can be removed from C (k,0). Suppose there are n records in the original
data set, to find all n large sequences, the number of connection will be 2n. To
build the signature of an attack with around 100 records, this structure is not
suitable.

In contrast, when we search for 1-itemsets candidate, C (1,0), with our pro-
posed algorithm, we need to scan the original records once and count all items,
the same as the Apriori algorithm. When searching for frequent 1-itemsets,
L(1,0), instead of scanning original records, we only need to scan C (1,0) which
is composed of original records and much less than the original data. After gen-
erating all L(k,0), we scan the original records once, and every C (k,0) is also
scanned once. In total, k times of scanning are performed. Since any L(k,l)
is extracted from the corresponding L(k,0), we only need to scan the data
stored in the temporary database instead of the corresponding C (k,0) or origi-
nal records. The data quantity is reduced evidently. And the most important, by
taking out C (2,0), and only scan the corresponding L(1,0) which may compose
the C (2,0) in the temporary database. Then, the other C (2,0) is taken out in
turn.

Hybrid Intrusion Detection Model Based on Ordered Sequences 359

Thus, for a limited number of attributes and more records, the proposed
algorithm has proved more efficient compared to Apriori.

3 Experiments

3.1 Misuse Detection

For the sake of clarity, the algorithm is described through the example of number
of attacks. Each attack includes a number of records, in some attacks tens of
instances are collected, each record includes five attributes shown in table 1. We
dig out continuous and discontinuous patterns of these attacks with the misuse
intrusion detection algorithms. Results are shown in Figure 5.

The first examined attack is Back attack, which belongs to denial of service
attack against the Apache web server. Back attack is fabricated by submitting
frontslashes contained in URL’s requests. The Back attack causes instances of
the http process on the victim machine. As the server tries to process these
requests it becomes unable to process other requests, consequently, the attack
slows down the server. Attack signatures in Figure 5 show that the attacker https
to the victim machine “172.016.114.050” from a certain machine. This flow of
request consumes excessive processor time, when the original data was checked
back, we found the attribute Src port has many values, none of them support the
minimal given support value. Consequently, it is replaced by star in the patterns,
and didn’t appear in large-sequences L(1,0) or in super-large-sequences, SupL.

The second simulated attack is the ftp-write attack, which belongs to R2U
attack. It takes advantage of misconfiguration of an anonymous ftp, which allows
the intruder to add files such as an rhosts file, and gain local access to the system.
This is exactly what the patterns show in Figure 5. Regardless of the values of
attributes: Src port and dest port, which are represented by star, the attacker
anonymously ftps the victim machine, performs some tasks such as creating
“.rhosts” file, and disconnects from the server. Then, as the second pattern
shows, login to the victim machine by using rlogin to connect back to the server
as ftp user, and finally performs some illegal actions on the victim machine.

An eject attack, the third simulated attack, belongs to U2R category. It ex-
ploits buffer overflow vulnerability of the distributed “eject” binary with Solaris
2.5. This vulnerability, if exploited, is used to gain root access on the attacked
machine. As shown from the attack signature in figure 5, the attacker telnets the
workstation “172.016.112.050”, regardless of what source port is used, or from
where the attack is launched, which explains the stars in the last three patterns.
Then, telnet victim machine is exploited to distribute the malicious code. The
implanted code, if compiled, can be run on the victim machine, as a command
line session where the attacker can gain root access.

The last simulated attack is ipsweep which belongs to the probing attacks
family. Attackers use this attack to search for vulnerable machines to determine
which hosts are listening on a network. It can be performed by sending an ICMP
Ping packets to every possible address within a subnet, listening machines will
respond to the sender. The generated attack pattern shows that a Ping packet

360 A. Alharby and H. Imai

Pattern 1: telnet (service)

Pattern 2: 23 (Des. port)

Pattern 3: 172.016.112.050 (Des. IP)

Pattern 4: telnet,*,23

Pattern 5: 23,*,172.016.112.050

Pattern 6: telnet,*,23,*,172.016.112.050

eject (U2R)

Week-6

Thursday

Pattern 1: ftp,*,195.073.151.050,172.016.112.050

Pattern 2: Login,*,195.073.151.050,172.016.112.050

ftp-write (R2U)

Week-2,Friday

Pattern 1: eco/i,7,7,202.077.162.213,*ipsweep (Probing)

Week-3,Wednesday

Pattern 1: http (service)

Pattern 2: 80 (Des. port)

Pattern 3: 135.008.060.182 (Src. IP)

Pattern 4: 172.016.114.050 (Des. IP)

Pattern 5: http,*,80

Pattern 6: 135.008.060.182,172.016.114.050

Pattern 7: http,*,80,135.008.060.182

Pattern 8: http,*,80,135.008.060.182,172.016.114.050

back

(DoS)

Week-2

Friday

Generated patterns for chosen attacksAttack type

Fig. 5. Number of chosen attacks, and their behavior as continuous and discontinuous
sequences

“eco/i” is always sent from the same source “202.077.162.213”, and the attribute
Dest IP address is replaced by star “ ∗ ” which explains that the Ping message
is sent to a variety of destinations. That is exactly how the attack is performed.

The experiment indicates that the pattern we obtained is different from the
command pattern, it is a new pattern. It can describe attacks more accurately,
detect the attacks whose features appear only once, improve detection rate, and
offer a new idea for the research of intrusion detection.

3.2 Anomaly Detection

Data Model and Preprocessing. In our experiments, and to evaluate the
algorithm as an anomaly detector, we used the Basic Security Module (BSM)
audit data collected by DARPA. Besides many attributes of BSM events, each
session contains one or more system calls information that are generated by the
programs running on the Solaris system. Also, each session is labelled with a
related unique process number.

Programmatically, for each single process all related individual sessions are
extracted, and then the complete set of ordered system calls spreading over the
sessions are recorded. For our data model, we only recorded the names of the
executed system calls ignoring other session attributes. And then, the algorithm
is used to transform each process into its related continuous and discontinuous
patterns. A sample of System calls generated by one user during two processes;
118 and 102 is shown in table 1.

Anomaly Model. Our implementation is based on normal programs behavior.
Two stages have to be defined, the learning and detection stages. In the following,
the two stages are presented in more details.

Hybrid Intrusion Detection Model Based on Ordered Sequences 361

Table 1. Sample of ordered normal system calls included in two processes 118, and
102, Executed by the user named by: franko within the first day of the first week of
the training 1998 DARPA data set

Process System calls

118 stat stat stat stat chdir chdir lstat

stat stat open chdir chdir lstat stat

stat open pathdonf stat stat open chdir

pathdonf stat open chdir pathdonf stat

stat open chdir

102 stat stat stat stat access stat open

open access stat open open

Learning Process. DARPA simulated BSM audit data set featured 6 users
whose activity can be used to test anomaly detection systems. The users are
named as: franko, georgeb, janes, fredd, williamf, and donaldh. The activity of
those users remains consistent from day to day, but on some days, those users
exhibit anomalous behavior in ways that should be detectable to an anomaly
detection system. The anomalies that are introduced into the users’ sessions in-
clude logging in from a different source, logging in at an unusual time, executing
new commands, and changing identity. In the training data, all anomalies were
introduced during the 6th week.

Among the seven weeks training period of DARPA data set, there are 6
weeks free of anomalous behaviour. Arbitrarily, 2 weeks (the first and the second)
picked as a training data set, and left the sixth week for testing.We recorded only
the names of the ordered system calls executed by those 6 users. Users names
are usually found in two attributes: path or mail. Any process not related to
any one of those users are ignored in either data sets, training or testing. The 2
weeks training data set consists of 17 intrusive instances and 17 clear or stealthy
attacks. There are 7798 sessions within these 2 weeks. These normal training
processes run only on Solaris machine. Once we have the training data set for
the normal behavior, each single process is transformed to its related continuous
and discontinuous patterns.

The proposed algorithm is used to generate all large-sequences L(k,l) patterns
that could be contained within one normal process. All system calls within one
process are considered as a candidate to 1-element-sequence-itemset and stored
in C (1,0). This collection of patterns are used as a normal profile.

At a certain detector window size k, Large-sequences L(1,0) patterns of only
one process were generated in each run. A single process may contain a number
of elements more than the detector window size, in this case, we applied the
algorithm for the first k elements, and then moved to the next k elements until
we covered all the elements included in the process.

We look for all normal processes separately and generate super-large- se-
quences, SupL. The resulting normal patterns are stored in a temporary data-

362 A. Alharby and H. Imai

//build training normal patterns data set
Extract large-sequence L(k,l) of training dataset, and store in SupLN ;
for each process X in the testing data set Do

extract all large-sequence L(k,l) patterns, and store in SupLS ;
get value of n; // extracted programmatically
compare SupLN and SupLS and get kn;
calculate kn/n;

if kn/n ≥ threshold then
The process X is normal;

else then
The process X is abnormal;

Fig. 6. An algorithm code for anomaly classifier

base called “normal pattern database” and denoted by SupLN , and used later
as a normal profile during monitoring and classifying testing processes.

Detection Process. This phase is intended to classify the testing processes
to intrusive or normal. Once we have the training patterns data set for normal
behavior, testing audit data is scanned for each new process associated with the
same chosen 6 users. The new processes are also transformed to their related
large-sequences patterns, L(k,l). All possible patterns were generated for each
testing process, and stored in a temporary database called “suspicious patterns
database” and denoted by SupLS. Then the similarity between patterns of the
new process and the patterns of normal processes is calculated using similarity
algorithm.

The similarity algorithm is described as follows: for any testing process that
is needed to be classified, first, all corresponding large-sequence patterns L(k,l)
are extracted, and then each single generated pattern that is represented in
SupLN database is given a weight w = 1/n, where n is the total number of
all extracted patterns of that specific testing process. The value of n can be
extracted programmatically. The value of w falls in the range (0 ≤ w ≤ 1).
By calculating the total summation weights (kn) of all matches, strength of the
normality signal can be determined. If the total weights summation exceeds a
certain threshold, the testing process is classified as normal. Otherwise, it is an
anomalous process. In Figure 6 an abstract of the pseudo code of the similarity
algorithm is given.

Performance Measurements. Based on similarity function return value, the
classifier makes the decision whether the process under investigation is intrusive
or not. The first error that may occur is the false positive error which occurs
when normal processes are classified as intrusions. The second error type is the
false negative error which occurs when the real intrusive process is classified as
normal, which is more serious.

Hybrid Intrusion Detection Model Based on Ordered Sequences 363

0.1

0.4

0.7

1

0 0.2 0.4 0.6 0.8 1

False positive rate (%)

D
e
te

c
ti

o
n

 r
a
te

k=5 k=15 k=30

Fig. 7. Performance of the algorithm expressed in ROC curves. False positive rate vs
attack detection rate for k =5, 15, and 30

Receiver Operating Characteristic (ROC) is a performance evaluation tech-
nique used to evaluate the intrusion detection algorithm [19]. It is related to the
false error, and it is a trade off between detection rate and false alarms generated
by the intrusion detection system. It can be obtained by varying the detection
threshold and measuring the corresponding number of false alarms. This tech-
nique indicates how detection rate changes affect the raised false alarms. In our
work, we used ROC metric to measure the performance of the proposed algo-
rithm.

To evaluate the proposed algorithm as an anomaly detector, we formed a test
data set from the DARPA BSM data of the 5 days of the sixth training week
(none of the training data was chosen from this week). There are 53 intrusive
sessions included in this testing data, and 14 distinct attacks included in these
intrusive sessions. Also, 10 anomalous behaviors are included, such as unusual
time logging in or from different source logging in, and new commands execution.
Many of the attacks sessions were duplicated and appeared many times, like:
eject, neptune, and pod. Duplicated sessions were not considered. Each process
was classified to normal or intrusive, sessions associated with a single intrusive
process was considered as an attack or anomalous sessions. The performance
of the algorithm is evaluated as the detection rate versus false positive alarms.
Detection rate and false positive alarm were built based on intrusive sessions
detection and normal sessions misclassification. If one session is included in at
least one intrusive process, it is counted as one attack. In our experiments, the
presence of more than one intrusive process in one session does not affect the
number of detection.

The proposed classifier can generate the related large-sequence patterns
L(k,l) of any length of sequences, this length may cover all the elements of
the process, or just part of the process, and it is called the detector window

364 A. Alharby and H. Imai

size and denoted as k. A detector window size that is smaller than the length of
the process would cause the detector to parse one process into many sequences
resulting in a low anomaly signal. At the same time, a detector window size that
is larger than the process would cause the detector to see only the one process
sequences in the given instance resulting in a fair anomaly detection.

In the experiments, we varied k′s value from 5 to 30, most of the processes
contained a number of system calls less than 30. Compared to the processes
sequences, these values cover the possibilities of being equal, less, or greater
than processes length. Precisely, this choice describes how does the value of k
affect the performance of the classifier. Figure 7 shows the ROC curves for three
different k values. For this particular training and testing data set, k = 15 is
the best choice, with this value, the detection rate reaches 100% faster and at
low false positive rate compared with the other two k′s values. For k = 15,
the classifier algorithm can detect out of 10 anomalous sessions only 3 sessions
with zero false positive rate. Reducing the similarity threshold leads to higher
detection rate, but, this reduction has some cost in that the false positive rate
becomes higher. For k = 15, and at threshold 0.81, the detection rate reaches
100% with false positive rate 0.6% (only 48 false positive detection out of 7798
normal sessions included in the training data set).

4 Conclusion

A new classifier has been proposed, it’s built based on different treatments of
patterns extraction. This type of classification is used for forming attacks sig-
natures and to detect anomalous behavior. The experiments with DARPA data
set have shown that the proposed algorithm can detect the intrusive behaviour
effectively. The experiments indicate that the patterns that we obtained are dif-
ferent from the command patterns. They are new patterns, can describe attacks
more accurately, detect the attacks whose features appear only once, and offer
a new idea for the research of intrusion detection. Also, we found that contin-
uous sequences reflect a clean occurred sequences, while discontinuous patterns
represent the sequences mixed with undesirable noisy data.

References

1. The survey is available at: www.csoonline.com/releases/ecrimewatch04.pdf
2. Kumar, S., Spafford, E.H.: A Software Architecture to Support Misuse Intru-

sion Detection. Proceedings of the 18th National Information Security Conference
(1995) 194–204

3. Forrest, S., Hofmeyr, S.A., Somayaji, A., Logstaff, T.A.: A Sense of Self for Unix
process, Proceedings of 1996 IEEE Symposium on Computer Security and Privacy
(1996) 120–128

4. Ilgun, K., Kemmerer, R.A., Porras, P.A.: State Transition Analysis: A Rule-Based
Intrusion Detection System. IEEE Transactions on Software Engineering, 21(3)
(1995) 181–199

Hybrid Intrusion Detection Model Based on Ordered Sequences 365

5. Javitz, H.S., Valdes, A.: The SRI IDES Statistical Anomaly Detector. In IEEE
Symposium on Security and Privacy, Oakland, CA. SRI International (1991)

6. Axelsson, S.: Research in intrusion-detection systems: A survey. Technical report
TR 98-17, Gteborg, Sweden: Department of Computer Engineering, Chalmers Uni-
versity of Technology (1999)

7. Hofmeyr, S.A., Somayaji, A., Forrest, S.: Intrusion Detection using Sequences of
System Calls. Journal of Computer Security Vol. 6 (1998)

8. Fox, K.L., Henning, R.R., Reed, J.H., Simonian, R.P.: A neural network approach
towards intrusion detection. Proceedings of 13th National Computer Security Con-
ference, NIST, Baltimore, MD (1999) 125–134

9. Barbara, D., Couto, J., Jajodia, S., Wu, N.: ADAM: A testbed for exploring the
use of data mining in intrusion detection, ACM SIGMOD Record, 30 (4) (2001)

10. Barbara, D., Couto, J., Jajodia, S., Wu, N.: An architecture for anomaly detec-
tion. D. Barbara and S. Jajodia (Eds.), Applications of Data Mining in Computer
Security, Boston: Kluwer Academic (2002) 63–76

11. Lee, W., Stolfo, S.: Data Mining Approaches for Intrusion Detection. Proc. of the
7th USENIX Secunity Symposium (1998)

12. Lee, W., Stolfo, S.: A Data Mining Framework for Building Intrusion Detection
Models, IEEE Symposium on Security and Privacy (1999)

13. Barbara, D., Couto, J., Wu, N.: ADAM: Detecting Intrusion by Data Mining. Proc.
of the 2th IEEE Information Assurance Workshop (2001)

14. Teng, H., Chen, K., Lu, S.: Adaptive Real-Time Anomaly Detection Using Induc-
tively Generated Sequential Patterns, Proceedings, IEEE Symposium on Research
in Computer Security and Privacy (1990)

15. Kim, J.S., Lee, H.G., Seo, S., Ryu, K.H.: CTAR: Classification Based on Temporal
Class-Association Rules for Intrusion Detection, WISA 2003, Lecture Notes in
Computer Science Publisher: Springer-Verlag, Vol 2908/2003 (2003) 84–96

16. Lee, W.: A Data Mining Framework for Constructing Features and Models
for Intrusion Detection Systems, Ph.D. Thesis, Computer Science Department,
Columbia University, New York, NY. June (1999)

17. DARPA data set:
www.ll.mit.edu/IST/ideval/data/1998/1998 data index.html

18. Agrawal, R., Imielinski, T., Swami, V.: Mining association rules between sets of
items in large databases. P. Buneman and S. Jajodia, editors, Proceedings of the
ACM SIGMOD Int. Conf. on Management of Data, Washington, D.C. (1993) 207–
216

19. Lippmann, R.P.: Evaluating Intrusion Detection Systems: the 1998 DARPA Off-
Line Intrusion Detection Evaluation. Proceedings of the 2000 DARPA Information
Survivability Conference and Exposition, Vol. 2

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 366 – 379, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Asynchronous Alert Correlation in Multi-agent Intrusion
Detection Systems

Vladimir Gorodetsky, Oleg Karsaev, Vladimir Samoilov, and Alexander Ulanov

SPIIRAS, 39, 14-th Liniya, St.Petersburg, 199178, Russia
{gor, ok, samovl, ulanov}@mail.iias.spb.su

Abstract. This paper presents conceptual model, architecture and software pro-
totype of a multi-agent intrusion detection system (IDS) operating on the basis
of heterogeneous alert correlation. The latter term denotes IDS provided with a
structure of anomaly detection–like classifiers designed for detection of intru-
sions in cooperative mode. An idea is to use a structure of classifiers operating
on the basis of various data sources and trained for detection of attacks of par-
ticular classes. Alerts in regard to particular attack classes produced by multiple
classifiers are correlated at the upper layer. The top-layer classifier solves intru-
sion detection task: it combines decisions of specialized alert correlation classi-
fiers of the lower layer and produces combined decision in order to more relia-
bly detect an attack class. IDS software prototype operating on the basis of in-
put traffic is implemented as multi-agent system trained to detect attacks of
classes DoS, Probe and U2R. The paper describes structure of such multi-
layered intrusion detection, outlines preprocessing procedures and `data
sources, specifies the IDS multi-agent architecture and presents briefly the ex-
perimental results received on the basis of DARPA-98 data, which generally
confirm the feasibility of the approach and it's certain advantages.

1 Introduction

Currently, intrusion detection task is of great concerns and the subject of intensive re-
search ([2], [4], [10], [11], [12], [13], [14], etc.). The contemporary studies show that ad-
vanced approaches to Intrusion Detection Systems (IDS) design are focused on data
fusion ideas assuming use of multiple data sources and multiple classifiers operating
in various feature representation spaces with the subsequent combining of their deci-
sions [1]. Unfortunately, several specific properties of the intrusion detection system
input make the above mentioned decision combining task very difficult. Among these
properties, temporal nature, high-frequency dynamics and asynchronous character of
input are of the primary importance. Other important issue of IDS input that is ig-
nored in the most of research is information ageing resulting from the temporal nature
and variety of frequencies of input data streams arriving from various sources.

The paper is devoted to the heterogeneous alert correlation approach to intrusion
detection. The introduced term denotes an approach assuming that IDS is composed
of a structure of classifiers and each classifier of this structure is trained for detection
of attacks of a particular class, e.g. an attack of the class either DoS, or Probe, or

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 367

U2R. The second assumption of the approach is that several classifiers are trained for
detection of the same attack class while operating with data of various sources and/or
various feature representation spaces. Each of such specialized classifiers may pro-
duce decisions of two classes: "Alert" regarding to "its own" attack class (e.g. "DoS
alert", "U2R alert", etc.) or "Normal" (without producing an alert). In the second
layer, alerts of the same type (if any) produced by source-based classifiers are corre-
lated and the results are sent to the top layer. The top-layer classifier solves intrusion
detection task: it combines decisions of specialized alert correlation classifiers and
produces combined decision in terms of particular attack class if any.
 In the rest of the paper, section 2 outlines the IDS input data model and preprocess-
ing procedures forming various data sources (representation spaces). It describes the
structure of the interacting classifiers designed for heterogeneous alert correlation and
event dynamics of the IDS operation. Section 3 describes a model of data ageing used
in the developed IDS software prototype while Section 4 gives detailed specification
of its architecture based on multi-agent framework. This architecture is specified in
the style assumed by Gaia methodology [15] that is used in development of the IDS
software prototype. Section 5 outlines experimental results received through testing of
the developed prototype using DARPA data [3]. Conclusion summarizes the paper
contributions and intentions for future research.

2 Conceptual Model of Multi-alert Correlation for Intrusion
 Detection

2.1 Input Data

The major peculiarity of IDS input data is their temporal nature. Indeed, input data
perceived by sensors of IDS or produced by preprocessing procedures are mapped
time stamp, which is considered as an important data attribute. Events of various data
streams arrive into IDS classifiers asynchronously. Since averaged frequencies of
various data streams are different, the data incoming to meta-level responsible for
alert correlation possess finite life time, i.e. after elapsing certain time from the mo-
ment they are produced the data become of less relevance with regard to the current
status of user activity and therefore less useful or useless for its assessment.

It is assumed that the input data model accounts the data streams resulting from
the preprocessing of the network traffic represented in TCP dump. This traffic per-
ceived by "Data Sensor" is further preprocessed according to the scheme presented in
Fig.1. Traffic preprocessing procedures are aimed at extraction of various features re-
sulting in creation of "secondary" data sources (feature representation spaces forming
input for several source-based classifiers).

The developed traffic preprocessing procedures operate in the following order.
First, events corresponding to new packets and new connections are identified. The
information contained in the identified packets and connections is further processed in
order to extract features and form secondary data sources. Network feature extraction
procedure identifies events that indicate availability of newly arrived following data:

368 V. Gorodetsky et al.

Legend:

Fig. 1. Raw data streams and preprocessing procedures forming secondary data sources consti-
tuting input data streams of IDS

(1) Connection–related data that are used for extraction of connection-related fea-
tures forming two data sources, i.e. ConnectionBased and ContentBased data sources.

(2) Time window-related data representing certain statistics averaged within sliding
time window of the predetermined length and shift (in our case, length= 5 sec. and
shift=2 sec.). These data are used for extraction of the features forming two secondary
data sources, TimeWindowFeatures, and TimeWindowTrafficFeatures.

(3) Connection window-related data representing certain statistics averaged within
sliding time window containing a user-assigned number of connections (in our case,
this number is equal to 20 connections and shift is equal to 1 connection). These data
are used for extraction of the features forming two more secondary data sources,
ConnectionWindowFeatures, and ConnectionWindowTrafficFeatures.

Traffic preprocessing procedures were developed by authors. As the input of these
procedures, the DARPA data [3] are used.

2.2 Heterogeneous Alert Correlation Structure

The primary factor influencing on the IDS architecture is the structure of interaction
of the source-based classifiers and meta–classifiers. Let us comment it by example of
the structure used in the developed case study illustrated in Fig. 2.

Each data source is attached several source-based classifiers. A peculiarity of
these classifiers is that each of them is trained for detection of a fixed class of attacks
and produces alerts regarding corresponding attack class. That is why the alerts pro-
duced are heterogeneous, i.e. correspond to different classes of attacks. Actually,
each source-based classifier solves an anomaly detection task, but each "anomaly"

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 369

alert corresponds to particular class of attacks. Thus, the IDS system in question
solves intrusion detection task.

Connection–based data source is attached three specialized classifiers intended for
detection DNS CB, R2U CB and Probe CB classes of attacks, i.e. these classifiers are
trained to detect attacks of the classes "Denial of Service", R2U and Probe respec-
tively. Each of the above connection-based data source classifiers transmit the pro-
duced decision to particular meta–classifier (see Fig.2).

ConnectionWindowFeatures data source forms input of two specialized classifi-
ers, R2U CW and Probe CW, trained for detection of attacks of the classes R2U and
Probe respectively. They also send their decisions to particular classifiers of the
meta–level.

ConnectionWindowTrafficFeatures data source is attached three specialized clas-
sifiers, R2U CWT, Probe CWT and NormalCWT trained for detection of attacks of the
classes of R2U, Probe and Normal activity (no attacks) respectively. They send their
decisions to various classifiers of meta–level.

Time WindowFeatures data source forms input of three specialized classifiers,
DNS TW, R2U TW, and NormalTW trained for detection of attacks of the classes De-
nial of Service, R2U and Normal activity (no attacks) respectively.

Time WindowTrafficFeatures data source is attached three classifiers, DNS TWT,
R2U TWT, and ProbeTWT trained for detection of attack classes Denial of Service,
R2U and Probe respectively.

At the meta–level, three specialized meta-classifiers are introduced. Each of them
is responsible for combining decisions from source-based classifiers trained for detec-
tion of particular type of attack or Normal situation. They operate in asynchronous
mode while making decision every time when an event and data from at least one
source–based classifier arrives. A peculiarity of the decision making structure in ques-
tion (Fig.2) is that, in it, one more decision combining layer, top layer, is used. It
combines the inputs arriving from the specialized meta–classifiers thus solving the in-
trusion detection task.

2.3 Dynamics of IDS Operation

The data and event streams in the implemented IDS prototype are presented in Fig.1.
Let us describe the dynamics of these streams in the process of IDS operation.

Dump of the network traffic is captured by sensor, Raw Data Sensor. It produces
primary events of two types: (1) PacketEvent – receiving of an IP packet and Packet
data, and (2) ConnectionEvent – completion of the connection and Connection data.
Events and data input to the component NetworkFeatureExtractor intended for extrac-
tion of the features from raw data and generation of the secondary events, that are (1)
ConnectionEvent and associated arrays of the features, ConnectionBased and Con-
tentBased; (2) ConnectionWindowEvent indicating completion of a time window con-
taining given number of connections and associated arrays of the features, Connec-
tionWindowFeatures and ConnectonWindowTrafficFeatures; (3) TimeWindowEvent
indicating completion of the time window of a predefined duration and associated ar-
rays of the features, TimeWindowFeatures and TimeWindowTraficFeatures.

370 V. Gorodetsky et al.

F
ig

. 2
. T

he
 s

tr
uc

tu
re

 o
f

de
ci

si
on

 m
ak

in
g

an
d

de
ci

si
on

 c
om

bi
ni

ng
 im

pl
em

en
te

d
in

 th
e

so
ft

w
ar

e
pr

ot
ot

yp
e

of
 m

ul
ti-

ag
en

t I
D

S

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 371

All classifiers of the source–based layer
as well as meta–classifiers of the first and
top layers were trained and tested based on
DARPA data [3]1. Generalized information
about these data that are used for training
and testing of the classifiers composing the
decision structure depicted in Fig.2 is pre-
sented in Table 1.

3 Models of Data Ageing

According to the used alert correlation
strategy, decisions of meta–classifiers are
updated at any time when new input
("event") produced by some source–based
classifier incomes. Let us recall that while
receiving an updated decision from a
source-based classifier, the meta-classifier
updates its decision using the newly re-
ceived decision and also on the decisions
produced previously by other source-based
classifiers at various time instants. The lat-
ter decisions have different "ages" and
therefore different relevancies to the current
computer security status. Thus, potential
data ageing is one of the important peculi-

arities of the alert correlation system in question. Let us consider the models of data
ageing.

Two data ageing models were explored. The first of them assumes that each data
incoming to the alert correlation layer is assigned certain "age" at the moment of the
computer security status update and if this "age" is less than a fixed threshold (it is in-
dividual for each data source) then the corresponding data are used in the alert corre-
lation "as is". Otherwise, these data are assumed missing:

⎪⎩

⎪
⎨
⎧

∅
+≤≤

= +
+ .,

),(
))(1

1 otherwise

TtttiftD
tD

Ag
ikkkk

ki

where)(tDi –stands for the decision of a base classifier associated with the i-th data

source produced at time instant t; kt stands for the time instant at which the decision

income into meta–classifier; Ag
iT stands for the threshold value of life time of the de-

cision iD produced by the source # i; and ∅ stands for the missing value.

This model was experimentally investigated and the results were in full described
in [5, 8]. The advantages of this model are twofold. On the other hand, this model is
simple enough. On the other hand, if some sensors or data sources fail, i.e. do not

1 Training and testing procedures used in design of classifiers are not considered in the paper.

Table 1. Distribution of attack classes
against types of operating systems

 Type of OS: Redhat

Attack Class Attack name
Number
of cases

back 4

land 22

pod 35

smurf 11

Denial of
Service (DoS)

Attacks

teardrop 7

(DoS) attacks in total 79

ipsweep 7

portsweep 5 Probes attacks

satan 5

Probes attacks in total 17

dict 1

guest 1

imap 3
Remote to User
(R2U) attacks

phf 5

R2U attacks in total 10

User to Root
attacks (U2R

perl 5

372 V. Gorodetsky et al.

produce decision in required time instant then, nevertheless, the combined decision is
produced because meta-layer classifier is capable to process data with missing values.
The sound algorithm solving such task is described in [6]. A drawback of this model
is that it is approximate and in some cases may be too rough.

The second model of data ageing assumes that the learning mechanism has to
automatically determine dependence of informative power of the decision produced
by a source classifier depending on "age". More strictly, this model assumes that each
input of the alert correlation classifier is assigned an additional numerical attribute

),(21 ttiΔ , where),(21 ttiΔ is the "age" of input of i-th source-based classifier pro-

duced at the time instant
1t if it is used in alert correlation procedure of meta-layer at

the time instant 2t . Thus, when i-th source-based classifier produces and sends its de-

cision to meta–level at a time instant itβ the age of this decision is equal to zero,

0)(=Δ i
i tβ . If decision of the alert correlation classifier is produced later, at the time

instant αt then the attribute)(i
i tαΔ takes value)()(i

i ttt βαα −=Λ .

The last model of data ageing is used in the intrusion detection system considered
in this paper. It is important to note that for the model in question, no specific tech-
nique for learning of decision combining algorithm is necessary. Indeed, for this
model, training and testing is a routine (but not trivial) procedure of learning based on
dataset containing both binary and numerical attributes.

4 Architecture of Multi-agent IDS Software Prototype:
 An Outline

The architecture mentioned in the section title is described below in the style assumed
by Gaia methodology implemented and extended within MASDK 3.0 software tool.

4.1 Basic Components of the Architecture

1. Roles
• DataSensor–source of the raw data; performs raw data preprocessing, compu-

tation of the features, translation of the primary events and generation of the
secondary events associated with the data source.

• ObjectDataReceiver–acceptor of the network level features;
• DecisionProvider–source of decisions regarding the computer security status;
• DecisionReceiver–acceptor of the decisions produced by DecisionProviders;
• ObjectMonitor–acceptor of information presenting the host security status.

2. Protocols
• DataTransmission–the protocol transmitting features–related information;
• DecisionTransmission–the protocol transmitting decisions produced;
• UpdateObjectInformation–the protocol responsible for updating of the com-

puter security status related information;

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 373

The aforementioned protocols are basic ones. The auxiliary ones are as follows:

• AttackLogTransmission–the protocol performing transmission of the attack log
(the true labels of the attacks needed for the designed system testing);

• OptionsProtocol–the protocol performing adjusting of initial options determin-
ing the regime of the system operation.

3. Agent classes and roles to perform
The agent classes introduced in the IDS architecture and allocated the roles they

have to perform are as follows:

NetLevelAgent–an agent class performing the DataSensor role intended for raw data
preprocessing and extraction of the events and secondary features;

BaseClassifiers–an agent class assigned the DecisionProvider role performing source-
based classification; it produces decisions when it receives an event from "its" source.
This class is inherited by several subclasse that are as follows:

• DOS_CB: produces decisions when it receives the event ConnectionEvent us-
ing ConnectionBased features; it is trained to detect the DoS attack class;

• DOS_TW: produces decisions when it receives the event TimeWindowEvent
and TimeWindowFeatures features; it is trained to detect DoS attack class;

• DOS_TWT: produces decisions after receiving TimeWindowEvent event and
TimeWindowTraficFeatures features; it is trained to detect DoS attack class;

• Prob_CB: produces decisions after receiving ConnectionEvent event and Con-
nectionBased features; it is trained to detect attacks of the class Probes;

• Prob_CW: produces decisions after receiving the ConnectionWindowEvent
event and ConnectionWindowFeatures features; it is trained to detect attacks
of the class Probes;

• Prob_TWTr: produces decisions after receiving TimeWindowEvent event and
TimeWindowTraficFeatures features; it is trained to detect attacks of the class
Probes;

• R2U_CB: produces decisions after receiving tConnectionEvent event and Con-
nectionBased features; it is trained to detect the attacks of the class R2U;

• R2U_CW: produces decisions after receiving the ConnectionWindowEvent
event and ConnectionWindowFeatures features; it is trained to detect attacks
of the class R2U;

• R2U_CWT: produces decisions after receiving the ConnectionWindowEvent
event and ConnectionWindowTraficFeatures features; it is trained to detect the
attacks of the class R2U;

• R2U_TWT: produces decisions after receiving the TimeWindowEvent event
and TimeWindowTraficFeatures features; it is trained to detect attacks of the
class R2U.

Metaclassifiers:–an agent class performing the roles DecisionReceiver and Decision-
Provider; it is responsible for combining decisions produced by its child classifiers
(Fig.2). It is replicated into the following instances:

• DOS_MC: an agent instance of the Metaclassifier class correlating alerts of the
source-based classifiers trained for detection of DoS attack class;

• Prob_MC: an agent instance of the class Metaclassifier correlating alerts of the
source-based classifiers trained for detection of Probes attack class;

374 V. Gorodetsky et al.

• R2U_MC: an agent instance of the class Metaclassifier correlating alerts of the
source-based classifiers trained for detection of R2U attack class;

• Normal MC: an agent instance of the Metaclassifier class combining alerts ar-
riving from the meta–classifiers correlating alerts of particular attack classes;

SystemMontor–an agent class assigned the role ObjectMonitor; it provides visualiza-
tion of the information about security status of the host depending on time.

The instances of the above agents are structured according to the conceptual het-
erogeneous alert correlation structure depicted in Fig.2. The above mentioned compo-
nents represented graphically in Fig.3 determine configuration of the agents of the
implemented multi-agent IDS.

Fig. 3. IDS MAS agency configuration

Fig. 4. Model of behavior of the agent class NetLevelAgent

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 375

4.2 Agent Classes Behavior Specification

Behavior of each agent class is specified in two layers. At the upper layer, the struc-
ture of the interaction of the state machines representing particular variants of the
agent class behavior, which correspond to different agent services2, is specified. At
the lower layer, each such state machine is specified in details. Correspondingly, let
us describe some of the agent class services distinguishing upper and lower layers.

4.2.1 NetLevelAgent Agent Class
The basic services of this agent class are the followings (Fig.4):

• NetworkSensor–provides monitoring of the network traffic and generation of
the primary events associated with this data source. In other words, it is re-
sponsible for dispatching of input events and sequencing of its preprocessing;

• NetworkLevelF–provides computation of the connection-based features and
generation of the secondary events;

• Spam – provides forwarding of the events and feature values to the source-
based classifiers.

Interface of the options of the adjustment of the NetworkSensor service is shown in
Fig.5.

Let us describe state machines implementing the services of the NetLevelAgent
agent class. An example of the state machine corresponding to the NetworkLevelF
service is presented in Fig.6. In the state Get_Input_Data the newly arrived data are
analyzed. After detection of the type of the data arrived, the latter are processed ac-
cording to their type: the packet data are processed in Process_Packet state, while
connection–associated data are processed in the Process_Connection state. After this,

2 Term "agent service" is used in multi-agent technology to denote an agent's functionality.

Fig. 5. Options of the service NetworkSensor adjusting

376 V. Gorodetsky et al.

the list of all events, both primary and secondary, is formed (in the state RecalcList-
Creation). Then, for each event stored in the aforementioned list, computation and
updating of the features with the subsequent call of the service SpamState is carried
out. This is done in the state RecalcList. In turn, the service SpamState performs for-
warding the computed feature values to the source-based classifiers associated with
the respective events in the above mentioned list.

4.2.2 Alert Correlation Agent Classes
In general, the agent classes mentioned in the subsection title are the same; they only
differ (1) in their rule bases used for alert correlation, (2) in the lists of the source-
based classifiers forming their inputs and also (3) in the lists of the receivers of the

Fig. 6. State machine-based specification of the NetworkLevelF service

Fig. 7. Services of the agent classes responsible for meta–classification

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 377

decisions produced by alert correlation agents. The basic services of these agent
classes structured as it is depicted in Fig.7 are the followings:

• IncomingDecision–service responsible for processing of the incoming deci-
sions of the child classifiers of the lower layer;

• IncomingOption – service responsible for adjusting of the agent class options;
• DecisionQueueParser – service responsible for processing of the incoming de-

cisions stored in the queue;
• QM–service implementing alert correlation (meta-classification functionality).

Detailed specification of the state machines implementing the aforementioned ser-
vices is omitted due to the lack of the paper space.

4.2.3 Source-Based Classifier Agent Class
The basic services of the Source–based classifier agent class are as follows:

• IncomingData–service implementing the incoming events and data processing;
• IncomingOption–service responsible for adjusting of the agent class options;
• ConnQueueParser–service responsible for processing of the incoming deci-

sions stored in queue (Connection-based, Windows-based);
• QConn – service responsible for producing decisions (Alert or Normal).

Like all the services, the aforementioned ones are specifies and implemented in
terms of state machines, whose description is omitted. due to lack of the paper space.

5 Experimental Results

The multi-alert correlation IDS MAS designed according to the above described prin-
ciples and architecture was implemented using MASDK 3.0 platform providing sup-
port of the MAS technology [7]. All the classifiers composing the proposed homoge-
neous alert correlation structure were trained using VAM [9] and GK2 [6] algorithms.
The resulting system as a whole was tested using DARPA data [3].

Some testing results are illustrated in Fig.8. These figures present information
about performance quality (probabilities of correct classifications and probabilities of
false alarms and signal missing) of the alert correlation classifiers dealing with inputs
produced by the source-based classifiers trained for detection of attacks of particular
classes. At that, data used in training procedures as "counter class" include basically
normal traffic. But, if, for a source-based classifier, the difference between the sums
of the weights of rules voting in favor of Alert and Normal decision is less than a se-
lected threshold (it is computed for each particular classifier experimentally in testing
procedure) then the classifier refuses to classify input data. Analysis proved that as a
rule, such kind of situation actually corresponds to some other class of attacks. Fig.8
illustrates the performance quality of the alert correlation meta-classifier destined for
detection of the DoS class of attacks. It illustrates graphically the probability distribu-
tions of correct alert detection and various types of errors. An important observation
is that even if the source-based classifiers operate not very precise, at the meta–layer,
where the decisions of the particular source-based classifiers are combined, the

378 V. Gorodetsky et al.

quality of the DoS attack detection
is increased. The same is valid for
other alert correlation classifiers.

6 Conclusion

Though intrusion detection task is
being a subject of intensive re-
search during at least the last dec-
ade, it remains to be a problem;
many important issues and peculi-
arities of this task have not been
investigated in depth. One of the
remarkable drawbacks of the ex-
isting approaches is simplified
modeling of input data used in de-
velopment of IDS. Indeed, along

with multiplicity and heterogeneity of data sources to be taken into account, several
other specific features of the intrusion detection system input are critical to fill in the
gap between existing models used in IDS and reality. Among these features, temporal
nature, high-frequency dynamics and asynchronous nature of input are of the primary
importance. These factors result in the necessity to account such an important issue as
information ageing caused by the fact that input data streams arrive in IDS with vari-
ous averaged frequencies and asynchronously.

The input data model considered in this paper takes into account the aforemen-
tioned factors. For such model of IDS input, the paper proposes an approach called
heterogeneous alert correlation. The major idea of the approach is to organize IDS
system as a structured set of interacting classifiers dealing with data received from
various data sources. The first layer of this structure is composed of classifiers operat-
ing with inputs of particular data sources. Each of them is trained for detection of at-
tacks of a fixed class (in the developed IDS software prototype, the attack classes
DoS, Probe, and U2R are considered). Each of such specialized classifiers produces
decisions of two types: "Alert" in regard to the particular class of attacks (e.g. "DoS
alert", "U2R alert", etc.) or "Normal". A peculiarity of such classifiers operation is
that they produce decisions in different time instants. These decisions asynchronously
arrive at the second layer responsible for correlation of the alerts produced by the first
layer classifiers trained for detection of the attacks of the same class. In turn, the re-
sults of the alert correlations produced by the specialized classifiers of the second
layer are asynchronously forwarded to the top layer. The top-layer classifier solves in-
trusion detection task: it combines heterogeneous alerts of specialized alert correlation
classifiers and combines them producing decision it terms of particular attack class.

Two theoretical problems should be solved to implement the described approach:
(1) development of data ageing model; and (2) development of specific techniques to
train alert correlation classifiers to make decisions based on asynchronous input. In
the developed IDS prototype the solutions proposed by the authors in previous re-
search are used [5, 8]. This approach was implemented within multi-agent IDS

Fig. 8. Evaluation of the performance quality of the
DOS_MC meta– classifier

 Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems 379

dealing with three classes of attacks, DoS, Probe and U2R, and operating with input
traffic. Architecture of the prototype and some experimental results are outlined.

The intended directions for future research will concern enrichment of the devel-
oped structure of interacting classifiers by the learning capabilities.

Acknowledgement

This research is supported by grant #1993P of European Office of Aerospace R&D
and Russian Foundation for Basic Research (grant 04-01-00494a).

References

1. Bass, T.: Intrusion Detection and Multisensor Information Fusion: Creating Cyberspace
Situational Awareness. Communication of the ACM, Vol. 43(4) (2000) 99–105

2. http://www.ll.mit.edu/IST/ideval/data/1998/1998_data_index.html
3. Cuppens, F., Miege, A.: Alert correlation in a cooperative intrusion detection framework.

IEEE Symposium on Research in Security and Privacy (2002)
4. Debar, H., Wespi, A.: Aggregation and Correlation of Intrusion-Detection Alerts. RAID

2001, LNCS 2212 (2001) 85–103
5. Gorodetsky, V., Karsaev, O., Samoilov, V.: On-Line Update of Situation Assessment: Ge-

neric Approach. International Journal of Knowledge-Based & Intelligent Engineering Sys-
tems. IOS Press, Netherlands, 2005 (Accepted for publication)

6. Gorodetsky, V., Karsaev, O. Samoilov, V.: Direct Mining of Rules from Data with Miss-
ing Values. Studies in Computational Intelligence, T.Y.Lin, S.Ohsuga, C.J. Liau, X.T.Hu,
S.Tsumoto (Eds.). Foundation of Data Mining and Knowledge Discovery, Springer (2005)
233–264

7. Gorodetsky, V., Karsaev, O., Samoilov, V., Konushy, V., Mankov, E., Malyshev, A.:
Multi-Agent System Development Kit. R.Unland, M.Klusch, M.Calisti (Editors). "Multi-
Agent Technology and Software Tools", Whitestein Publishers. Accepted for publication
(2005)

8. Gorodetsky, V., Karsaev, O. Samoilov, V.: On-Line Update of Situation Assessment
Based on Asynchronous Data Streams. 8th International Conference on Knowledge-Based
Intelligent Information & Engineering Systems, LNAI, Vol. 3213, Springer (2004) 1136–
1142

9. Gorodetski, V., Skormin, V., Popyack, L.: Data Mining Technology for Failure Prognos-
tics of Avionics, IEEE Transactions on Aerospace and Electronic Systems. Volume 38, # 2
(2002) 388–403

10. Lazarevic, A., Ertoz, L., Kumar, V., Ozgur, A., Srivastava, J.: A Comparative Study of
Anomaly Detection Schemes in Network Intrusion Detection. 3rd SIA Conference on Data
Mining, San Francisco, CA (2003)

11. Morin, B., Debar, H.: Correlation of Intrusion Symptoms: An Application of Chronicles.
RAID 2003, LNCS 2820, Springer-Verlag (2003) 94–112

12. Pietraszek, T.: Using Adaptive Alert Classification to Reduce False Positives in Intrusion
Detection, RAID 04, LNCS volume 3224 (2004) 102–124

13. Song, T., Ko, K., Alves-Foss, J., Zhang, C., and Levitt, K.: Formal Reasoning About Intru-
sion Detection Systems, RAID 04, LNCS volume 3224 (2004) 278–295

14. 14 Valdes, A., Skinner, S.: Probabilistic Alert Correlation. W. Lee, L. Me, and A. Wespi
(Eds.): RAID 2001, LNCS 2212, Springer-Verlag (2001) 54–68

15. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. Journal of Autonomous Agents and Multi-Agent Systems, Vol. 3.
No. 3 (2000) 285–312

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 380 – 393, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Behavior-Based Model of Detection and Prevention
of Intrusions in Computer Networks

Victor Serdiouk

Department of Information Technologies,
“MATI” – Russian State Technological University, 121552, Orshanskaya 3, Moscow, Russia

vicsmati@online.ru

Abstract. The paper describes a new intrusion detection and prevention model,
which is based on state machine-based formal grammar. This behavior-based
model allows to detect computer attacks by means of normal network traffic
modeling. The parameters of such normal network traffic are presented in a
formal grammar. Each data packet that violates these parameters is considered
as a part of intrusion and blocked by network filters. The described model was
implemented in Intrusion Detection and Prevention System “Forpost” and
successfully tested in a complex network environment.

1 Introduction

During last decade the number of successful network attacks has increased in many
times [9]. The damage caused by these attacks is estimated in hundreds millions of
dollars. At the same time current intrusion detection models seem incapable of
dealing with many types of modern attacks. These factors lead to the necessity of
development of new methods for the intrusion detection and prevention.

This paper describes a new approach for intrusion detection and prevention
modeling, which uses state machine-based formal grammars. The rest of the paper is
structured as follows. Section 2 describes the advantages and disadvantages of
existing intrusion detection models. Section 3 presents new behavior-based intrusion
detection model developed by the author. Section 4 describes practical
implementation of developed model, which was integrated in Intrusion Detection and
Prevention System “Forpost”. Section 5 summarizes the main results of the paper.

2 Overview of Existing Intrusion Detection Models

Intrusion detection models formally describe the process of computer attacks
detection. At present there are two complementary types of intrusion detection
models — signature-based models and behavior-based models. The first type of
models provides the search for evidence of intrusions based on knowledge
accumulated from known attacks [2, 4]. Signature-based models present an attack in a
form of so-called signature, which can be presented as a regular expression, semantic
expression of specialized language, formal mathematical structure, etc. Behavior-

 Behavior-Based Model of Detection and Prevention of Intrusions 381

based models search for deviations from usual computer system behavior based on
the observations of the system during a known normal state. Such deviations are
considered as computer attacks.

2.1 Signature-Based Intrusion Detection Models

One of the most popular signature-based intrusion detection models is an expression
matching model [7]. This model provides searching the source data (e.g. log entries,
network traffic, etc.) for occurrence of specific patterns. These patterns are usually
specified by means of regular expression syntax. For example, the pattern like
“.*[Cc][Mm][Dd]\.[Ee][Xx][Ee].*” specifies the signature of an attack, aimed at the
unauthorized execution of file “cmd.exe”. Sometimes signatures are built on the basis
of expression matching models, complemented by specialized programming
languages like C/C++, Java, Perl, etc. In this case signatures are presented as a set of
language operators. The example of attack “Land” signature, which is written in a
specialized scripting language is cited below [3].

The example of attack “Land” signature, written in N-code programming language

filter pptp ip ()
{
 # If sender address is equal to receiver address then
 # the information about attack is written to log
 if (ip.src == ip.dest)
 {
 system.time,eth.src,ip.src,sth.dst to land_recrdr;
 }
}

Specialized languages like N-code allow to define more complex signatures, which
can’t be created by means of simple expression matching models. At present
specialized languages is the most popular method for attack signature development.

Another type of signature-based intrusion detection model is a state-transition
analysis model. This type of model presents attack as a finite state machine, which
describes the transition of computer system from one state to another. The initial state
of computer system in such machine corresponds to pre-attack state, the final state is
associated with the last stage of the attack, which leads to the violation of
confidentiality, integrity or availability of the system. The transition of computer
system from one state to another is related to certain events like application execution,
TCP connection establishment, shell-code transmission, etc. State-transition analysis
model can be visualized by means of graphs or more complex mathematical structures
like Petri-nets. The main disadvantage of described model is that it can represent only
those attacks that are related to some visible changes in computer system.

Intrusion detection models, based on expert systems, allow to describe attack
signatures on natural language with high level of abstraction. The expert system,
which underlies this type of model, consists of a set of rules that describe attacks.

382 V. Serdiouk

Usually all rules of such expert system are written in the following format: “if
<certain conditions> then <certain actions>”. The model also allows to create
interdependent rules, in which the execution of one rule is possible only in the case of
second rule execution. This model can be implemented on the basis of specialized
program languages, such as Prolog. The disadvantage of intrusion detection models,
based on expert systems, is in high complexity of initial rule set development.

The current state of signature-based intrusion detection models allows to make up a
conclusion that existing models can rather effectively provide the detection of existing
type of attacks. The detection of new types of attacks is achieved by means of
behavior-based models, that are described below.

2.2 Behavior-Based Intrusion Detection Models

As was already mentioned above behavior-based models are used for the detection of
deviations from normal computer system state. One of the most widely used models
of this type are statistical models [3, 6]. According to the statistical models the
computer system behavior is measured by a number of variables sampled over time.
Examples of these variables include the user login and logout time, the amount of
processor-memory-disk resources consumed during the session, etc. If current
characteristics of the computer system deviate from the given statistical measures,
then the attack is registered. Intrusion detection models, based on statistical models,
can detect several types of attacks, that use extremely unusual commands. But in most
cases statistical models can detect only the consequences of computer attacks, which
lead to changes in statistical measures. Moreover the practical usage of these models
is characterized by large number of false positives, because in many cases the
deviations of statistical measures are caused by normal system work.

Another type of behavior-based intrusion detection models uses neural networks
for detection of attacks. A neural network is a network of computational units that
jointly implement complex mapping functions. Initially the neural network is trained
with normal computer system behavior traces. After such training the network
becomes capable of determining normal and anomalous system behavior on the basis
of observed events analysis. Each detected anomaly in system behavior is considered
as attack. At present the models, based on neural network, have a low level of
efficiency because of long duration of network training, large number of false
positives and high computational complexity.

Intrusion detection models, based on expert systems, are usually used for detection
of anomalies in network packets during protocol verification. Such verification
implies the check of data packet fields against established standards. All packets that
violate the requirements of corresponding standards are considered as potentially
dangerous. This type of models is implemented in number of commercial Intrusion
Detection Systems. One of the main disadvantages of this model is the inability of
protection against attacks, that use data packets which don’t violate any standards.

Taking into consideration the disadvantages of existing behavior-based intrusion
detection models a new model was developed. The description of this model is cited
in Section 3.

 Behavior-Based Model of Detection and Prevention of Intrusions 383

3 Behavioral Intrusion Detection Model, Which Uses State
 Machine-Based Formal Grammars

As a result of conducted researches in the field of protection against network attacks a
new behavioral intrusion detection model was developed. This model combines the
functional capabilities of other models, based on expert systems and state transition
analysis. The model is designed for the detection of anomalous network traffic that is
used for informational attack realization. The developed model allows to detect the
following types of potentially dangerous network packets:

− packets with syntax and semantics, that doesn’t correspond to RFC-standards,
− packets, that addressed to non-existent informational resources,
− packets, which length exceeds the specified restrictions,
− packets with commands, which are not supported by computer system applications,
− other types of packets that violate the template of normal computer system traffic.

 The developed model is based on finite state language L which describes the
template of normal network traffic that is transmitted in computer system. Language L
consists of strings, each string corresponds to normal network packet that can be
correctly processed by computer system applications. Language L is specified by
means of state machine-based grammar of the following type: A = < S, X, Y, s0, ft, fs,
F, sa>, where S – the set of states, X – the set of input symbols, Y – the set of semantic
operators that analyze the semantics of input data, s0∈S – the initial state, ft: S x X →
S – the state transition function, fs: S x X → Y – the semantic operator choice function,
F ⊆ S – the set of terminal states which indicate the correct recognition of input string
as a element of language L, sa∈S – the terminal state which indicate that the input
string is not the element of language L.

The algorithm of work of state machine A, that specifies language L, can be
presented as follows. The state machine A processes the input string, which
corresponds to an incoming data packet that must be processed by the protected
computer system. If the state machine will reach one of the terminal states of set F it
will mean that analyzed data packet doesn’t pose any danger to the computer system
and can be passed through. Otherwise, reaching the state sa corresponds to the
detection of network attack. In this case the data packet, which corresponds to the
analyzed input string, should be blocked.

The practical usage of behavioral model can be illustrated with the example of state
machine-based grammar AHTTP, which was developed according to the described
approach. This state machine is designed for the detection of network attacks on Web-
servers, that interact with users by means of Hypertext Transfer Protocol (HTTP). The
state-machine AHTTP specifies the language LHTTP which consists of strings, where
each string corresponds to a normal HTTP-request, that can be correctly processed by
the application software of Web-server. The state machine AHTTP consists of the
following modules (Fig. 1): the module of HTTP-method analysis, the module of
Uniform Resource Locator (URL) analysis, the module of HTTP query analysis, the
module of HTTP version analysis and the module of HTTP-headers analysis. Each of
these modules provides the processing of a particular part of the HTTP-request.

384 V. Serdiouk

Fig. 1. The structure of finite state machine AHTTP, designed for the detection of network attacks
on Web-servers

During the analysis of HTTP-requests state machine AHTTP uses the following
auxiliary variables:

− Smethods – one-dimensional string array with the list of allowed HTTP-methods,
− LURL – numeric variable, that specifies the maximum allowed length of the URL

(for example “www.mati.ru/scripts/example.exe” is an URL in the following
HTTP-request “http://www.mati.ru/scripts/example.exe”),

− SURL – one-dimensional string array with list of resources, stored on Web-server
(this array can represent both static and dynamic Web-environment because of the
ability to use regular expressions),

− LNQuery – numeric variable, that specifies the maximum allowed number of
parameters in a HTTP-query (for example “?var1=test1&var2=test2” is query in
the following request “http://www.mati.ru/scripts/example.exe?var1=test1&
var2=test2”),

− LVarLength – numeric variable, that specifies the maximum length of a variable name
being passed via a HTTP-query (for example “var1” and “var2” are variable names
in the following request “http://www.mati.ru/scripts/example.exe?var1=test1&
var2=test2”),

− LValLength – numeric variable, that specifies the maximum length of the data being
supplied for a specific variable (for example “test1” and “test2” are variable data
entries in the following request “http://www.mati.ru/scripts/example.exe?
var1=test1&var2=test2”),

− LNHeaders – numeric variable, that specifies the maximum allowed number of
headers in HTTP-request,

− SVersions – one-dimensional string array, that contains the list of HTTP protocol
versions, supported by the protected Web-server,

− SHeaders – one-dimensional string array with the list of allowed HTTP-headers,
− Z – temporary string variable, which is used for the storage of HTTP-request

fragments,
− i, j, k – temporary numeric variables, that are used as counters.

The variables Z, i, j and k are initialized automatically during the work of state
machine AHTTP, whereas all other variables should be initialized by the operator before

 Behavior-Based Model of Detection and Prevention of Intrusions 385

the start of state machine AHTTP according to the RFC requirements and specific
characteristics of the protected Web-server.

For the sake of simple graphical representations of state-machine modules we will
use the following symbolic notations:

− A – set of English alphabet letters,
− N – set of numbers (0 - 9), symbols «.», «#», «?», «/», «%» and underline symbol,
− NOP – semantic operator, which doesn’t perform any actions,
− “_” – space symbol,
− “CRLF” – symbol, which denotes carriage return and line feed.

The description of modules of state machine AHTTP is cited below.

3.1 Module of HTTP-Method Analysis

The module of HTTP-method analysis starts the processing of input symbols of state
machine AHTTP. The module checks that the analyzed HTTP-request is based on one
of the allowed HTTP-methods, which are defined in variable Smethod. The graph model
of this module is depicted in Fig. 2.

The first module consists of three states s0, s1, s2∈S and three semantic operators y0,
y1, y2∈Y, that are executed during the transition of the machine from one state to
another. The description of these states and semantic operators of the module is cited in
Table 1.

Fig. 2. The graph model of HTTP-method analysis module of finite state machine AHTTP

Table 1. The description of states and semantic operators of HTTP-method analysis module

State
transition

Transition
condition

Semantic operator, which is
executed during the transition

Transition
from s0 to s1

The first input
symbol is a letter of

English alphabet a∈A

The semantic operator y1 is executed. Operator y1

clears the value of Z (Z=“”) and initializes it with
the first input symbol a∈A (Z=a)

Transition
from s1 to s1

The input symbol is a
letter of English
alphabet a∈A

The semantic operator y2 is executed. This operator
concatenates the value of Z with the input symbol a
(Z = Z + a)

Transition
from s1 to s2

The input symbol is a
space symbol “_”

The semantic operator y2 is executed. Operator
performs the following check. If the value of Z
corresponds to one of elements of Smethods then the
subsequent processing of input string is
implemented by the module of URL analysis.
Otherwise the processing of input strings is stopped
because the analyzed HTTP-request contains the
unsupported HTTP-method

386 V. Serdiouk

3.2 Module of Uniform Resource Locator analysis

The module of URL analysis checks the length of the URL and verifies that the
HTTP-request is addressed to one of the existing resources of the Web-server. The
module uses two variables during the URL analysis – LURL and SURL. The graph model
of the URL analysis module is presented in Fig. 3.

Fig. 3. The graph model of Uniform Resource Locator analysis module of state machine AHTTP

Table 2. The description of states, transitions and semantic operators of URL analysis module

State
transition

Transition condition Semantic operator, which is
executed during the transition

Transition
from s2 to s3

The first input symbol
is a letter of English

alphabet a∈A

The semantic operator y4 is executed. Operator y4
performs the following actions:
− clears the value of variable Z (Z=“”) and

initializes it with the input symbol a (Z = a),
− initializes variable i with “1” (i = 1)

The input symbol is a
letter of English
alphabet a∈A

The semantic operator y6 is executed. Operator y6
performs the following actions:
− concatenates Z with input symbol a (Z=Z+a),
− increments the value of variable i (i = i+1),
− performs the following check – if i > LURL, then

subsequent processing of input strings is stopped
because the length of analyzed URL violates the
specified restrictions Transition

from s3 to s3

The input symbol is a
symbol n∈N

The semantic operator y5 is executed. Operator y5
performs the following actions:
− concatenates Z with input symbol n (Z = Z + n)

and increments the value of i (i = i+1),
− performs the following check – if i > LURL, then

subsequent processing of input strings is stopped
because the length of analyzed URL violates the
specified restrictions

Transition
from s3 to s7

The input symbol is a
space symbol “_”

Transition
from s3 to s4

The input symbol is
a symbol “?”

The state machine executes semantic operator y7,
which performs the following check. If Z is not
equal to one of the elements of array SURL then
subsequent processing of input strings is stopped
because the analyzed URL is addressed to non-
existent resource of Web-server

 Behavior-Based Model of Detection and Prevention of Intrusions 387

The description of state transitions, transition conditions and semantic operators of
the module is cited in Table 2.

If the URL analysis module reaches state s4 it means that HTTP-request contains
query parameters that must be processed by the module of HTTP query analysis. The
transition to state s7 means that URL is followed by the HTTP version field, which
must be processed by the module of HTTP version analysis. In any other case the
state machine AHTTP is transferred to final state sa.

3.3 Module of HTTP Query Analysis

The module of HTTP query analysis performs the following functions:

− checks the string length of the variable name being passed via a HTTP-query. The
maximum length shouldn’t exceed the value, specified in variable LVarLength,

− checks the data value of a specific variable. The maximum length shouldn’t exceed
the value, specified in variable LValLength,

− checks the number of parameters in HTTP-query. The maximum number of
parameters shouldn’t exceed the value, specified in variable LNQuery.

The graph model of HTTP query analysis module is shown in Fig. 4.

Fig. 4. The graph model of HTTP query analysis module of finite state machine AHTTP

The description of state transitions, transition conditions and semantic operators of
the HTTP query analysis module is cited in Table 3.

In the case of transition to state s7 the state machine starts the processing of HTTP
version number. In any other case the state machine AHTTP is transferred final state sa.

3.4 Module of HTTP Version Analysis

The module of HTTP version analysis checks that the version number equals to one
of the elements of string array SVersions. The graph model of this module is depicted in
Fig. 5.

The first module consists of three states s7, s8, s9∈S and three semantic operators
y14, y15, y16∈Y, that are executed during the transition of the machine from one state to
another. The description of state transitions, transition conditions and semantic
operators of the HTTP version analysis module is cited in Table 4.

388 V. Serdiouk

Table 3. The description of state transitions, transition conditions and semantic operators of the
HTTP query analysis module

State
transition

Transition
condition

Semantic operator, which is
executed during the transition

Transition
from s4 to s5

The first input
symbol is a letter of

English alphabet
a∈A

The semantic operator y4 is executed. Operator y4
initializes the variables i, j, and k with zero values
(i = 0, j = 0, k = 0). Variable i is used for query
variable length calculation, j is used for the
calculation of length of query variable data, k is
used for the calculation of number of query
variables.

The input symbol is
a letter of English

alphabet a∈A Transition
from s5 to s5 The input symbol is

a symbol n∈N

The semantic operator y9 is executed. Operator y9
performs the following actions:
− increments the value of variable i (i = i+1),
− performs the following check – if i>LVarLength,

then subsequent processing of input strings is
stopped because the length of analyzed query
variable violates the specified restrictions

Transition
from s5 to s6

The input symbol is
a symbol “=”

The semantic operator y10 is executed. Operator y10
reinitialize the variable i with zero value (i=0)

The input symbol is
a letter of English

alphabet a∈A Transition
from s6 to s6 The input symbol is

a symbol n∈N

The semantic operator y12 is executed. Operator y12
performs the following actions:
− increments the value of variable j (j = j+1),
− performs the following check – if j>LValLength,

then subsequent processing of input strings is
stopped because the length of analyzed data
violates the specified restrictions

Transition
from s6 to s5

The input symbol is
a symbol “&”

The semantic operator y11 is executed. Operator y11
performs the following actions:
− initializes the variable j with zero value (j=0),
− increments the value of variable k (k=k+1),
− performs the following check – if k>LNQuery, then

subsequent processing of input strings is
stopped because the number of query
parameters violates the specified restrictions

Transition
from s6 to s7

The input symbol is
a space symbol “_”

The semantic operator y13 is executed. Operator y13
performs the following actions:
− increments the value of variable k (k=k+1),
− performs the following check – if k>LNQuery, then

subsequent processing of input strings is
stopped because the number of query
parameters violates the specified restrictions

 Behavior-Based Model of Detection and Prevention of Intrusions 389

Fig. 5. The graph model of HTTP version analysis module of finite state machine AHTTP

Table 4. The description of state transitions, transition conditions and semantic operators of the
HTTP version analysis module

State
transition

Transition
condition

Semantic operator, which is
executed during the transition

Transition
from s7 to s7

The first input
symbol is a letter of

English alphabet
a∈A

No semantic operators are executed

Transition
from s7 to s8

The input symbol is
a symbol “/”

The semantic operator y14 is executed.
Operator y14 clears the value of variable Z
(Z=“”)

Transition
from s8 to s8

The input symbol is
a symbol n∈N

The semantic operator y15 is executed.
Operator y15 concatenates the value of variable
Z with input symbol n (Z = Z + n)

Transition
from s8 to s9

The input symbol is
a symbol “CRLF”

The semantic operator y16 is executed.
Operator y16 performs the following check – if
the value of Z is not equal to any of the
elements of array SVersions, then subsequent
processing of input strings is stopped because
the version of analyzed HTTP-request can’t be
correctly processed by the Web-server. In this
case state machine AHTTP is transferred final
state sa

3.5 Module of HTTP-Headers Analysis

The module of HTTP-headers analysis checks the length of query variables and
values according to the restrictions, specified in variables LVarLength and LValLength. This
module also checks that HTTP-request contains only allowed headers, that are
specified in array SHeaders. The graph model of the module is depicted in Fig. 6.

The description of these states and semantic operators of the HTTP-headers
analysis module is cited in Table 5.

The transition to state s12 means that the analyzed HTTP-request doesn’t pose any
danger to the computer system and can be passed through. In any other case the state
machine AHTTP is transferred to final state sa and the packet must be blocked.

390 V. Serdiouk

Fig. 6. The graph model of HTTP-headers analysis module of finite state machine AHTTP

The described intrusion detection model can be used for the protection other
network protocols such as SMTP, FTP, SNMP, SOAP, etc. This model can detect
both known and new types of network attacks on computer systems. The model can
also be easily extended by means addition of new parameters.

The developed model belongs to the class of specification or policy based intrusion
detection techniques. In contrast to the existing models of this class, the behavioral
intrusion detection model uses state machine-based formal grammars as a basic
mathematical tool for attack detection. Such formal grammars allow more precise
definition of parameters, that can be used for intrusion detection.

4 Practical Implementation of Developed Behavior-Based
 Intrusion Detection Model

The developed behavior-based intrusion detection model was implemented in
Intrusion Detection and Prevention System (IPS) named “Forpost”. IPS “Forpost”
consists of the following components:

− network and server sensors, designed for the collection and analysis of information
about network packets, transmitted in computer system,

− response module, that perform different types of responses depending on the types
of detected attacks and administrator settings,

− informational database, designed for centralized storage of configurational data and
results of IPS work,

− management module, which provides centralized remote management of IPS
components over the network,

− coordination center, which provides the interaction between all other components
of the IPS,

− software agents, that provide the transmission of data between sensors and
coordination center.

Network sensors of IPS “Forpost” are implemented as appliances that can detect
informational attacks in particular network segments. Network sensors can be
installed in computer system by means of connecting sensors to hubs or SPAN-ports
of switches. For security purposes network sensors are equipped with two network
adapters, one of which is used as a management interface, and the other provides the
collection of information about data packets [8, 1].

 Behavior-Based Model of Detection and Prevention of Intrusions 391

Table 5. The description of states and semantic operators of HTTP-headers analysis module

State
transition

Transition
condition

Semantic operator, which is
executed during the transition

Transition
from s9 to s10

The first input
symbol is a letter of
English alphabet
a∈A

The semantic operator y17 is executed. Operator y17

performs the following actions:
− initializes variables i, j, and k with zero values (i =

0, j = 0, k = 0). Variable i is used for header length
calculation, j is used for the calculation of length of
header variable data, k is used for the calculation of
number of headers in HTTP-request,

− clears the value of variable Z (Z = “”) and
initializes it with input symbol a.

The input symbol
is a letter of

English alphabet
a∈A

Transition
from s10 to s10

The input symbol
is a symbol n∈N

The semantic operator y18 is executed. Operator y18
performs the following actions:
− increments the value of variable i (i = i+1),
− concatenates the value of Z with input symbol a or

n (Z = Z + a or Z = Z + n),
− performs the following check – if i>LVarLength, then

subsequent processing of input strings is stopped
because the length of analyzed header violates the
specified restrictions

Transition
from s10 to s11

The input symbol
is a symbol “=”

The semantic operator y19 is executed. Operator y19
performs the following actions:
− reinitializes the variable i with zero value (i=0),
− performs the following check – if the value of Z

doesn’t correspond to any of the elements of array
SHeaders then subsequent processing of input strings
is stopped because the analyzed HTTP-request
contains forbidden header,

− reinitializes Z with zero value (Z=0)

The input symbol
is a letter of

English alphabet
a∈A

Transition
from s11 to s11

The input symbol
is a symbol n∈N

The semantic operator y20 is executed. Operator y20
performs the following actions:
− increments the value of variable j (j = j+1),
− performs the following check – if j>LValLength, then

subsequent processing of input strings is stopped
because the length of analyzed data violates the
specified restrictions

Transition
from s11 to s10

The input symbol
is a symbol

“CRLF”

The semantic operator y21 is executed. Operator y21
performs the following actions:
− initializes the value of j with zero value (j = 0),
− increments the value of variable k (k = k+1),
− performs the following check – if k>LNHeaders, then

subsequent processing of input strings is stopped
because the number of headers in HTTP-requests
violates the specified restrictions

Transition
from s10 to s12

Transition
from s9 to s12

The input symbol
is a symbol

“CRLF”
No semantic operators are executed

392 V. Serdiouk

Server sensors are installed on protected servers and provide protection of certain
network services like HTTP, SMTP, POP3, etc. Several server sensors can be
installed on one host. In contrast to network sensors, server sensors can prevent
network attacks by means of filtering potentially dangerous data packets. Server
sensors implement of intrusion detection model, which was described in Section 3 of
the paper. The common structure of IPS “Forpost” is depicted in Fig. 7.

Fig. 7. Common structure of Intrusion Detection and Prevention System “Forpost”

The testing of IPS “Forpost” demonstrated that the developed intrusion detection
model can effectively detect network attacks with low number of false negatives and
false positives. The IPS was tested be means of specialized attack simulation tools [5]
in heterogeneous network environment. At present IPS “Forpost” is successfully
introduced in a number of computer systems of commercial and state enterprises such
as Central Election Committee of Russia, Ministry of Justice, Committee of Financial
Monitoring of Russian Federation, etc.

5 Conclusion

The development of intrusion detection models is currently one of the most rapidly
evolving fields of information security. The main types of signature- and behavior-
based models were considered in this paper. On the basis of existing models
disadvantages a new intrusion detection model was developed. This model uses state
machine-based formal grammars and allows to detect and prevent anomalous network
traffic, related to informational attacks. Developed model can detect both known and
new types of network attacks. The described approach was illustrated by an example
of model, designed for the detection of attacks on Web-servers. The developed model
was implemented in an Intrusion Detection and Prevention system “Forpost”, which
was successfully introduced in a number of computer systems.

 Behavior-Based Model of Detection and Prevention of Intrusions 393

References

1. Avdoshin, S., Serdiouk, V.: Some approaches to information security of communication
networks. Vol. 26. Slovenia, Informatica. (2002) 1–10.

2. Cohen, F.B.: Information System Attacks: A Preliminary Classification Scheme.
Computers and Security, Vol.16, No.1 (1997)

3. Debar, H., Dacier, M., Wespi, A.: Towards a taxonomy of intrusion-detection systems.
Computer Networks. Vol. 31 (1999) 805–822.

4. Denning, D.: An intrusion-detection model. IEEE Transactions on Software Engineering.
Vol. 13 (1987) 222–232.

5. Gorodetski, V., Kotenko I., Attacks against Computer Network: Formal Grammar-Based
Framework and Simulation Tool: RAID 2002 (2002) 219–238.

6. Krsul, I.V.: Software Vulnerability Analysis, Ph.D. Dissertation, Computer Sciences
Department, Purdue University, Lafayette, IN (1998)

7. Kumar, S., Spafford, E.:A pattern matching model for misuse intrusion detection, Proc.
17th National Computer Security Conf. October (1994) 11–21.

8. Serdiouk, V.: Methods of data collection by intrusion detection systems. BYTE/Russia, 54
(2003) 74–78

9. Serdiouk, V.: Prevention of computer attacks. Network Magazine. Russia. 2 (2003) 62-67.
10. Verwoerd, T., Hunt, R.: Intrusion detection techniques and approaches. Computer

communications. Vol. 25 (2002) 1356–1365.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 394 – 405, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Formal Immune Network and Its Implementation for
On-line Intrusion Detection

Alexander O. Tarakanov, Sergei V. Kvachev, and Alexander V. Sukhorukov

St. Petersburg Institute for Informatics, Russian Academy of Sciences,
14th line 39, St. Petersburg, 199178, Russia

tar@iias.spb.su

Abstract. This paper presents a mathematical model of immune network
specified for real-time intrusion detection. A software implementation of the
model has been tested on data simulating a typical US Air Force local area
network (LAN). The obtained results suggest that the performance of the model
is unachievable for other approaches of computational intelligence. A hardware
implementation of the model is proposed based on digital signal processor
(DSP) of super Harvard architecture (SHARC).

1 Introduction

Immunological approach [2], [12], [13] looks rather constructive for information
security assurance (ISA). For example, it is worth mentioning a mathematical notion
of correlation immunity in cryptography [15], self-nonself discrimination in computer
security [8], artificial immune systems as a new computational intelligence approach
[4], [6], and immunocomputing (IC), which is based on mathematical models of
information processing by proteins and immune networks [19].

An IC approach to ISA has been proposed in our previous papers [14], [16]. The
present paper reports a mathematical model of spatial formal immune network (SFIN)
specified for intrusion detection in LAN. The model has been implemented as a
software emulator of the immunochip [17] and tested on data of the UCI KDD
archive [1], which includes a wide variety of intrusions simulated in a military
network environment.

2 Mathematical Model

2.1 Formal Immune Network

Definition 1. Cell is a pair V = (c, P), where class c is natural number Nc ∈ , whereas

),...,(1 qppP = is a point of the q-dimensional Euclidian space: qRP ∈ .

Fix some finite set of cells ("innate immunity"):),...,(10 mVVW = .

Definition 2. Spatial formal immune network (SFIN) is a set of cells: 0WW ⊆ .

 A Formal Immune Network and Its Implementation for On-line Intrusion Detection 395

Let
Ejiij PPd −= be Euclidean distance between cells Vi and Vj. Let h be given

threshold.

Definition 3. Cell Vi recognizes cell Vk if the following conditions are satisfied:

ki cc = , hdik < , ijik dd < , WV j ∈∀ , ij ≠ , jk ≠ .

Let us define the behavior of SFIN by the following two rules.

Rule 1 (Apoptosis). If cell WVi ∈ recognizes cell WVk ∈ then remove Vi from

SFIN.

Rule 2 (Immunization). If cell WVk ∈ is nearest to cell WWVi \0∈ among all cells

of SFIN: ijik dd < , WV j ∈∀ , whereas ki cc ≠ , then add Vi to SFIN.

2.2 Pattern Recognition

Definition 4. Pattern is any n-dimensional column-vector]',...,[1 nzzZ = , where

nzz ,...,1 are real values and (') is symbol of matrix transposing.

Definition 5. Pattern recognition is mapping qRZ → and assigning to Z a class c of
nearest cell of SFIN.

2.3 Training

Let mAA ,...,1 be n-dimensional training patterns with known classes mcc ,...,1 .

Definition 6. Training is mapping of training patterns to cells of SFIN 0W :

mm VAVA →→ ,...,11 , and application of the rules of Apoptosis and Immunization to

all cells of 0W .

Let]',...,[1 mAAA = be training matrix of dimension nm × . Consider singular

value decomposition (SVD: see, e.g., [11]) of this matrix:

''
333

'
222

'
111 ... rrr XYsXYsXYsXYsA ++++= , (1)

where r is the rank of matrix A, ks are singular values and kk XY , are left and right

singular vectors with the following properties: 1' =kkYY , 1' =kk XX , 0' =ikYY ,

0' =ik XX , ki ≠ , rk ,...,1= .

Consider the following mapping qRPZ ∈→ of any n-dimensional pattern Z:

k
k

k XZ
s

p '
1= , qk ,...,1= . (2)

396 A.O. Tarakanov, S.V. Kvachev, and A.V. Sukhorukov

According to [19], formulas (2) can be treated as "binding energies" between
"formal proteins" Z ("antigen") and Xk ("antibodies").

2.4 Mathematical Properties of SFIN

Proposition 1. SFIN's projection),...,(1 qppP = of any training pattern iAZ = ,

mi ,...,1= , lies within unit cube: 1|}||,...,max{| 1 ≤qpp .

Let ''
iAZ = , },...,1{ mi = . Then, according to SVD (1):

''
333

'
222

'
111

'][...][][][rirriii XYsXYsXYsXYsZ ++++= ,

where ikY][is i-th coordinate of left singular vector kY . Multiply both parts of this

equation by kX : ikkk YsXZ][' = , because 0' =ik XX , ki ≠ . Substitution of this

result to (2) leads to ikk Yp][= . Thus, 1' =kkYY proves the proposition.

Proposition 2. SFIN 0W without Apoptosis and Immunization recognizes any

training pattern by zero Euclidian distance.

Let),...,(10 mVVW = be SFIN corresponded to training patterns mAA ,...,1 . Let

),...,(1 qiii ppP = . Let ''
iAZ = , },...,1{ mi = . Then, according to the proof of

Proposition 1, kiikk pYp ==][, qk ,...,1= . Thus, 0=iid , which proves given

Proposition 2.

3 Software Implementation

Based on the above mathematical model of SFIN, consider a description (in a
pseudocode) of the IC algorithm of pattern recognition:

Training
{

1st stage training // map data to SFIN
{

 Get training patterns;
 Form training matrix;
 Compute SVD of the training matrix;
 Store q singular values // "binding energies"

Store q right singular vectors; // "antibody-probes"
 Store left singular vectors; // cells of SFIN

}
2nd stage training // compress data by SFIN
{ // compute for all cells of SFIN:

 Apoptosis;
 Immunization;

}
}

 A Formal Immune Network and Its Implementation for On-line Intrusion Detection 397

Recognition
{
 Get pattern; // "antigen"
 Map the pattern to SFIN;
 Find nearest cell of SFIN;
 Assign class of the nearest cell to the pattern;
}

This IC algorithm has been implemented in a version of the immunochip emulator

using the following standard tools:

- MS Windows XP Operating System;
- MS Visual C++ 6.0 Developer Studio;
- OpenGL for three-dimensional (3D) visualization.

Screenshot of the emulator is shown in Fig. 1.

4 Test Data

The known UCI KDD archive has been used for testing the emulator. This is the data
set used for The Third International Knowledge Discovery and Data Mining Tools
Competition, which was held in conjunction with KDD-99 The Fifth International
Conference on Knowledge Discovery and Data Mining. The competition task was to
build a network intrusion detector, a predictive model capable of distinguishing
between "bad" connections, called intrusions or attacks, and "good" normal
connections.

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and
managed by MIT Lincoln Labs. The objective was to survey and evaluate research in
intrusion detection. A standard set of data to be audited, which includes a wide variety
of intrusions simulated in a military network environment, was provided. The 1999
KDD intrusion detection contest uses a version of this dataset.

Lincoln Labs set up an environment to acquire nine weeks of raw transmission
control protocol (TCP) dump data for a LAN simulating a typical US Air Force LAN.
They operated the LAN as if it were a true Air Force environment, but peppered it
with multiple attacks.

The raw training data was about four gigabytes of compressed binary TCP dump
data from seven weeks of network traffic. This was processed into about five million
connection records. Similarly, the two weeks of test data yielded around two million
connection records.

A connection is a sequence of TCP packets starting and ending at some well
defined times, between which data flows to and from a source IP address to a target IP
address under some well defined protocol. Each connection is labeled as either
normal, or as an attack, with exactly one specific attack type. Each connection record
consists of about 100 bytes.

Attacks fall into 4 main categories:

- DOS: denial-of-service (e.g. "syn flood");
- R2L: unauthorized access from a remote machine (e.g. "guessing password");

398 A.O. Tarakanov, S.V. Kvachev, and A.V. Sukhorukov

- U2R: unauthorized access to local superuser (root) privileges (e.g., various
 "buffer overflow"' attacks);
- probing: surveillance and other probing (e.g., "port scanning").

It is important to note that the test data is not from the same probability distribution
as the training data, and it includes specific attack types not in the training data. This
makes the task more realistic. Some intrusion experts believe that most novel attacks
are variants of known attacks and the "signature" of known attacks can be sufficient to
catch novel variants. The datasets contain a total of 24 training attack types, with an
additional 14 types in the test data only.

Two data files from UCI KDD archive has been used for testing the emulator:

- File 1: kddcup_data_10_percent_gz.htm (7.7 MB);
- File 2: kddcup_newtestdata_10_percent_unlabeled_gz.htm (44 MB).

File 1 is the training data file. It contains 51608 network connection records. Any
record (file string) has the following format, where parameters 2, 3, 4, 42 are
symbolic, while other 38 parameters are numerical (real values):

1) duration, 2) protocol_type, 3) service, 4) flag, 5) src_bytes,
6) dst_bytes, 7) land, 8) wrong_fragment, 9) urgent, 10) hot,
11) num_failed_logins, 12) logged_in, 13) num_compromised,
14) root_shell, 15) su_attempted, 16) num_root, 17) num_file_creations,
18) num_shells, 19) num_access_files, 20) num_outbound_cmds,
21) is_host_login, 22) is_guest_login, 23) count, 24) srv_count,
25) serror_rate, 26) srv_serror_rate, 27) rerror_rate,
28) srv_rerror_rate, 29) same_srv_rate, 30) diff_srv_rate,
31) srv_diff_host_rate, 32) dst_host_count, 33) dst_host_srv_count,
34) dst_host_same_srv_rate, 35) dst_host_diff_srv_rate,
36) dst_host_same_src_port_rate, 37) dst_host_srv_diff_host_rate,
38) dst_host_serror_rate, 39) dst_host_srv_serror_rate,
40) dst_host_rerror_rate, 41) dst_host_srv_rerror_rate, 42) attack_type.

For example, two records (# 1 and # 745) of File 1 are as follows:

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00,
0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00,
normal.
184,tcp,telnet,SF,1511,2957,0,0,0,3,0,1,2,1,0,0,1,0,0,0,0,0,1,1,0.00,
0.00,0.00,0.00,1.00,0.00,0.00,1,3,1.00,0.00,1.00,0.67,0.00,0.00,0.00,
0.00, buffer_overflow.

File 1.1 has also been prepared with the same 51608 records of the same format

just without the last parameter 42) attack_type.
File 2 contains 311079 records of the same format as in File 1.1.
File 1.1 and File 2 are the test data files.
Note that KDD archive does not indicate the correct types of attack for none of the

records of File 2. The only available information on possible attacks is gathered in
Tab. 1 (column 'Code' is the emulator's code of attack). Nevertheless, we have used
File 2 to test whether the emulator is able to detect unknown intrusions, which had not
been presented in the training data of File 1.

 A Formal Immune Network and Its Implementation for On-line Intrusion Detection 399

Table 1. Attack types

Code Attack type File 1 File 2 Code Attack type File 1 File 2
0 normal + +
1 apache2 + 16 pod + +
2 back + 17 portsweep + +
3 buffer_overflow + + 18 rootkit +
4 ftp_write 19 saint +
5 guess_passwd + 20 satan +
6 imap 21 sendmail +
7 ipsweep + + 22 smurf +
8 land + 23 snmpgetattack +
9 loadmodule 24 spy
10 multihop + 25 teardrop +
11 named + 26 udpstorm +
12 neptune + 27 warezclient
13 nmap 28 warezmaster
14 perl 29 xlock +
15 phf + + 30 xsnoop +

5 Test Results

The results of training the emulator by File 1 are shown in Fig.1, where right-hand

screen represents the initial population of SFIN in 3D space (3RZ →) after SVD
(start cells = 51608), while left-hand screen shows the population of SFIN after

Fig. 1. Immunochip emulator for intrusion detection

400 A.O. Tarakanov, S.V. Kvachev, and A.V. Sukhorukov

Apoptosis and Immunization (h=0.001, end cells = 811). Total training time (for
AMD Athlon 1.53 GHz) is 98.7 seconds including 8.03 s for the 1st stage (SVD) and
90.64 s for the 2nd stage (Apoptosis and Immunization).

During the recognition of the records of File 1.1 and File 2, the emulator writes test
results into the output file in the format: Record # - attack_type. For example, four
records (## 744-747) with test results for File 1.1 are as follows (see also Tab. 2):

744 - normal.
745 - buffer_overflow. !!!
746 - buffer_overflow. !!!
747 - normal.

The emulator also shows the on-line projection of any pattern to 3D SFIN (see bold
skew cross in both screens) and write the recognition result on the bottom panel (see
"Class: back !!!").

Test results in Tab. 2 correspond completely to the correct attack types (parameter
42) of File 1.

Table 2. Test results for File 1.1

Records ## attack_type Records ## attack_type
745-746 buffer_overflow 38036-38051 ipsweep
3095-7373 smurf 38052-38151 back
9520-9523 buffer_overflow 38302-38311 ipsweep
9590-9591 rootkit 42498-42519 ipsweep
9928-10007 neptune 42548-42567 ipsweep
10072 satan 42593-42594 ipsweep
10320 phf 42706-42708 ipsweep
13340-13519 portsweep 42730-42761 ipsweep
13569 land 42762-42770 buffer_overflow
13845-13864 pod 42771-42772 land
16326-16327 pod 42773-43385 neptune
17446-37902 neptune 44451-44470 neptune
37929-37939 ipsweep 44800-48452 smurf
37959-37963 ipsweep 48453-48552 teadrop
38005-38012 ipsweep All other normal

Another test has been performed over File 2 to check whether the emulator is able
to detect unknown intrusions, which had not been presented in the training data of
File 1. The intrusion is treated as unknown if the projection of corresponding pattern
to SFIN lies outside of the unit cube, according to Proposition 1. The emulator has
recognized 13 unknown intrusions as the following records ## of File 2:

417, 12674, 97891, 139795, 170498, 176201, 177958, 232570, 236975,
296561, 296657, 96796, 297658.

According to Tab. 1, any unknown intrusion can correspond to one of the

following types of attack that had not been presented in the training data:

apache2, guess_passwd, multihop, named, saint, sendmail, snmpgetattack,
udpstorm, xlock, xsnoop.

 A Formal Immune Network and Its Implementation for On-line Intrusion Detection 401

The recognition time per record is 15.7 ms for both tests of File 1.1 and File 2. This
time includes not only computations but mainly reading the record from test file,
visualization of the recognition result (projection of the pattern to 3D SFIN) in both
screens of the emulator, and writing the result into output file.

6 Comparison with Neural Network

There is no possibility of direct comparison between immune and neural networks on
the same data of File 1 and File 2, since none publication has been found on the
training and testing any neural network on these data. Nevertheless, a comparison
between SFIN and neural network has been performed using the sonar benchmark
data available in the same KDD archive [1]. This is the data set used by [9] in their
study of the classification of sonar signals using a neural network. The task is to train
a network to discriminate between sonar signals bounced off a metal cylinder (i.e.
submarine) and those bounced off a roughly cylindrical rock.

The KDD file "sonar.mines" contains 111 patterns obtained by bouncing sonar
signals off a metal cylinder at various angles and under various conditions. The file
"sonar.rocks" contains 97 patterns obtained from rocks under similar conditions. The
transmitted sonar signal is a frequency-modulated chirp, rising in frequency. The data
set contains signals obtained from a variety of different aspect angles, spanning 90
degrees for the cylinder and 180 degrees for the rock.

Each pattern is a set of 60 numbers in the range 0.0 to 1.0. Each number represents
the energy within a particular frequency band, integrated over a certain period of time.
The integration aperture for higher frequencies occurs later in time, since these
frequencies are transmitted later during the chirp.

The label associated with each record contains the letter "R" if the object is a rock
and "M" if it is a mine (metal cylinder). The numbers in the labels are in increasing
order of aspect angle, but they do not encode the angle directly.

Two series of experiments have been reported in [9]: 1) an "aspect-angle
independent" series, in which the whole data set is used without controlling for aspect
angle, and 2) an "aspect-angle dependent" series in which the training and testing sets
were carefully controlled to ensure that each set contained cases from each aspect
angle in appropriate proportions.

A standard back-propagation network was used for all experiments in [9]. The
network had 60 inputs and 2 output units, one indicating a cylinder and the other a
rock. Experiments were run with no hidden units (direct connections from each input
to each output) and with a single hidden layer with 2, 3, 6, 12, or 24 units. Each
network was trained by 300 epochs over the entire training set.

Not surprisingly, the neural network's performance on the test set is somewhat
better when the aspect angles in the training and test sets are balanced. These
classification results of the neural network for "aspect-angle dependent" series are
shown in Tab. 3.

It has been also reported that three trained human subjects were each tested on 100
signals, chosen at random from the set of 208 returns used to create this data set.
Their responses ranged between 88% and 97% correct. However, they may have been
using information from the raw sonar signal that is not preserved in the processed data
sets presented here (according to [9]).

402 A.O. Tarakanov, S.V. Kvachev, and A.V. Sukhorukov

Table 3. Classification of sonar targets by neural network

Hidden units % Right on Training Set % Right on Test Set
0 79.3 73.1
2 96.2 85.7
3 98.1 87.6
6 99.4 89.3

12 99.8 90.4
24 100.0 89.2

According to [1], the authors of this work [9] further report that a nearest neighbor
classifier on the same data gave an 82.7% probability of correct classification.

The immunochip emulator for intrusion detection has also been trained and tested
by the "aspect-angle dependent" sets. Classification results of the immunochip
emulator using only the 1st stage training (see Section 3) are shown in Tab. 4.

Table 4. Classification of sonar targets by immunochip emulator

Dimension of SFIN
(q)

Training time
(s)

% Right on
Training Set

% Right on
Test Set

Total
Errors

3 0.02 100.0 76.9 24
5 0.03 100.0 84.6 16
7 0.03 100.0 89.4 11
8 0.06 100.0 90.3 10
9 0.08 100.0 93.2 7

10 0.08 100.0 92.3 8

Brief comparison between Tab. 3 and Tab. 4 shows that the best classification of
the immunochip emulator (93.2%) is better than that of the neural network (90.4%).
Besides, the emulator does not make mistakes on the training set (this is guaranteed
by Proposition 2).

Note very low training time of the emulator in Tab. 4 (for AMD Athlon 1.53 GHz).
Unfortunately, the training time of neural network in Tab.3 is unavailable from [1] or
[9]. However, it can be estimated indirectly by the work [22], which uses the same
sonar benchmark.

The authors of this work [22] report 58 s or 72 s (for Pentium 350 MHz) for their
genetic algorithm applied to the neural networks with 3 or 4 hidden units respective
and note that "This method is efficient because the time cost for evolution is about 2
or 3 orders less than that spent in training the networks." Such estimation confirms
that the training time of the immunochip emulator is far lower than that of neural
networks.

7 Hardware Implementation

A perspective way of hardware implementation of the immunochip can be provided
by DSP of new TigerSHARC family. Such DSP is compatible with the standard PC,
where it can be connected via PCI bus. Therefore, a hardware emulator of the

 A Formal Immune Network and Its Implementation for On-line Intrusion Detection 403

immunochip can be implemented as a small standalone electronic board. A PC or PC
compatible mobile computer (Notebook) can be used as a host workstation for user-
friendly visualization of the results of processing, for debugging of algorithms, etc.

DSP provides, essentially, the application of mathematical operations to a series of
digital samples representing physical world signals such as audio waves, or complex
radar or sensor samples. DSP technology is nowadays common place in devices such
as mobile phones, multimedia computers, video recorders, CD players, hard disc drive
controllers and modems, and will soon replace analog circuitry in commercial TV sets
and telephones. An important application of DSP is also in signal compression and
decompression as well as encryption in the field of ISA [10].

The architecture of DSP allows overcome main drawbacks of general-purpose
microprocessors. The program bus and the data bus are separate from each other, as
are the program and data memories. These parallel buses allow instruction and data to
be fetched at the same time. This separation of data and program busses characterizes
the so-called Harvard architecture.

Analog Devices has introduced so-called super Harvard architecture (SHARC).
The TigerSHARC 128-bit DSP is a high performance next generation version of
SHARC. The TigerSHARC combines multiple computation units for floating-point
and fixed-point processing.

Typically, real-time DSP systems require fast, deterministic input/output (I/O) and
number crunching capability. Applications may range from basic processing of a
small image with a single channel of incoming data (e.g. filtering or averaging) to a
sonar system with hundreds of incoming data channels and a massive parallel
processing requirement. The TigerSHARC has been designed to operate in the
demanding world of telecommunications, but facilities that make it equally suitable
for a wide range of applications, including aerial and maritime equipment (radar,
avionics, sonar, etc.) and professional audio (mixers, digital effects, etc.).

Apparently, the TigerSHARC is the most effective fixed/floating-point device to
date. The TigerSHARC is well suited to high-speed, low-power applications,
involving large numbers of calculation and data I/O. The built-in link ports can
transfer data between processors and provide fast interfaces to external hardware,
yielding true system flexibility. Similarly, the dual compute blocks can handle mixed
floating-point and fixed-point algorithms simultaneously, leading to very efficient and
simplified software implementation. Overall, high-performance processing coupled
with low power consumption (<1.5W) make the TigerSHARC DSP unbeatable for
many applications. Since DSP algorithms permit a very high degree of parallelism,
DSP chips can be used for super-computing with strong requirements like high
performance and flexibility at very low power dissipation.

On the other hand, one of the main concerns when moving to a new chip is the
effort involved in porting existing code to the new device. This can have a larger
effect on the timescale of a project than the new hardware design, especially when
software engineers have to learn a new development environment and a new assembly
language. The TigerSHARC addresses both of these issues by keeping the same
Visual DSP++ environment for all its processor families and maintaining a similar
style of algebraic assembly programming.

Therefore, the choice of TigerSHARC architecture as a basis for the hardware
implementation of the immunochip is caused by the following main reasons: 1) the

404 A.O. Tarakanov, S.V. Kvachev, and A.V. Sukhorukov

highest achievable performance for a large class of real-time floating-point
applications and 2) the availability of rather advanced software tools for
implementation of the developed algorithms.

According to our preliminary experiments, the TigerSHARC evaluation board EZ-
KIT (ADSP-TS101S 250 MHz) works by 35 times faster than PC (Intel Celeron 400
MHz) while implementing an IC algorithm of recognition of results in immunoassay-
based diagnostic arrays [18]. However, main advantage of the TigerSHARC
implementation of the immunochip for on-line intrusion detection can be previewed
in extracting of the recognizing pattern (network connection record) from the input
flow (network traffic).

8 Conclusion

According to test results, SFIN reduces the storing patterns by 63.6 times using
Apoptosis and Immunization without any loss of accuracy of recognition. Although
this increases the training time (from 8 seconds to 1.5 minutes for AMD Athlon 1.53
GHz), nevertheless, more important is the decrease of the recognition time at least by
60 times per pattern (by decreasing number of the stored cells of SFIN to be
compared with recognizing pattern).

It is also worth noting that so good performance of SFIN (error-free recognition
with rather low training time) on the data of real-life dimension looks unobtainable
for main competitors in the field of computational intelligence [7] like artificial neural
networks (ANN) [5] and genetic algorithms (GA) [3]. According to our comparison in
[20] and [21], SFIN trains by at least 40 times faster and recognizes by at least 2 times
correctly than ANN and GA on the tasks of environmental monitoring and laser
physics. These tasks have rather low dimension: 17×23×6 for ecological atlas and
19×5 for laser diode. However, the drawbacks of ANN and GA seem especially
inadmissible for the task of intrusion detection with rather high dimension: 51608×41
and more.

The obtained results also show that the developing approach can successfully be
applied to on-line intrusion detection in a typical US Air Force LAN (as simulated by
the data of UCI KDD archive).

Acknowledgement

This work is supported by EOARD under project # 017007 "Development of
mathematical models of immune networks intended for information security
assurance".

References

1. Bay, S.D.: The UCI KDD Archive [http://kdd.ics.uci.edu]. Irvine, CA: University of
California, Dept. of Information and Computer Science (1999)

2. de Boer, R.J., Segel, L.A., Perelson, A.S.: Pattern formation in one and two-dimensional
shape space models of the immune system. J. Theoret. Biol. 155 (1992) 295–333

 A Formal Immune Network and Its Implementation for On-line Intrusion Detection 405

3. Buckles, B., Petry, F. (eds.): Genetic Algorithms. IEEE Computer Society Press, Los
Alamitos CA (1992)

4. de Castro, L.N., Timmis, J. Artificial Immune Systems: A New Computational Intelligence
Approach. Springer-Verlag, London (2002)

5. Cloete, I., Zurada, J.M. (eds.): Knowledge-Based Neurocomputing. MIT Press, Cambridge
MA (2000)

6. Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer-Verlag,
Berlin (1999)

7. Fogel, D.B., Robinson, C.J. (eds.): Computational Intelligence: The Experts Speak. IEEE
Press, Piscataway NJ (2004)

8. Forrest, S., Perelson, A., Aleen, L., Cherukuri, R.: Self-nonself discrimination in a
computer. IEEE Symposium on Research in Security and Privacy. Oakland, USA (1994)
202–212

9. Gorman, R.P., Sejnowski, T.J.: Analysis of hidden units in a layered network trained to
classify sonar targets. Neural Networks 1 (1988) 75–89

10. Hoang, X.D., Hu, J.: New encryption model for secure e-commerce transactions using
DSP-host, board and server communication. IEEE Int. Conf. on Telecommunications 1
(2002) 166–170

11. Horn, R., Johnson, Ch.: Matrix Analysis. Cambridge University Press (1986)
12. Jerne, N.K.: The immune system. Scientific American 229/1 (1973) 52–60
13. Jerne, N.K.: Toward a network theory of the immune system. Annals of Immunology

125C (1974) 373–389
14. Melnikov, Y., Tarakanov, A.: Immunocomputing model of intrusion detection. Lecture

Notes in Computer Science, Vol. 2776. Springer-Verlag, Berlin (2003) 453–456
15. Siegenthaler, T. : Correlation immunity of nonlinear combining functions for

cryptographic applications. IEEE Trans. Inform. Theory 30 (1984) 776–780
16. Tarakanov, A.O.: Information security with formal immune networks. Lecture Notes in

Computer Science, Vol. 2052. Springer-Verlag, Berlin (2001) 115–126
17. Tarakanov, A., Dasgupta, D.: An immunochip architecture and its emulation. NASA/DoD

Conf. on Evolvable Hardware (EH'02). Alexandria, USA (2002) 261–265
18. Tarakanov, A., Goncharova, L., Gupalova, T., Kvachev, S., Sukhorukov, A.:

Immunocomputing for bioarrays. 1st Int. Conf. on Artificial Immune Systems
(ICARIS'02). Univ. of Kent at Canterbury, UK (2002) 32–40

19. Tarakanov, A.O., Skormin, V.A., Sokolova, S.P. Immunocomputing: Principles and
Applications. Springer-Verlag, New York (2003)

20. Tarakanov A.O., Tarakanov Y.A.: A comparison of immune and neural computing for two
real-life tasks of pattern recognition. Lecture Notes in Computer Science, Vol. 3239.
Springer-Verlag, Berlin (2004) 236–249

21. Tarakanov A.O., Tarakanov Y.A.: A comparison of immune and genetic algorithms for
two real-life tasks of pattern recognition. Int. J. Unconventional Computing 1/3 (2005) (in
press)

22. Zhou Z.H., Chen S.: Evolving fault-tolerant neural networks. Neural Computing and
Applications 11/3-4 (2003) 156–160

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 406 – 411, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Foundation for a Time Interval Access Control Model

Francis B. Afinidad, Timothy E. Levin, Cynthia E. Irvine, and Thuy D. Nguyen

Computer Science Department, Naval Postgraduate School
Monterey, CA 93943, USA

{fbafinid, levin, irvine, tdnguyen}@nps.edu

Abstract. A new model for representing temporal access control policies is
introduced. In this model, temporal authorizations are represented by time
attributes associated with both subjects and objects, and a “time interval access
graph.” The time interval access graph is used to define constraints on the
temporal relations between subjects and objects. Interval algebra is used to
define and analyze the time interval access graph.

1 Introduction

In many commercial and military environments, time is often a critical factor for
making decisions regarding authorization or access to information. The value or
sensitivity of data and processes has become more dependent upon time attributes.
Thus, future information systems will need to support system-wide security policies
that incorporate time as a decision factor. To this end, a Time Interval Access Control
(TIAC) model has been developed.

A significant contribution of the TIAC model is that it provides formal semantics
to express temporal authorization policies, in which temporal attributes of subjects
and objects are used to determine authorized accesses. The TIAC model differs from
previously proposed models such as the Temporal Authorization Model by Bertino et
al. [5, 6] and the Temporal Data Authorization Model by Gal and Atluri [4, 7],
primarily in its ability to specify temporal relations between subjects and objects.

Another contribution of the TIAC model is that it is the first use of interval algebra
[3] to express a temporal access control policy. This algebra provides the necessary
expressive power to logically describe a temporal access control policy, and a precise
and efficient way to computationally reason about the temporal relation between
subjects and objects and associated access constraints. Policy enforcement
mechanisms and the modeling of the effectiveness of those mechanisms with respect
to the type of temporal authorizations describable in TIAC are outside of the scope of
this paper (see [1]).

A brief discussion of interval algebra is presented in Section 2. Section 3 provides
a description of the TIAC model, where we establish the definition of time intervals
and discuss the formal semantics used for representing temporal authorizations and
access requests. Finally, future work and conclusions are presented in Section 4.

 Foundation for a Time Interval Access Control Model 407

2 Background

Interval algebra [3] provides a means to represent time intervals associated with
actions and entities and to computationally reason about their relationships. It defines
the possible relations that can hold between two time intervals (see Table 1). These
relations are mutually exclusive, in that only one is needed to describe the relative
temporal placement of any two time intervals. Interval algebra assumes that the
beginning and ending points (signified with “−” and “+” respectively) of an interval
do not coincide. For each entry in Table 1, the first line shows the basic relation and
the second line shows its inverse relation.

Table 1. Basic temporal relationships

RELATION
PREDICATE

FORM
SYMBOL RELATION ON

ENDPOINTS
PICTORIAL MEANING

x before y
y after x

BEFORE(x,y)
AFTER(y,x)

<
> (x+ < y−)

x y

x equals y
y equals x

EQUALS(x,y)
EQUALS(y,x)

=
=

(x− = y−) ∧
(x+ = y+)

x

y

x meets y
y met by x

MEETS(x,y)
MET_BY(y,x)

m
mi x+ = y−

 x y

x overlaps y
y overlapped by

x

OVERLAPS(x,y)
OVERLAPPED_BY(y,x)

o
oi

(x− < y−) ∧
(x+ > y−) ∧
(x+ < y+)

 x

 y

x during y
y includes x

DURING(x,y)
INCLUDES(y,x)

d
di

(x− > y−) ∧
(x+ < y+)

x

y

x starts y
y started by x

STARTS(x,y)
STARTED_BY(y,x)

s
si

(x− = y−) ∧
(x+ < y+)

 x

y

x finishes y
y finished by x

FINISHES(x,y)
FINISHED_BY(y,x)

f
fi

(x− > y−) ∧
(x+ = y+)

 x

y

A set of time intervals and their required or allowed interrelationships can be
represented using a directed graph (also known as an interval algebra network, or IA
network), in which each vertex represents an individual time interval and each
directed edge represents the relationship(s) between a pair of vertices.

408 F.B. Afinidad et al.

3 TIAC Model

The TIAC model provides a formal semantic framework to extend existing
authorization models with policies (e.g., restrictions) regarding the temporal
relationships between subjects (e.g., user), objects (e.g., data) and the time of access.

In this section, a discussion of time and intervals provides a foundation for the
TIAC model. Then the elements that make up the TIAC model are described. These
elements are: 1) temporal entities, 2) the time interval access graph, 3) temporal
authorizations, 4) access requests, and 5) the evaluation of access requests.

3.1 Time and Intervals

Time is assumed to be a set of discrete points, T, which is isomorphic to the natural
numbers and is linearly ordered with respect to the < relation. Points in T are used in
representing time intervals.

Time intervals are represented using half-open intervals denoted as τ = [t-, t+)
where t- < t+. Half-open intervals are used so that there are no semantic ambiguities
about the point where two time intervals meet. A unit time interval is the smallest
expressible interval. It has a duration of one where t+ = t- + 1. When referring to the
current time a unit time interval is used. For discussion purposes, the current time will
be referred to as now.τ where now.τ = [now-, now+).

Time intervals are associated with subjects and objects, and temporal access
control policies (restrictions regarding the relationships between intervals) are
reasoned about using interval algebra.

3.2 Temporal Entities

Temporal entities are represented using the concept of subjects and objects similar to
those discussed by Graham et al., Lampson, and Weissman [8, 9, 10]. Subjects and
objects each have an associated time interval (attribute), which is used for making
access control decisions.

In the following definitions, Sτ={s1, s2,…sn} is the set of temporal subjects, and
Oτ={o1,o2,…on} is the set of temporal objects (i.e., the passive entities that hold data
or information and are accessed by temporal subjects).

Definition 1 (Temporal Object, Temporal Subject). A temporal entity α is an
object o ∈ Oτ , or a subject s ∈ Sτ , with which is associated a time interval τ = [t-, t+)
where:

 α.τ designates the time interval associated with α
 α.t- designates the time point at the beginning of interval α.τ
 α.t+ designates the time point at the end of interval α.τ

The time interval associated with a subject or object may be used to describe
access constraints based on a temporal policy. For example, a time interval could be
used to represent when a subject is valid or when an object may be accessed. Using
interval algebra, it is possible to express policies regarding the temporal relations
between a subject, an object, and a reference time interval such as now.τ.

 Foundation for a Time Interval Access Control Model 409

3.3 Time Interval Access Graph ϕ

The TIAC model introduces the time interval access graph, ϕ. ϕ is a consistent
instantiation of a three-vertex IA network that defines access constraints on the temporal
relations between subjects and objects, and a reference time interval (τref). A consistent
version of any three-node access graph can be efficiently determined [1, 2, 3].

Definition 2 (Time Interval Access Graph ϕ). The time interval access graph ϕ is a
consistent instantiation of a three-vertex IA network G = (V, E) where:

 V {s.τ, o.τ, τref}
 E {(s.τ, o.τ), (τref, s.τ), (τref, o.τ)}
 R {<, >, d, di, o, oi, m, mi, s, si, f, fi, =} ∪ ∅
 γ: E→℘(R) a disjunctive set function that specifies the temporal
 relations allowed between a pair of vertices

For example, ϕ could be instantiated with the following:

s.τ = [5, 20), o.τ = [10, 15), and τref = [11, 12)
γ(s.τ, o.τ) = {includes}, γ(τref, s.τ) = {starts ∨ during}, and γ(τref, o.τ) = {during}

3.4 Temporal Authorizations

Policies often distinguish between different “modes” in which a subject may access
an object (e.g., observe, modify, execute, append). A temporal authorization Aτ, is a
mapping of a subject-object pair to a set of mode-ϕ pairs, which completely defines
the temporal authorization policy for the subject with respect to that object. For
simplicity of presentation, it is assumed herein that there is only one mode-ϕ pair per
subject-object pair.

Definition 3 (Temporal Authorization). A temporal authorization Aτ is defined as a
4-tuple (s, o, m, ϕ) where:

 s ∈ Sτ temporal subject
 o ∈ Oτ temporal object
 m ⊂ M allowed mode(s) of access
 ϕ time interval access graph that describes the temporal restrictions
 on the use of o

A temporal authorization Aτ = (s, o, m, ϕ) states that a subject s is allowed m access
to object o as restricted by the time interval access graph ϕ. For a given policy
instantiation, Ωτ is the set of temporal authorizations.

3.5 Access Requests

A temporal subject, to gain access to a temporal object, initiates an access request for
a given mode of access to occur at a particular time. In the most general form,
temporal requests would specify an arbitrary time in the past, present and future. For
simplicity in this discussion, requests will be characterized relative to now.τ . There

410 F.B. Afinidad et al.

are two types of access requests: general access requests and duration access
requests.

Definition 4 (General Access Request). A general access request Rgτ is a 4-tuple (s,
o, m, now.τ) where:

 s ∈ Sτ is a temporal subject
 o ∈ Oτ is a temporal object

 m ⊂ M is a mode(s) of access
 now.τ is the time of access request

A general access request Rgτ(s, o, m, now.τ) states that a subject s requests m access
to object o at time now.τ. Implicit in this form of request is that the subject would be
granted access for the maximum duration allowed by the access graph ϕ associated
with s and o (if any exists).

Definition 5 (Duration Access Request). A duration access request Rdτ is a 5-tuple
(s, o, m, now.τ, δ) where:

 s ∈ Sτ is a temporal subject
 o ∈ Oτ is a temporal object
 m ⊂ M is the mode(s) of access
 now.τ is the time of the access request

 δ is the requested duration of access

A duration access request Rdτ(s, o, m, now.τ, δ) states that a subject s requests m
access to object o for a duration δ.

3.6 Evaluation of Access Requests

An access request is evaluated as follows: the set of temporal authorizations Ωτ is
searched for a matching subject-object pair. If no match is found, access is denied. If
a match is found, the requested mode is compared to the allowed mode, and then the
time interval access graph ϕ is interpreted relative to the requested interval, to grant or
deny access. This process is specified in the boolean functions Eval_g and Eval_d.

Eval_g(Rgτ(s, o, m, now.τ)) ∃ (s′, o′, m′, ϕ) ∈ Ωτ(s = s′ ∧ o = o′ ∧ m ⊂ m′ ∧ ϕ =
true when evaluated using s.τ, o.τ, and now.τ)

Eval_d(Rdτ(s, o, m, now.τ, δ)) ∃ (s′, o′, m′, ϕ) ∈ Ωτ(s = s′ ∧ o = o′ ∧ m ⊂ m′ ∧ ϕ =
true when evaluated using s.τ, o.τ, and now.τ +δ)

Note: now.τ +δ = [now-, now- + ϕ)

4 Conclusion and Future Research

In this short paper, we have presented the TIAC model as a novel way to specify
temporal access control policies. This model is able to formally specify temporal

 Foundation for a Time Interval Access Control Model 411

constraints on time attributes associated with subjects and objects, and a reference
time interval such as time of access.

Several areas related to TIAC are still being investigated. We are considering the
formal semantics for creating and deleting temporal authorizations as well as the
policy implications of the tranquility of temporal attributes associated with subjects
and objects. In general, a set of mode-ϕ pairs can be associated with each subject-
object pair in order to be able to express a different policy for each mode of access,
but that extension to the TIAC model is left for future work.

We also plan to generalize this model so that it could specify an access request that
uses a different reference time interval other than current time, which would allow the
model to check for previous, current, and future authorizations. This research is also
being extended to determine a set of useful temporal access control policies that can
be expressed using the TIAC model. Finally, we are considering other enhancements
to the TIAC model that involve extending the TIAC model concept to support the
specification of event-based security policies.

References

1. Afinidad, F.B.: An Interval Algebra-Based Temporal Access Control Protection
Architecture. Dissertation, Naval Postgraduate School, Monterey, CA (2005)

2. Afinidad, F.B., Levin, T.E., Irvine, C.E., and Nguyen, T.D.: Toward Building A Time
Interval Access Control (TIAC) Model. Naval Postgraduate School, NPS Technical Report
NPS-CS-05-006 (June 2005)

3. Allen, J.F.: Maintaining Knowledge About Temporal Intervals. Communications of the
ACM, Vol. 26, no. 11 (November 1983) 832–843

4. Atluri, V. and Gal, A.: An Authorization Model for Temporal and Derived Data: Securing
Information Portals. ACM Transactions on Information and System Security, Vol. 5, no. 1
(February 2002) 62–94

5. Bertino, E., Bettini, C. and Samarati, P.: A Discretionary Access Control Model with
Temporal Authorizations. Proceedings of the 1994 Workshop on New Security Paradigms
(1994) 102–107

6. Bertino, E., Bettini, C. and Samarati, P.: A Temporal Authorization Model. Proceedings of
the 2nd ACM Conference on Computer and Communications Security (1994) 126–135

7. Gal, A. and Atluri, V.: An Authorization Model for Temporal Data. Proceedings of the 7th
ACM Conference on Computer and Communications Security, November 1-4 (2000) 144–
153

8. Graham, G.S. and Denning, P.J.: Protection – Principles and Practice. Proceedings of the
Spring Joint Computer Conference, May 16–18 (1972) 417–429

9. Lampson, B.W.: Protection. Proceedings of the 5th Princeton Symposium on Information
Sciences and Systems (March, 1971) pp. 437–443, reprinted in Operating Systems
Review, Vol. 8, no. 1 (January 1974) 18–24

10. Weissman, C.: Security Controls in the ADEPT-50 Time-Sharing System. Proceedings of
the Fall Joint Computer Conference, November 18–20 (1969) 119–133

Developing an Insider Threat Model Using
Functional Decomposition

Jonathan W. Butts, Robert F. Mills, and Rusty O. Baldwin

Air Force Institute of Technology�, Dayton OH 45433, USA
jonathan.butts@afit.edu

Abstract. Addressing the insider threat using a systematic and for-
mulated methodology is an inherently difficult process. This is because
the problem is typically viewed in an abstract manner and a sufficient
method for defining a way to categorically represent the threat has not
been developed. The solution requires a security model that clearly iden-
tifies a process for classifying malicious insider activities. To be effective
the model must compartmentalize the threat and attack it consistently.
The purpose of this paper is to present a methodology for accurately
defining the malicious insider and describe a process for addressing the
threat in a systematic manner. Our model presents a definable taxonomy
of the malicious insider and demonstrates a method for decomposing the
abstract threat into a solvable and analyzable process.

1 Overview

The development of an insider threat model continues to be an elusive task. In
August, 2000 an insider threat workshop of leading security professionals met
to discuss the malicious insider and determined there is a specific need for a
well-defined taxonomy and a comprehensive insider threat model [1]. To date,
there has been little advancement by the security community in achieving these
requirements. It is the goal of our research to address these issues by effectively
defining the malicious insider and providing a model for determining the security
of a system against this threat.

There has been relatively little work done in developing a model that encom-
passes the full spectrum of malicious insider activities. Previous work has focused
on certain aspects of the problem but has not lead to a systematic method for
defining the characteristics of an attack. To mitigate the malicious insider, it is
necessary to have a comprehensive model that can be used to define the threat
in a consistent and collaborated manner.

� The views expressed in this article are those of the authors and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the U.S. Government.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 412–417, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Developing an Insider Threat Model Using Functional Decomposition 413

2 Related Work

When examining how to develop a model that can encompass the insider threat,
one research area analyzed was attack tree methodologies [7]. Researchers have
proposed that the attack tree is a sufficient tool for addressing the outside threat
and assessing the security of a system against a compromise [4,5,8]. In the attack
tree structure the goal of the attacker is the root node with the different ways
to obtain the goals depicted as the leaf nodes.

Traditional attack trees are not capable of capturing the insider threat in an
effective manner [2]. As shown by [3] they do not provide a comprehensive model
for analysis of vulnerabilities. One of the more significant problems is that the
insider may already have the required rights to perform their malicious actions.
Additionally, the focus of the attack tree is on obtaining the goal represented by
the root node. It is inherently difficult to quantify the motives or goals of the
malicious insider in a truly analyzable manner because individual attributes are
not measurable and may vary drastically from person to person.

In this paper, we propose a hierarchical tree approach capable of providing a
complete malicious insider taxonomy by using a systems engineering approach
rather than the goal oriented objectives associated with attack trees. The premise
of our model is that it focuses on activities of the malicious insider and not their
traits or attributes. Randazzo et al. demonstrates that malicious insiders do not
share a common profile, so there must be a different tangible way to produce
a taxonomy if measurable results are to be obtained [6]. The solution that we
have chosen to implement is to methodically investigate possible actions through
functional decomposition, which addresses the problems associated with mod-
eling the insider threat using traditional attack trees. By exploring actions and
not the individual or motives, no user is excluded from our model. Additionally,
an action either occurs or it doesn’t so the methodology is measurable and an-
alyzable. This systematic approach produces a viable solution to the differences
inherent with individuals and can effectively model their malicious behavior.

3 Methodology

To ensure the model adequately addresses the insider threat, it is necessary to
clearly define the aspects that are being captured. In this context, an insider is
any individual who has been granted any level of trust in an information system.
This description does not limit the insider to specific borders such as Firewalls,
Routers, or a Local Area Network. The system itself could be a conglomeration of
networks. What is important is that once users have been granted any authorized
explicit right to the information system, they are now considered an insider and
are part of the system Protection State.

The Protection State is the manifestation of all trust rights for all users
and objects in the information system. The Protection State encompasses all
activities that are allowed according to organization policy or system access
controls. Any change in privileges will transition it to a new state. The core

414 J.W. Butts, R.F. Mills, and R.O. Baldwin

basis of our model is capturing any unauthorized change in the Protection State.
The malicious insider is any authorized user that utilizes inherent insider trusts
to intentionally harm or alter the Protection State of the information system.
Because the action must be intentional, this model does not view a user that
accidently opens an attachment and launches a virus to be a malicious insider.
Conversely, an individual who gains administrative rights and purposely deletes
files is a malicious insider.

3.1 Model Implementation

The malicious insider is therefore someone who violates the Protection State of
the system and is depicted as the root node of the tree representation, as shown
in Fig.1. The four subordinate nodes are the specific types of actions a malicious
insider may perform. It is possible to categorize any event into one of the four
distinct actions through analysis of the Protection State. Because the Protection
State is composed of system rights and we are focusing on the insider, we are
interested in how a user can cause a change in the state. By definition of the
Protection State, the possible ways this can occur can be defined as:

1. Change another user or object’s rights (Alteration)
2. Leak user or object information to an unauthorized entity (Distribution)
3. Obtain protected information about another user or object (Snooping)
4. Change the rights on themselves (Elevation)

Each activity is considered unauthorized if it violates organization policy or
system access controls. These actions capture the possible malicious events that
can produce a transition in the Protection State.

Malicious
Insider

Alteration Distribution Snooping Elevation

ACTIONS

Fig. 1. The four actions represented in the first hierarchy of the tree

Alteration. Alteration encompasses modifying the information system struc-
ture in any unauthorized manner. The system structure is the collection of re-
sources that comprise an information system, which includes computers, files, a
user’s rights or any other asset on the system that supports system functional-
ity. The action of Alteration occurs when a malicious insider changes a user or
object from one state to another in an unauthorized way. A case to represent
this could be a user deleting a file from the system to purposely deny access or
intentionally launching a virus that corrupts entities on the system.

Developing an Insider Threat Model Using Functional Decomposition 415

Distribution. Distribution captures the transfer of protected information to
an unauthorized entity. This occurs when a user has appropriate system rights
and a need to know, such as access a file. The violation of the Protection State
in Distribution occurs when a right or entity is transferred to someone or some-
thing that is not supposed to have them. The case of a user emailing a file to
an unauthorized individual is an example of Distribution. This action can be
the most difficult to detect because it typically mirrors normal activities. The
malicious insider can be very evasive using this action because they may or may
not be bound to a specific time constraint.

Snooping. Snooping addresses obtaining unauthorized information on a user
or object. This action is similar to Distribution except the user has appropri-
ate system rights without a need to know. This takes place when a user has
permissions by the system access controls but the event should not take place
because it violates organization policy. An example of this is an individual with
administrative privileges who opens and reads another user’s email in an at-
tempt to gain information. Because they have accessed something their rights
permit but organization policy states should be disallowed, they have violated
the Protection State through Snooping.

Elevation. Elevation takes place when a user obtains unauthorized rights in
the system. A classic example of this is someone trying to acquire administra-
tive privileges. There are many different ways a malicious insider may try to ac-
complish this, from automated attacks to social engineering. Elevation addresses
the notion of the malicious insider changing their permissions and encompasses
the attempt to garner any rights that are not already allowed as defined by the
Protection State.

3.2 Example

This model ensures every activity of the malicious insider can be specifically
categorized in the context of the Protection State. This principle establishes the
underlying framework that is necessary for identifying the malicious insider in a
deterministic fashion. The distinction that each activity can be captured by one
specific action is an important and definitive concept.

It is perhaps best to explore this notion through a practical example. If
Mallory compromises an administrative password and then deletes Alice’s email
account, transitions to the Protection State take place. Mallory is a malicious in-
sider because her activities were intentional and deliberate. In this scenario there
are two distinct actions that occur to violate the Protection State and subse-
quently there are two transitions of the Protection State. The initial violation is
through Elevation by gaining access to the administrator account. The second vi-
olation is by Alteration in destroying an email account and changing the system
structure. Additionally, if Mallory then accesses a secure document another vio-
lation has occurred. Initially, when she captures the password through Elevation
the Protection State has changed to allow her permission to the file. Although

416 J.W. Butts, R.F. Mills, and R.O. Baldwin

she now has these permissions in the context of the Protection State, Snooping
has occurred because she still does not have an authorized reason (need to know)
to view the file. Finally, if Mallory shares the document with Bob, Distribution
has occurred because Bob has obtained rights to an object he shouldn’t have.
This example demonstrates the ability to compartmentalize the problem into
distinct events. This concept will be built on in the next section.

3.3 Model Decomposition

Beginning with each action, the threats can be decomposed step by step down to
the leaf nodes. This process is accomplished using a “how it can be performed”
relationship between a parent and child node. The leaf node is the lowest level of
abstraction and depicts the tool the malicious insider has used to accomplish the
activity. A path from the malicious insider (root node) to a tool (leaf node) forms
a completely decomposed activity. The model is developed in an hierarchical
acyclic fashion, meaning a malicious activity can only follow one specific path
from the root node to a leaf node. This indicates that each possible activity is
capable of being explicitly defined.

The following is a simple example using this methodology for one Distribu-
tion action and is depicted in Fig.2. The Distribution action can be performed
through file sharing, which can be accomplished through email, copying the file
to storage media, online chat, or an electronic drop box. The email can be ex-
ecuted through a local account or web based account. In addition, copying the
file to storage can be performed by floppy disk, CD-ROM or USB drive. An
important concept in the configuration is the actions are limited to four distinct
possibilities (Distribution, Snooping, Elevation, Alteration). The interim nodes,
however, can use any number of children to expressively describe its parent. This
notion allows for flexibility in the model to tailor it to the policies and specifics
of the individual organization, while still providing an analyzable and decidable
model.

File
Sharing

Email Electronic
Drop Box

FTP
to File
Server

Internet
Local

Account

Web
Based
Account

Post to
News
Group

Post to
Website

Online
Chat

Copy
To

Media

Floppy
Disk

CD-ROM
USB
Drive

Fig. 2. An example decomposing the Distribution: file sharing

Developing an Insider Threat Model Using Functional Decomposition 417

4 Summary of Model Attributes and Future Work

The fundamental concept underlying this model is expressing the malicious in-
sider through distinct actions that are capable of being decomposed and ana-
lyzed. It presents a complete and well-defined taxonomy of the insider because
the interest is in definable actions and not attempted categorization of individ-
ual attributes. Organizations can use this methodology to perform a cost/threat
analysis to determine what acceptable risks exist and implement or develop
countermeasures as appropriate. The model is scalable and has built-in flexi-
bility for adapting to different organizations and information systems. These
concepts present a process for effectively defining the malicious insider and pro-
viding the security community an effective tool for addressing the insider threat
in a coordinated effort.

Further research for this methodology involves developing a fully decomposed
baseline tree that addresses the majority of possible insider actions. This process
should then lead to the automation of model development for the security profes-
sional and allow organizations to tailor the baseline tree for their specific system
structure and policies.

References

1. Anderson, R., Bozek, T., Longstaff, T., Meitzler, W., Skroch, M., Van Wyk, K.:
Research on Mitigating the Insider Threat to Information Systems. Proceedings of
the Insider Workshop. CF-163-DARPA. Arlington, VA (2000)

2. Chinchani, R., Iyer, A., Ngo, H., Upadhyaya, S.: Towards a Theory of Insider Threat
Assessment. Proceedings of the 2005 International Conference on Dependable Sys-
tems and Networks (DSN 2005), June 28–July 01, Yokohama, Japan (2005)

3. Daley, K., Larson, R., Dawkins, J.: A Structural Framework for Modeling Multi-
Stage Network Attacks. Proceedings of the IEEE International Conference on Par-
allel Processing Workshops (2002) 5–10

4. Jha, S., Sheyner, O., Wing, J.: Two Formal Analyses of Attack Graphs. Proceedings
of the 15th IEEE Computer Security Foundations Workshop (2002) 49

5. Phillips, C., Swiler, L.: A Graph-Based system for network vulnerability analysis.:
ACM New Security Paradigms Workshop (1998) 71–79

6. Randazzo, M., Keeney, M., Kowalski, E., Cappelli, D., Moore, A.: Insider Threat
Study: Illicit Cyber Activity in the Banking and Finance Sector. U.S. Secret Service
and CERT Coordination Center/SEI (2004)

7. Schneier, B.: Secrets and Lies. Wiley Publishing (2000) 318–333
8. Sheyner, O., Haines, J., Jha, S., Lippman, R., Wing, J.: Automated Generation and

Analysis of Attack Graphs. Proceedings of the IEEE Symposium on Security and
Privacy (2002) 254–265

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 418 – 423, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An XML-Seamless Policy Based Management
Framework

Félix J. García Clemente, Gregorio Martínez Pérez,
and Antonio F. Gómez Skarmeta

Departamento de Ingeniería de la Información y las Comunicaciones
University of Murcia, Spain

{fgarcia, gregorio, skarmeta}@dif.um.es

Abstract. The great variety of policy representation forms currently existing
(e.g., LDAP schemas, PIBs, MIBs, plain text, etc.) is leading to interoperability
and manageability problems, mainly in inter-domain management environ-
ments, but also between the elements (i.e., PMTs, PDPs, and PEPs) dealing
with and exchanging policies inside one particular management domain. The
use of XML technologies provides a solution to this important limitation. This
paper describes the seamless integration of XML technologies in a policy-based
management framework. It includes a proposal for an XML-based management
architecture, the definition of an XML PIB (Policy Information Base) and a new
Java COPS (Common Open Policy Service) implementation supporting both
XML-encoding and BER-encoding of the policy data exchanged between PDP
servers and PEP clients. It also analyses the main techniques used to ensure the
provision of security services to the management of policies.

1 Introduction and Motivation

Policies that are exchanged between the components of a PBNM (Policy-Based Net-
work Management) system may assume different forms as they travel from a defini-
tion server to a repository or from a decision point to an enforcement point. At each
step, policies are usually represented in a way that is convenient for the current task. It
could be the case of policies defined as a text file by the administrator, stored in a di-
rectory according to a LDAP schema, distributed from a Policy Decision Point (PDP)
to a Policy Enforcement Point (PEP) using a PIB (Policy Information Base) [1].

As this variety of forms could lead to important problems when trying to define in-
teroperable and extensible multi-domain PBNM architectures, there is a clear need to
consolidate a common technology to define policy languages and establish a common
method for encoding policy data. XML technologies are a solution to this problem.

XML has also the advantage that it is widely accepted, which means that there are
many tools available supporting the implementation of some of the management func-
tionalities. In addition, XML facilitates the easy integration of different applications,
something that is particularly important for the cooperation of different policy-based
network and service management architectures in a multi-domain environment.

This paper describes in section 2 the design of an XML-seamless PBNM frame-
work using XML technologies along the whole policy life cycle. XML technologies
are used by all the components of the architecture to manage and monitor policies.

 An XML-Seamless Policy Based Management Framework 419

Moreover, the XML-seamless PBNM framework facilitates the integration of ex-
isting network nodes supporting the IETF protocols COPS (Common Open Policy
Service) [2] and COPS-PR (COPS Usage for Policy Provisioning) [3]. We also pre-
sent in section 3 one implementation of COPS and COPS-PR protocols in Java
(named UMU-jCOPS) allowing the exchange of policy data using either XML- or
BER-encoding (i.e., binary codification of the information). A preliminary implemen-
tation of this framework using UMU-jCOPS has been used in [4] and [5] to allow the
dynamic provision of virtual private networks (VPNs) in different scenarios.

2 XML-Seamless Policy Based Management Framework

The PBNM framework presented here is based on the definition work undertaken by
the IETF/DMTF, although in our case both the elements of the architecture and the
policies themselves are based on the use of XML and its related technologies.

2.1 XML-Seamless Architecture

A general overview of the proposed elements of the architecture is provided in next
sections. In them we will state the modules that need to be added for integrating XML
technologies in a policy-based management architecture, paying special attention to
the security measures applied in the design and implementation phases.

Policy Management Tool (PMT)
The PMT provides the administrator the mechanisms to create, modify or delete se-
curely policy documents. It is done by means of a high-level language and a graphical
interface. It is composed of two main XML-related components: a policy GUI, which
is an editor that can generate or edit XML-based policy documents and an XML pol-
icy validator that validates every policy specification before it is stored in the XML
policy database. This validation process is done using an XML Schema (XSD), which
defines the high-level syntax of every network service or application being managed.
This validation process also includes the verification of the digital signature of the
administrator defining or modifying every policy.

XML Policy Database
The XML policy database is used as policy repository for storing high-level policies
that are digitally signed. For it we propose the use of an XML native database. The
benefit of a native solution is that we do not have to worry about mapping XML poli-
cies to some other data structures (as SQL for example). XML native database uses
XPath notation for its query language and XUpdate for its update language.

Policy Decision Point (PDP)
The PDP is the PBNM component that applies the policy documents to the network
nodes. It retrieves securely the high-level policies from the XML policy database and
uses them to generate the low-level policy decisions to be sent to network nodes. The
policy decisions are the response to the policy request sent by PEP clients or are a
result of a PDP event (e.g., a change in a policy done by the administrator, a time
condition verified, etc).

420 F.J.G. Clemente, G.M. Pérez, and A.F.G. Skarmeta

The PDP evaluates the policy request or the event and determines the policy deci-
sions to be sent to the PEP clients. This is done securely using a TLS-based transport.

The PDP integrates different XML-based client-type specific modules according to
the different kind of policies supported (e.g., IPsec, QoS, routing, etc). Each of these
PDP modules has an XML schema defining its high-level policy representation.

Policy Enforcement Point (PEP)
PEP clients enforce the policy decisions taken by the PDP to the policy-managed
network nodes. When a new PEP is active in the network or some events at the PEP
occur, the PEP needs to get or update its internal configuration. In this moment the
PEP will send a policy request to the default PDP server that it has configured.

PEP clients also integrate different XML-based client-type specific modules ac-
cording to the type of policies supported. Additionally, PEPs can need to transform
low-level representation to internal configuration that is specific to the vendor, operat-
ing system, and software release, and vice versa. PEP uses a Policy Configuration
Transformer module to make it; it is based on XSLT (XSL Transformations).

2.2 XML-Seamless Policy Representation

The policy representation is defined at two levels. The first one represents high-level
policies generated by the administrator in a Policy Management Tool (PMT) and
stored in the XML Policy Database. The second level of representation defines low-
level policies to be exchanged between the Policy Decision Points (PDPs) and the
Policy Enforcement Points (PEPs) existing in the management architecture. Both pol-
icy representations have the following features in common:

− Based on the IETF Policy Core Information Model (PCIM) [6]
− Defined from an XML Schema
− Encoded in XML

 For the low-level policy, we have defined an XML scheme from the PIB (Policy
Information Base) definition that permits the XML-encoding of such structure (XML
PIB). IETF uses ASN.1 format for the definition of PIB modules. Therefore, we use
XER [7] to derive an XML scheme from the PIB definition in ASN.1, which is a
mechanism for converting between ASN.1 encoded data structures and XML encoded
data structures. When XER is applied to the ASN.1 expressions, data structures are
encoded as character strings in the form of tag, value, and end-tag, whereas BER en-
codes data structures as octets in the form of tag, length, and value. Figure 1 shows
how XER-encoded PIBs fit in the proposed management architecture.

PDP

PEP

Policy
Database

PMT

Low-Level
XER-encoded PIB

High-Level
XML Policy

High-Level
XML Policy

Fig. 1. XML-seamless policy representation

 An XML-Seamless Policy Based Management Framework 421

3 COPS and COPS-PR Protocols Supporting XML-Encoded Data

The proposed representation of low-level policy needs that the COPS and COPS-PR
protocols support XML-encoded data. These protocols are independent of the type of
policy carried, but they assume a data model based on the concept of PIB.

3.1 XML Encoded Data in the COPS and COPS-PR Messages

The COPS object descriptions use BER as the encoding type. But this encoding type
is not unique, as additional encodings can be used. This is the case of XML.

COPS encapsulates data in request messages, decision messages and report mes-
sages. Request messages include the Named ClientSI (Named Client Specific Infor-
mation) object for relaying specific information about the PEP. Decision messages
made by the PDP send the Named Decision Data object in response to configuration
requests. And report messages encapsulate Named ClientSI for reporting information
from the PEP to PDP. The Named ClientSI and Named Decision Data objects are
composed of one or more bindings. Each binding associates a PRID (Provisioning In-
stance Identifier) object and an EPD (Encoded Provisioning Instance Data) object.
The PPRID (Prefix PRID) is used in the Remove Decisions and can also compose a
Named Decision Data.

Furthermore, the PRID, PPRID and EPD objects encapsulate S-Num and S-Type
identifier. The S-Num identifies the general purpose of the object, and the S-Type de-
scribes the specific encoding used for the object. The IETF documents usually use the
BER as the encoding type (S-Type = 1).

In this context, we have defined an additional encoding to carry XML string-based
XPath and XER as encoding type; the new value that we have assigned is S-Type = 2.
We have also take the convention that the PRID and PPRID objects make use of
XPath, and the EPD objects make use of XER encoding.

Provisioning Instance Identifier (PRID)
This object carries the identifier of a Provisioning Class (PRC) Instance. This identi-
fier is encoded following the BER rules as a SNMP Object Identifier (OID). PRID is
the OID of the Provisioning Class plus the Instance Identifier (InstanceId).

We propose to use XPath for XML encoding. This path has two parts: the first one
identifies the PRC and the second one identifies the particular instance of this PRC.

Prefix PRID (PPRID)
PPRIDs are only used in the Remove Decisions command to identify a group of in-
stances with the same PRID prefix and to avoid a sequence of individual Remove De-
cisions. PPRID is encoded following the BER rules as a SNMP Object Identifier
(OID) like the PRID object commented before.

We also propose to use XPath for encoding PPRID in XML. For example, a PRID
equal to the following path: //iso/org/dod/internet/pib/frameworkPib/
frwkBasePibClasses/frwkPibIncarnationTable/FrwkPibIncarnationEntry/* identifies
all instances of the PRC called PIB Incarnation Table of the PIB Framework.

422 F.J.G. Clemente, G.M. Pérez, and A.F.G. Skarmeta

Encoded Provisioning Data (EPD)
This object carries the encoded value of a Provisioning Instance. This identifier is en-
coded following the BER rules as a set of TLVs (Tag-Length-Value) with the indi-
vidual values of the attributes that comprise the Provisioning Class. We also propose
to use XER for encoding in XML this kind of elements of the PIB.

3.2 Java Implementation: UMU-jCOPS

The University of Murcia Java COPS (UMU-jCOPS) protocol stack is a COPS-PR
implementation that is one of the main components of the University of Murcia Pol-
icy-Based Network Management (UMU-PBNM) framework [5] used to perform dy-
namic provision and monitoring of configurations. The XML policy data model that
we are presenting in this paper is supported by this COPS implementation. Its main
features are:

− It is completely developed in Java, allowing the use of any operating system to run
an implementation of PDP or PEP.

− It is IPv6 enabled, so any operation can be performed using this network protocol.
− It allows both BER and XML data encoding.
− It verifies PIB conformance with XML technologies.

COPS-PR stack

Core Framework
Methods to handle COPS-PR messsages

IPsec Framework
Classes supporting Framework PIB and IPsec PIB

Policy Transaction Server/Client

PDP/PEP

Fig. 2. Architecture of UMU-jCOPS

The basic architecture and set of layers of UMU-jCOPS are depicted in Figure 2.
The UMU-jCOPS design presents two different layers: COPS-PR stack and core
framework. On the one hand, the COPS-PR stack is the base COPS layer; it defines
all COPS messages and provides the mechanism to exchange COPS messages be-
tween a PEP and PDP. This exchange can be done securely over a TLS channel. On
the other hand, core framework was designed to be independent of the COPS client
type and provides the COPS operations that need a PEP or PDP to be implemented.

4 Conclusions

There is a need to consolidate a common technology to define policies and establish a
common encoding for policy data. In this paper we have presented an XML-seamless

 An XML-Seamless Policy Based Management Framework 423

policy based management framework that uses XML technologies to define and en-
code policies during their whole life cycle (from the definition to the enforcement).
The resulting XML-seamless policy based management framework shows an im-
provement in manageability, interoperability and extensibility over the PBNM archi-
tecture proposed by the IETF. Also security has been a priority during its design and
later implementation.

Acknowledgments

This work has been partially funded by the EU POSITIF (Policy-based Security Tools
and Framework) IST project (IST-2002-002314).

References

1. Sahita, R., et al.: Framework Policy Information Base. IETF, Request For Comments (RFC)
3318 (March 2003)

2. Durham, D., et al.: The COPS (Common Open Policy Service) Protocol. IETF, Request For
Comments (RFC) 2748 (January 2000)

3. Chan, K., et al.: COPS Usage for Policy Provisioning (COPS-PR). IETF, Request For Com-
ments (RFC) 3084 (March 2001)

4. Pérez, G. M., Skarmeta, A.F. G.: Policy-Based Dynamic Provision of IP Services in a Se-
cure VPN Coalition Scenario, IEEE Communications Magazine, Vol. 47, No. 11 (2004)
118–124

5. UMU-PBNM (University of Murcia Policy-Based Network Management), University of
Murcia, http://pbnm.dif.um.es/

6. Moore, B., et al.: Policy Core Information Model – Version 1 Specification. IETF, Request
For Comments (RFC) 3060 (February 2001)

7. Information processing systems – Open Systems Interconnection, "XML Encoding Rules
for Abstract Syntax Notation One (ASN.1)", International Organization for Standardization,
International Standard 8825-4 (1988)

Statistical Covert Channels Through
PROXY Server

Alexei Galatenko1, Alexander Grusho2, Alexander Kniazev3,
and Elena Timonina2

1 Moscow State University, GSP-2, Leninskie Gory,
Moscow, 119992, Russian Federation

agalat@msu.ru
2 Russian State University for Humanity, 25 Kirovogradskaya,

Moscow, Russian Federation
aaotee@mail.infotel.ru

eltimon@yandex.ru
3 Russian Academy of Sciences Lebedev Institute of Precise Mechanics and
Computer Technology, 51 Leninsky Prospekt, Moscow, Russian Federation

avk@ipmce.ru

Abstract. The paper1 is devoted to creating a covert channel through
a PROXY server. The channel is based upon data permutation in server
buffer using the sequence of packets coming from the router connected to
the PROXY server. The resulting data flow allows to create a statistical
covert channel that transfers information by manipulating expectation
and dispersion of the number of increasing pairs in the sequence of net-
work addresses.

1 Introduction

In [1,2] the problem of building an attack targeted at a secure global network
segment via a covert channel was investigated. The main tool for providing
security was IPSec protocol.

In this paper we consider security provided by a PROXY-server, which is
invulnerable to attacks and provides reliable data encryption. Like in [1,2], we
create a covert channel via modulating the address sequence in packets trans-
mitted by the PROXY-server.

The rest of the paper is organized as follows. Section 2 describes the main
idea of covert channel creation. Section 3 shows how symbols 1, 0 and x can be
extracted from transmitted data with the help of statistical methods. Conclu-
sions are provided in section 4.

2 Covert Channel Trough PROXY Server

Let us consider m + 1 local networks segments S0, S1, ..., Sm containing work-
stations with local addresses and gateways connecting local networks with a
1 This work was supported by the Russian Foundation for Basic Research, grant 04-

01-00089.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 424–429, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Statistical Covert Channels Through PROXY Server 425

global network (e.g. Internet). Let s0, s1, ..., sm be gateway addresses for seg-
ments S0, S1, ..., Sm. Let workstations interconnect via a virtual private network
(VPN). If some data from a workstation with address a in segment Si needs to
be transferred to a workstation with address b in segment Sj , the transmission
is performed in the following way (fig. 1):

Fig. 1. System model

– the data from workstation a is first transferred to a Local Gateway LG(i) in
Si;

– then data is passed to a Security Gateway SG(i). Security Gateway operates
as a PROXY server – it connects to workstation a, gathers data for work-
station b, and collects data packets from Si segment in a queue according to
their arrival time. Then data is encrypted with a key of SG(j) – the Secu-
rity Gateway of data recipient segment. Then SG(i) connects to SG(j) and
transfers encrypted data:
• SG(i) passes data to a Global Network Host GNH (i), which in turn

passes data to a corresponding host GNH(j) via a global network;
• data is then passed to SG(j). SG(j) collects packets for Sj segment and

stores them in a queue.
– Packets in a queue are decrypted, SG(j) connects to a workstation b and

transmits data via the internal gateway LG(j);
– LG(j) sends data to workstation b in Sj segment.

Every segment S0, S1, ..., Sm contains software and/or hardware adversary
agents. To work properly these agents need to receive some instructions from
an adversary agent in a global network (AGN). Let us consider that AGN is in
total control of GNH(j), j = 0, 1, ..., m, and adversary agents in S0, S1, ..., Sm

426 A. Galatenko et al.

are in control of the corresponding internal gateways GNH(j), j = 0, 1, ..., m.
Security Gateways SG(i) are considered to be totally secure, so they are out of
adversary agent control. Sending instruction from AGN to local agents can be
based on a channel from GNH(j) to LG(j), and information leak can be based
on a channel from LG(j) to GNH(j).

We suppose that the only dependent packet parameters known both to
GNH(j) and LG(j) are source addresses in case of incoming packets and destina-
tion addresses in case of outgoing packets. These dependencies can be expressed
by a function s = f(a) that maps internal addresses within a network segment
to a global network address of the corresponding gateway.

LG(i) can affect the order in which the packets are transmitted in the follow-
ing way. TCP protocol guarantees data recovery. If a packet is lost, TCP sends
a request to retransmit lost data. Let PROXY server have two open connec-
tions with workstations a1 and a2 passing data A1 and A2 correspondingly. It
is obvious that packets that were recovered earlier are put in SG(i) queue prior
to packets that were recovered later. Let an adversary agent in LG(i) want to
make SG(i) queue equal to A1A2. This goal can be achieved by the following
procedure. If packets containing A1 end earlier than packets containing A2 (an
adversary agent can delay packet transmissions to be sure that data transmission
is over), the agent does not do anything. Otherwise the agent in LG(i) delays or
drops one of the packets transmitted by a2 (e.g. the final one). Then the agent
waits till A1 transmission is over and resends the delayed or dropped packet. So
if the assumption that the packet sequence from a1 to a single workstation in
some other segment contained data of a single connection A1, and the packet
sequence from a2 to a single workstation in some other segment contained data
of a single connection A2 is true, the above algorithm will change data order-
ing in SG(i) queue from the natural to the given order. A similar procedure is
applicable to the incoming data flow and GNH(j) agents. Let us note that this
procedure is stochastic because of randomness in packet arrival time — if SG(i)
sent A1 before A2, A2 can still arive earlier, especially if A1 and A2 are small.

It is obvious that the probability of a correct permutation is greater for long
packet sequences transmitting large data segments.

Despite of possible errors we can construct a hidden language based on data
permutation in queue. Let an agent in LG(0) pass data to an agent GNH(0) in
a global network. The agent in LG(0) knows what data is being passed to the
addresses sj , j = 0, 1, ..., m of SG(j). Let sj be linearly ordered. Let A1A2...Ak

be the data queue of length k at LG(0), si1 , si2 , ..., sik
be destination addresses.

The output queue B1B2...B2r at SG(1) is produced in the following way:

– B1B2 is equal to A1A2, if si1 < si2 ;
– B1B2 is equal to A2A1, if si1 > si2 ;
– B1 is equal to (or begins with) A1A2, if si1 = si2 (A1A2 will be probably

transmitted in a single connection). In this case if si3 > si1 , then B2 = A3.
If si3 = si1 , then B1 is equal to (or begins with) A1A2A3 and A1A2A3 will
be probably transmitted in a single connection, etc.

Statistical Covert Channels Through PROXY Server 427

The resulting sequence B1B2...B2r consists of data such that every pair
B2i−1B2i, i = 1, ..., r, contains increasing addresses. Let us consider B1B2...B2r

to encode 1 in the covert channel. The data in this sequence is split into pack-
ets. Packet sequences are transmitted to the corresponding addresses. These
sequences can contain additional packets, e.g. for establishing other connections,
so GNH(0) agent should not consider the additional packets, though some errors
are possible. The received sequence is 1 of the covert channel. 0 is encoded by
a sequence of decreasing address pairs of data. A sequence of unordered address
pairs encodes a delimiter x. We use an assumption that the PROXY server estab-
lishes connections with other PROXY servers according to the addresses in data
queue buffer, and packet block with the same destination address is transmitted
in a single connection.

There emerge the problems of estimation of the value of r for reliable ex-
traction of 1, 0 and x, and of investigation of transmitter fault tolerance. Due
to the fact that data permutations in a queue are stochastic, and there exists
a possibility of errors in address sequence in GNH(0), there exist the following
errors in covert channels:

– data loss (loosing an address s in address sequence restored in GNH(0));
– data insertion.

3 Mathematical Model

Let s = (s(1), s(2), ..., s(2r)) be the data address sequence determining one bit.
To restore this bit taking into consideration possible errors we count all increas-
ing and decreasing address pairs. The decision about the value of the bit is made
by the means of mathematical statistics. In this paper we consider the problem of
correct bit recognition by the sequence of data addresses. Bit recognition based
upon packet sequence is not considered.

Let input data addresses be random values ξ1, ..., ξk that are produced
independently with equal probabilities P (ξj = si) = 1

m . Due to the fact that
packets with the same source address are transmitted in a single connection,
we delete all sequences with the same source address and replace them by a
single representative. After this transformation we get a sequence η1, ..., η2r.
This sequence is a simple Markov chain with the transition matrix

‖ P (ηi+1 = s/ηi = s′) ‖,
where

P (ηi+1 = s/ηi = s′) is equal to
1

m− 1
, if s �= s′, and 0, if s = s′.

The initial distribution is uniform, and transition matrix is twice stochastic,
hence the Markov chain is stationary, with one acyclic ergodic class without
insignificant states.

428 A. Galatenko et al.

To transmit 1 the sequence η1, ..., η2r is split into a sequence of pairs
(η1, η2),...,(η2r−1, η2r) and every pair is rearranged in ascending order. The num-
ber νr of increasing pairs for sequential count with possible overlaps in the output
sequence ς1, ..., ς2r is equal to

νr = r +
r−1∑
i=1

I(ς2i ≤ ς2i+1).

Let us consider stochastic values

μ(t) is equal to I(ς2i ≤ ς2i+1), if t = 2i + 1, and 0, if t �= 2i + 1.

It is obvious that for any t Eμ2(t) < ∞ and D
∑T

t=1 μ(t) −→ ∞ if T −→ ∞.
So [3] the distribution of ∑T

t=1 μ(t)−∑T
t=1 Eμ(t)√

D
∑T

t=1 μ(t)

converges to Gaussian distribution with parameters 0 and 1 when T −→ ∞.
The situation with transmitting 0 is similar. A sequence η1, ..., η2r is split

into a sequence of pairs (η1, η2), ..., (η2r−1, η2r), and every pair is rearranged in
descending order. The number ωr of decreasing pairs for sequential count with
possible overlaps in the output sequence ς ′1, ..., ς ′2r is equal to

ωr = r +
r−1∑
i=1

I(ς ′2i ≥ ς ′2i+1).

Like in the previous case, the random number ωr − r after being centered
and normed converges to Gaussian distribution with parameters 0 and 1.

If we consider νr calculated on the base of the original sequence η1, ..., η2r,
after being centered and normed it will also converge to Gaussian distribution
with parameters 0 and 1.

Let us find expectations of νr and ωr when we transmit 1, 0 and x.
Let the transmitted value be 1. To evaluate the estimation νr let us consider

stochastic values η2i−1, η2i, η2i+1, η2i+2. In our Markov chain

P (η2i−1 = s, η2i = k, η2i+1 = l, η2i+2 = n) =
1

m(m− 1)3
.

So
Eμ(2i + 1) = P (max(η2i−1, η2i) ≤ min(η2i+1, η2i+2)) =

=
m4 −m3 − 9m2 − 18m− 6

6m(m− 1)3
=

1
6
(1 + O(

1
m

)),

when the value of m is large. Then Eνr = 7
6r + O(r

m).
Similarly for 0 we have Eωr = 7

6r + O(r
m), and for x Eνr = r + O(r

m).
Due to the fact that νr and ωr are asymptotically Gaussian, deviations of

the above expectations are not greater than
√

r ln r with probability converging
to 1. Hence we can recognize 1, 0 and x when r and m are large.

Statistical Covert Channels Through PROXY Server 429

4 Conclusions

The paper considers the problem of building a covert channel through a PROXY
server. The channel is based upon the permutation of data in PROXY server
buffer using packet sequences coming through a router connected to the PROXY
server. Such a permutation allows to create a statistical covert channel the data
in which is being transmitted by manipulating expectation and dispersion of the
number of increasing pairs in the sequence of data addresses. The paper does not
consider the problem of data encoding by the sequence of packets (this problem
will be addressed in one of the following papers).

References

1. Grusho, A., Timonina, E.: Construction of the Covert Channels. International Work-
shop “Information Assurance in Computer Networks. Methods, Models, and Archi-
tectures for Network Security”. Springer, LNCS 2776 (2003) 428–431

2. Grusho, A.A., Timonina, E.E.: Estimation of the time needed to set up a covert
channel. Discrete Mathematics and applications, 13, 3 (2003) 257–263

3. Prokhorov, U.V., Rozanov, U.A.: Theory of probabilities. Moscow (1973)

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 430 – 435, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Encoding Private Key in Fingerprint

Ern Jeges1, Zoltán Hornák1, and Csaba Körmöczi2

1 BME Department of Measurement and Information Systems, SEARCH Lab
2 Guardware Systems Ltd

{jeges, hornak}@mit.bme.hu, kormoczi@guardware.com

Abstract. Electronic transactions require secure electronic signature techniques,
which can provide the authentication of the signing individual, non-repudiation
of the signature and protection of the integrity of the document using strong
cryptographic methods. The weakest link in the chain in current electronic sig-
nature systems is the correspondence between the person and the secret key.
The basic idea of our proposed method is to store the secret key encoded in a
fingerprint in a way that it can only be retrieved using the fingerprint of its
owner. This way it is much harder to steal the private key, since the creation of
the signature requires the presence of the owner’s fingerprint instead of the use
of a PIN code in today’s practice. Our scheme remains fully compatible with
the existing Public Key Infrastructures (PKI), so it can be easily used in current
applications that use asymmetric cryptography to verify digital signatures.

1 Introduction

The traditional hand-written signature is a simple but adequately effective method of
proving the authenticity of a document in situations open to dispute, as it is reasona-
bly hard to perfectly copy someone’s handwriting.

Analogous to traditional signatures, digital signatures were introduced to ensure
the authenticity of electronic documents. The digital signatures used today are based
on a key pair, on a public and a private (secret) key. It is assumed that the secret key
remains hidden from others, so that only the authenticated person can possess it. This
assumption and the potential expropriation of the private key is the weakest link in
such systems, so realizing this, several works have been published recently that sug-
gest schemes to solve the convergence of the biometrics and cryptography [1][2].

In this paper we introduce a biometric method which fully relies on the public key
infrastructure, but the biometric identification is embedded so deeply in the process of
digital signing that the private key cannot be appropriated by stealing and cracking the
chip-card, which is used to store the secret key in current practice.

2 Applying Biometrics in the Process of Digital Signing

The most frequently used identification method in automated identification systems is
the minutia-based method. Minutia points are the endings, splits and various bifurca-
tions of the ridges on fingerprints. As their positions, types, angles and curvatures are

 Encoding Private Key in Fingerprint 431

characteristic and unique to a particular finger, minutia-based identification systems
decide the correspondence of two fingerprint samples by simply matching the posi-
tions of the minutia points.

There are several ways to involve biometric (e.g. fingerprint data) in document se-
curity. One can place biometric data in the document, and then digitally sign it to
ensure its integrity [3]. It is also possible to incorporate biometric data in a PKI cer-
tificate [4], but the majority of systems involve biometrics only for controlling access
to the private keys stored in the chip-card [5].

In our solution we also use an RSA private key to digitally sign documents, but in
the proposed method biometrics is not only involved in controlling access to the
stored private key, but the private key is encoded in the biometric features of the
user’s fingerprint. As an addition we can still store a part of the encoded information
on a permanent storage medium (e.g. a chip-card), but – what is important – the secret
key cannot be reconstructed in lack of any of these parts. Later on, if the private key is
needed to sign a document, we can retrieve it by decoding the stored information,
which is only possible via the fingerprint of the holder of the key.

In the next section we introduce the method we used to encode binary data using
the minutia-point features of the user’s fingerprint.

3 Storing Private Keys in Fingerprints

To digitally sign a document we need a key pair, the generation of which is based on
cryptographically strong random binary data. Usually randomness is taken from ran-
dom events like keystrokes and mouse movements, but if we are able to store this
random data, we can regenerate the same key pair later. Theoretically, we can derive
this sequence of bits from the fingerprint image itself, but as we need precisely the
same sequence to be restored bit-by-bit every time, this method appears to be barely
feasible. Also, we need the key pair to be revocable.

In light of this, the basic idea of our method is to generate a binary codeword by
adding error correction parity bits to the random binary data, and to store it in the
challenge minutia vector by means of data hiding. As for the data hiding scheme: on
the one hand we construct the challenge minutia vector both from real minutia points
from the registration sample and from generated fake minutia points, and on the other
hand we change the minutia angles, depending on the codeword bits’ values. Finally,
the key pair is generated by feeding the binary codeword into the random pool used
for key generation. Instead of biometric features or the private key itself, we only
store the challenge minutia vector on a persistent store, for example a chip-card.

On the need for a private key, we can restore the binary codeword by matching the
challenge minutia vector with the minutia points extracted from a sample fingerprint:
we can determine whether a point is real or fake, and we can calculate the distortion
of the original angle, thus recalculating the bits of the codeword. After error correc-
tion, we regenerate the key pair by again feeding the key generation random pool with
the same random data, the binary codeword.

The method involves two main processes: registration and signing. During registra-
tion starting from a real random seed we generate a public/private RSA key pair, and
create a certificate using the public key and the personal data of the user. We destroy

432 E. Jeges, Z. Hornák, and C. Körmöczi

the private key, but encode the random seed in the given fingerprint by generating a
so called challenge minutia vector. In the process of document signing, we reconstruct
the random seed using the challenge minutia vector and the actual fingerprint image,
and re-executing the RSA key generation algorithm with the same random input we
retrieve the private (and also the public) key.

The process of registration involves these steps: (1) Generating the random binary
data; (2) Calculating a binary codeword by adding parity bits to random binary data4
(3) Encoding: generating the challenge minutia vector based on the binary codeword
and the minutia points in the registered fingerprint sample; (4) Generating the RSA
key pair and deleting the private key, the binary codeword and the random binary data
afterwards; (5) Requesting a certificate that holds the registered person’s personal
data and the public key using a public key infrastructure.

To digitally sign a document, we have to accomplish these steps: (1) Decoding:
matching of the fingerprint sample with the challenge minutia vector to reconstruct
the original binary codeword; (2) Error correction of the binary codeword; (3) Re-
trieval of the original RSA key pair using the corrected codeword; (4) Verification of
the regenerated public key, checking whether it is the same as the public key encapsu-
lated in the certificate. Reporting an error if the public keys do not match, since it
indicates incorrect decoding; (5) Signature of the document using the retrieved private
key.

In the followings we introduce main problems and the given solutions during our
research and the development of the frame system for the described method.

4 Encoding, Decoding and Error Correction

The process of encoding is basically the generation of the challenge minutia vector. In
this process we generate the successive points of the challenge vector by processing
the bits of the binary codeword five at a time.

Table 1. The five-bit runs in the encoding of a minutia point. We add a real or a fake minutia
point to challenge vector depending on the 0th bit of a five-bit run, and the angle of a thus added
minutia point is modified depending on the value of the next four bits (1…4) in the codeword.

0 1 2 3 4
Real / fake Modification of the angle

We assume the fake minutia angle to follow the curvature of the underlying
ridges. This encoding method and the value with which the angle is modified (the
added angle dFi modulo 180) is shown in figure 1.

For error correction, we decided to use the Turbo codes [6] , which are widely used
in deep-space communication, where there are low signal-to-noise ratios, similar to
those we met using the fingerprint as communication channel. The basic idea of
Turbo coding is to use two (or even more) convolutional encoders, where each except
the first one receives the permutated systematic bits. Turbo coding is easily scalable,
as we don’t have to transmit all of the bits; we can delete some of them following a

 Encoding Private Key in Fingerprint 433

deletion pattern, and the receiver can denote erasure errors following the same pattern
before the encoding occurs. This way we can gain an arbitrary code rate.

Bits 1-4 dFi Bits 1-4 dFi
0000 0,00 1100 90,00
0001 11,25 1101 101,25
0011 22,50 1111 112,50
0010 33,75 1110 123,75
0110 45,00 1010 135,00
0111 56,25 1011 146,25
0101 67,50 1001 157,50
0100 78,75 1000 168,75

Fig. 1. The encoding method and the encoding of the values added to angles. This is a Gray-
coding of the angle modification values from 0° to 180° in steps of 11.25°, a feature of this
coding being that the Hamming distance of the codes for two neighboring values is 1.

Decoding is done similarly to decoding of the convolutional codes [7]. We esti-
mate the value of the sent bits depending on the received channel codes.

To make the previously introduced minutia point coding and decoding error-
tolerant, we introduced the Non-symmetric Binary Erasure Channel (NBEC). This
channel handles both simple and erasure errors, and is not symmetric, which means
that it has different probabilities for different error types and bit values. Thus, the
NBEC channel can be described by four parameters: p01 and p10 denote the probability
that a simple error occurs, while p0x and p1x denote the probability that erasure occurs
(e.g. the angle value is ambiguous) if the original bit is 0 or 1 respectively.

As we encode minutia points to five bits, and these bits are derived in different
ways, we can define different error parameters for each bit position (0-4). Thus we
modeled the fingerprint as an NBEC5 communication channel, which is actually a set
of five independent NBEC channels.

Applying an arbitrary channel model to Turbo coding can be done by isolating and
modifying the function that returns the transfer probabilities of the channel, as de-
scribed in [8]. The NBEC channel model and the measured transfer probabilities for
different bits of the NBEC5 channel using the above described minutia point coding
are shown in figure 2.

 0 1 2 3 4
p00 0,53 0,46 0,45 0,42 0,36
p0X 0,00 0,02 0,02 0,03 0,05
p01 0,01 0,02 0,02 0,04 0,09
p10 0,13 0,02 0,02 0,04 0,08
p1X 0,03 0,02 0,02 0,03 0,05
p11 0,31 0,45 0,46 0,42 0,38

Fig. 2. The Non-symmetric Binary Erasure Channel (NBEC) and the statistically determined
transfer probabilities of NBEC5

434 E. Jeges, Z. Hornák, and C. Körmöczi

After several trials we selected to add 240 parity bits to 120 systematic bits, which
meet the requirement for cryptographical strength, of having at least 100 random bits.
As the distribution of minutiae in our database showed the average minutia point
number to be 40, this choice satisfied the need for real minutia points from the regis-
tered samples for the coding of the 0th bit, as 120+240 bits encoded 360/5=72 minutia
points, statistically having half of them, on average 36 chosen from real minutiae.

5 Finding the Best Fitting Transformation

When matching two fingerprints, the minutia vectors of one must be overlaid on the
other to be able to check whether they fit. To find the best transformation, we intro-
duced a goal function that would measure the quality of the fitting of points in the two
minutia point sets. The domain of this function was the 3-dimensional space defined
by the translation on the X and the Y axis, and the rotation angle .

This goal function)Δ,Δ ,Δ ϕyxf(could be defined as following:

[] []
= =

=)Δ,Δ ,Δ
M

i

N

j
jjjiiiij yxyxdf

0 0

''')),,,,,((yxf(ααϕ (1)

where M is the number of challenge minutia points, N is the number of minutia points
in the fingerprint sample and fij is the function that transforms the distance (d) of two
minutia points (denoted by x, y and). After testing several fij functions, we chose one
that statistically showed the highest correlation between the maximum value of f and
the restoration of the binary codeword:

100

100
)(

2d
dfij

−= , if 100 << d , otherwise 0)(=dfij (2)

6 Conclusion

As in the case of other biometric systems, in a biometric digital signature system the
most important quality parameters are the false rejection rate (FRR) and the false
acceptance rate (FAR). Several tests were done on our sample database, having nearly
6000 fingerprint samples of around 600 fingers to measure the FAR and the FRR. The
false acceptance rate was within the acceptable limit of 10-6, but the best theoretically
attainable false rejection rate appeared to be around 15%. The latter figure shows us
that further improvements should be made in the scheme to lower the FRR.

From a cryptographical point of view, the information quantity that can be stored
in a fingerprint using our method appeared to be enough to meet the requirement of
having a cryptographically strong RSA key pair, as we use 120 randomly chosen bits
to generate the private key.

In conclusion, we can state that our scheme to construct biometric digital signa-
tures is feasible, but several further enhancements should be made. We plan to im-
prove the image processing undertaken before minutia extraction to make it more

 Encoding Private Key in Fingerprint 435

accurate. In a remarkable number of cases false rejection was due to non-linear distor-
tions, so we plan to introduce a new non-linear transformation of the challenge minu-
tia set that fits the usual distortions of the sample fingerprints. Finding the parameters
of this non-linear transformation will be an inspiring challenge for our further re-
search.

References

[1] Bodo, A.: Method of producing a digital signature with aid of biometric feature, German
Pat.

[2] Soutar, C., Roberge, D., Stoianov, A., Gilroy, R., Kumar, B.V.K.V.: Biometric Encryption.
http://www.bioscrypt.com/assets/Biometric_Encryption.pdf

[3] Hefferman, S.: The Role of Biometrics within Document Security, TSSI Swindon, United
Kingdom. http://www.afb.org.uk/downloads/pisec.pdf (1999)

[4] Lewis, J.W.: Biometrics for Secure Identity Verification: Trends and Developments. Uni-
versity of Maryland. http://faculty.ed.umuc.edu/~meinkej/inss690/lewis.pdf (2001-2002)

[5] Secure Personal Identification Systems: Policy, Process and Technology Choices for a Pri-
vacy-Sensitive Solution, A Smart Card Alliance White Paper. http://www.ibia.org/ mem-
bersadmin/whitepapers/pdf/11/secure_id_white_paper.pdf (2002)

[6] Berrou, C., Glavieux, A., Thitimajshima, P.: Near Shannon limit error-correcting coding
and decoding: turbo codes. ICC Proceedings (1993)

[7] Ottoson, T., Agrell, E.: Deconding Convolutional Codes http://www.s2.chalmers.se/
graduate/courses/errctrlcoding/convcode_decoding.pdf (2003)

[8] Zhu, G.: Performance Evaluation of Turbo Codes. Queen’s University, Kingston, Ontario,
Canada. http://markov.mast.queensu.ca/Papers/zhu_proj98.ps (1998)

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 436 – 441, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A New Scheme for the Location Information Protection
in Mobile Communication Environments

Soon Seok Kim1, Sang Soo Yeo2, Hong Jin Park3, and Sung Kwon Kim2

1 School of Information and Communication Engineering,
Halla University, San 66, Heungup-Li, Heungup-myon, Wonjusi, Kangwondo, Korea

sskim@hit.halla.ac.kr
2 School of Computer Science and Engineering,

Chungang University, 221 Huksukdong, Dongjakku, Seoul, Korea
ssyeo@alg.cse.cau.ac.kr, skkim@cau.ac.kr

3 School of Computer Information and Communication Engineering,
Sangji University, Woosandong, Wonjusi, Kangwondo, Korea

hjpark1@sangji.ac.kr

Abstract. We propose a new scheme, protecting information about the location
of a user against attacks from inside the mobile communication, especially the
network providers. There have already been some proposals about how to
protect location information in mobile communication environments. Among
them, Kesdogan et al.[2,3] proposed a new method, using so-called temporary
pseudonyms and also described protection method against passive and an active
attacks. However, the protection method against an active attack is not clear.
Moreover, there is an additional load in that it should append a reachability
manager[1,6] to the proposed system. In this paper, we introduce a new scheme
improving the method of Kesdogan et al. and analyze its security and
effectiveness.

1 Introduction

There have already been some proposals[1,2,3,4] about how to protect location
information in mobile communication environments. Federrath et al.[1] suggested
firstly the concept of MIXes as introduced by Chaum[5]. However, Kesdogan et al.[2]
pointed out some serious drawbacks: the encryption for the MIX has to exceed 512
bits which adds further load on the air interface. They also proposed a new method,
using so-called temporary pseudonyms (TP). The basic idea of the TP method is
originally based on the concept of trusted parties where, e.g., a home personal
computer confidentially stores sensitive data (authentication keys, location
information etc.) or even handles the complete location management, replacing the
visited location register (VLR) in GSM network[5]. But, in [2], Kesdogan et al.
protected location information of a user by saving her identity, instead of actual
location information, within a home trusted device. To this end, the user is assigned a
pseudonym, pseudo mobile subscriber identity (PMSI). As long as the user is
registered under a pseudonym, the network provider may know that a user under a
certain pseudonym currently is at a certain place, but he is not able to link the users

 A New Scheme for the Location Information Protection 437

real identity with her present location[2]. In [3], Kesdogan et al. also identified some
security flaws (including passive attacks and active attacks) of TP method and
proposed a new method, using the distributed TP (DTP). This method can protect
against passive attacks. However, the protection method against active attacks is not
clear. A detailed explanation will be given in Section 2. In this paper we consider
mainly some problems on an active attack in the TP method of Kesdogan et al.[3]. We
also propose and analyze a new scheme solving them. Our scheme is more effective
and secure than the previous ones.
 We discuss about TP method in Section 2 and propose a new location management
scheme in Section 3 and analyze it in Section 4. Finally, in Section 5 we describe
concluding remarks.

2 Discussion of TP Method

Kesdogan et al. introduced attacks for the TP method in [3] as follows:

 Active Attacks: Active attacks of the network provider, i.e. attempts to find out the
user location by periodically asking her home trust device, may be recognized
because all requests are logged at the device. Hence, if there are many more requests
at the device than actual calls, this points towards an active attack.

As a matter of course, this is able to detect the attempt of an attack by maintaining a
log-file requested from the network provider in the trust device. However, it is not a
reasonable proof of an the attack because the network provider may consider the log-
file forged. They introduced only one solution, adding the functionality of a
reachability manager[7] to the device, i.e. it could decide for each request whether the
importance of the request justifies revealing the pseudonym. But this method would
be rather an alternative than a solution. It is not clear about how to decide whether the
request justifies a response. The problem lies upon the periodic request of network
provider for the PMSI to the device without a reasonable reason, even though the
external user did not call a request. In order to prepare for the attack of network
provider, it is necessary to check the request of real calls from the external user and
the real connection of the call setup that is received by the network provider to the
user. In addition, it is surely needed for the function of surveillance for the real
connection of calls by using the user and trust device. In addition, the existing
reachability manager is not included in this function so far. Moreover, the attaching of
the reachability manager system also adds further load. In the next section, we
propose a new scheme improving on these problems and analyzing its security and
effectiveness.

3 New Scheme for the Location Management

The basic idea of our scheme, protecting an illegal request from a malicious network
provider, is to verify whether an external user actually has requested by giving an
acknowledgement message ACK, as a proof that the user received a call request from
the network provider. A scenario of the scheme is as follows: (1) If an external user

438 S.S. Kim et al.

requests a call using the initial addressing Message (IAM) and the MSISDN, (2) the
network provider (especially, the GMSC) requests a current PMSI of user to the trust
device using the ISDN number of user, MSISDN and (3) the trust device gives it.
Then, (4) the GMSC stores the current PMSI in its table and sends a call setup
message to the user. Next, (5) the user verifies the setup message and sends an
acknowledgment message ACK as a proof to the trust device. (6) The trust device
checks the ACK. If the trust device does not receive the ACK, then the trust device
will decide that the network provider has attempted an illegal request to find out the
user location. The notations to describe the proposed methods are as follows.

[Notations]
PMSI_cur : the current value of PMSI periodically produced by the trust device

according to the synchronization time with the MS
ACK: an acknowledgment message transmitted to the trustdevice as a response that

the user has asked to receive a call from the external user through the network
provider. This value is a kind of combination message for the encrypted value of r,
PMSI_cur, and t with the secret key K1 and PMSI_cur. Here r is an arbitrary integer t
is the time when the user is to send a message (This may become a time stamp signed
by the user, if the architecture is based on the environments of public key.).

PMSI_acked : the value of PMSI_cur is produced at the time when the user sends
the ACK message, and the trust device stores it in its own table some time later where
the initial value is null.

 PMSI_provided: the most recently provided value of PMSI, and it will be stored in
the GMSC table in the network provider where the initial value is null.

 VAL: this is a bit of vector. If the trust device receives an ACK message from the
MS, it will be the value of 1, otherwise it will be 0. At this moment, the value is
stored in the trust device table where the initial value is null.

In case of the proposed method, a place, which is differed from the previous TP
method, is needed for storing the mentioned values, such as PMSI_provided,
PMSI_acked, and so on. Our proposed scheme assumed that the network provider
(especially, the GMSC in the network provider) and trust device is maintained as a
kind of table in its own server (See [Fig. 1]).

 MS: the mobile user, TD: the trust device, NP: the network provider.

[Step 1] the step for the call request from the external user (caller):
The external user sends the IAM and MSISDN message to the GMSC of NP in order
to call with the MS.
[Step 2] the step for the current PMSI request from the GMSC:
The GMSC sends the MSISDN in the case that the value of PMSI_provided is null
after the check-up on the value of PMSI_provided that is stored in it own table. �

1 It is a short term secret key between the MS and the TD and is independently calculated for

each item. In addition, it is updated by the given period (In case of the real system
application, it will be adjusted by one week in the short term or one month in the long term
according to the required security level.) The secret key is defined as K=F(KMT,T), where
KMT is a long term secret key between the MS and the TD, F is a single directional function
of encryption, and T is a predefined synchronization time (periodically updated) between the
MS and the TD.

 A New Scheme for the Location Information Protection 439

Fig. 1. Diagram of the request method

Otherwise it sends the value stored in the table to the TD in order to request the
current PMSI. �
 [Step 3] the step for notifying the current PMSI after detecting the illegal attempt of
the NP:
(1) In case of receiving the MSISDN, the TD checks the value of VAL in its own
table is 1 at the same time as the fact that the PMSI-acked is null. If the values are 1
and null, the PMSI_cur will be sent to the GMSC after updating the value of VAL to
0. Otherwise, the stored value of the current PMSI_acked and VAL is to be
reinitialized by null and 1 respectively after detecting the illegal attempt, and then
raises an objection through off-line channels.
(2) In case of receiving the PMSI_provided from the GMSC, the TD checks the value
of VAL in its own table is 1 at the same time as the fact that the PMSI_provided is the
same as the PMSI_acked. If the values are 1 and null, the PMSI_cur will be sent to
the GMSC after updating the value of VAL to 0. Otherwise the stored value of the
current PMSI_acked and VAL is to be reinitialized by null and 1 respectively after
detecting the illegal attempt, and then raises an objection through off-line channels.
[Step 4] the step for the connection setting to the MS:
The GMSC updates the value of PMSI_cur, which is received from the TD, to the
value of PMSI_provided in its own table through the transmission of {call setup
message} to the MS after setting the connection with the external user. There is a
possibility that the PMSI, which is notified by the TD as the connection to the MS
from the side of GMSC, does not exist in its own internal database of HLR and VLR.
Because the MS has already updated in the process as the new value of PMSI or has
not updated as the connection from the GMSC to the MS. Therefore, the GMSC is
able to attempt to connect to the MS by using the updated PMSI with the request of

440 S.S. Kim et al.

the current PMSI once again to the TD. At this time, the TD notifies the other
messages produced before or after by checking the synchronized time based on the
PMSI, which has already been notified by the TD itself.
[Step 5] the step for the creation and updating for the ACK message of the MS:
The MS creates the acknowledgement message ACK after checking the {call setup
message} and sends it to the TD through the GMSC. The value of PMSI_cur is the
current value of PMSI, but it is a exact calculated value according to the synchronized
time at the moment when the TD notifies it to the GMSC. In case the MS will renew
the updating of PMSI just after receiving a call request from the GMSC, the value of
PMSI_cur included in the ACK is to be used by the previous value of PMSI, that is,
the value introduced by the synchronize time at the moment when the TD notifies it to
the GMSC.
[Step 6] the step for the verification of ACK by the TD:
The TD updates the value of PMSI_cur after the encryption using the short term
secret key K from the ACK message, which is encrypted by the MS, in its own table
as the value of PMSI_acked.

If there is a normal call receiving request to the same MS from the external user
after detecting the illegal attempt from the GMSC in [Step 3], the GMSC will also
start from [Step 1] by reinitializing the value of PMSI_provided by null.

4 Analysis of the Proposed Scheme

The results for the comparison between the present method and the proposed method
are shown in talbe 1 whether the location privacy of the MS is protected. As shown
in table 1, the symbol means that the passive attack is to be protected as the
collusion between the disinterested party and the NP in the method of TP, but the
active attack is not to be protected. Also, it is not perfect to protect for the attack by

Table 1. Comparison between the present method and the proposed method whether the
position and location privacy of the MS is provided

 GSM[7] TP Method[3]
TP Method+
Reachability
Manager[6]

Proposed
Method

Position Privacy
Protection Method

Using
TMSI

Using PMSI
and TD

Using PMSI
and TD

Using
PMSI

And TD

The 3rd Party

Passive
attack of the NP

×

Active attack
of the NP

× ×

Location
Privacy

Protection
Collusion with

the NP and
3rd Party

×

 A New Scheme for the Location Information Protection 441

the reachability manager, where the NP will forge the personal information and call
subject at the intermediate position from the external user. It disguises for a call
request from the external user and is to send the personal information of the caller to
the MS through the reachability manager.

5 Conclusions

In this paper we considered improvements of the TP method and proposed a new
scheme, protecting an illegal attempt from the malicious network provider to find out
location information. We also showed that the proposed scheme is secure against the
active attacks through seven cases. Moreover, our scheme is more efficient than the
previous schemes and is easily applicable in a current mobile network.

Acknowledgement. This work was supported by grant No. R01-2005-000-10568-0
from the Basic Research Program of the Korea Science & Engineering Foundation.

References

1. Federrath, H., Jerichow, A., Kesdogan, D., Pfitzmann, A.: Security in Public Mobile
Communication Networks. Proc. IFIP/TC6 Personal Wireless Communications, Prague
(1995) 105–116

2. Kesdogan, D., Federrath, H., Jerocow, A., Pfitzmann, A.: Location Management Strategies
increasing Privacy in Mobile Communication Systems. Proc. of the 12th IFIP International
Information Security Conference SEC96, Chapman & Hall (1996)

3. Kesdogan, D., Reichl, P., Junghartchen, K.: Distributed Temporary Pseudonyms: A New
Approach for Protecting Location Information in Mobile Communication Networks.
ESOROCS '98, LNCS, Vol. 1485 (1998) 295–312

4. Farber, D., Larson, K.C.: Network Security via Dynamic Process Renaming. Proc. of the
4th Data Communications Symposion, Quebec Canada (1975)

5. Chaum, D.: Untraceable Electronic Mail, Return Address and Digital Pseudonyms.
Communications of the ACM, Vol.24, No.2 (1981) 65–75

6. ETSI, GSM Recommendations: GSM 01.02-12.21 (1993)
7. Reichenbach, M., Damker, H., Federrath, H., Rannenberg, K.: Individual Management of

Personal Reachability in Mobile Communication. Proc. of the IFIP TC11 SEC 97. 13th
International Information Security Conference (1997) 14–16

8. Beresford, R., Stajano, F.: Location Privacy in Pervasive Computing. IEEE Pervasive
Computing, Vol.2, No.1 (2003) 46–55

9. Barkhuus, L., Dey, A. K.: Location-based services for mobile telephony: a study of users'
privacy concerns. Proc. of the IFIP TC13 INTERACT 2003, 9th International Conference
on Human-Computer Interaction (2003) 709–712

10. Gruteser, M., Grunwald, D.: Enhancing location privacy in wireless LAN through
disposable interface identifiers: a quantitative analysis. Proc. of the 1st ACM international
workshop on Wireless mobile applications and services on WLAN hotspots (2003) 46–55

11. Benjumea, V., Lopez, J., Montenegro, J. A., Troya, J. M.: A First Approach to Provide
Anonymity in Attribute Certificates. Proc. of the PKC2004: 7th International Workshop on
Theory and Practice in Public Key Cryptography, LNCS, Vol.2047 (2004) 12–28

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 442 – 447, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Region Protection/Restoration Scheme
in Survivable Networks

Wojciech Molisz and Jacek Rak

Gdansk University of Technology, ul. Narutowicza 11/12,
80-952 Gdansk, Poland

womol@eti.pg.gda.pl, jrak@pg.gda.pl

Abstract. In this paper we propose the novel concept of a region protec-
tion/restoration, where one backup path protects a certain region of an active
path. We show that using the region protection/restoration we can keep both
restoration times and network resource utilization ratio at the reasonable level.
 Since the optimization problem of finding working and backup paths is
NP-complete, we developed the heuristic algorithm. We show that in the worst
case our algorithm gave network resource utilization ratio only about 3.9 per-
cent higher compared to the optimal one returned by the CPLEX program. Re-
sults of the U.S. Long-Distance Network modeling show that region protection
gives a good compromise between path and link protection.

1 Introduction

We define survivability as the capability of a networked information system to fulfill
its mission, in the presence of attacks, failures, or intrusions. Protection and restora-
tion [4], [5] have emerged as the two main techniques for fault management in sur-
vivable networks. We distinguish two basic approaches: path protection/restoration or
link protection/restoration against a single link or a single node failure (damage). Any
path/link protection can be dedicated or shared assuming that backup paths are link-
or node-disjoint with respective active paths [3], [4], [5].

In this paper we study various protection techniques and show that shorter restora-
tion times imply greater network resource utilization ratio and vice versa. To find
a compromise, we propose a novel approach, which we call region protec-
tion/restoration. The key idea of our region protection is to protect a certain region of
an active path with help of one backup path. This concept offers a good trade-off
between restoration time and resource utilization ratio.

We call an individually protected area, the area of an active path that is protected
by a single backup path. In the path protection model (with backup paths being
link-disjoint1 or node-disjoint2 with active paths), the whole active path determines
the individually protected area. On the contrary, a single link of an active path is an

1 By link-disjoint we mean that the backup path for a connection has no links in common with
the primary path for that connection.

2 By node-disjoint we mean that the backup path for a connection has no nodes in common
with the primary path for that connection, except the source and destination nodes.

 Region Protection/Restoration Scheme in Survivable Networks 443

individually protected area in a link protection technique. In this scheme a given
backup path protects a single link of an active path (against the failure of a link) or
two adjacent links of an active path (against the failure of a node).

In the region protection scheme each backup path protects a certain region of an
active path. Size of this region is a compromise between appropriate lengths of indi-
vidually protected areas in link and path protection schemes, respectively. Compared
to the path protection, backup paths are expected to be shorter, which causes the faster
restoration process. The level of resource utilization remains smaller than for the link
restoration scheme, since for each connection less backup paths are needed.

The rest of the paper is organized as follows. Section 2 is devoted to ILP problem
formulation, while Section 3 to the description of our heuristic algorithm. In Section 4
we compare our heuristic results of the US National Science Foundation (NSF) net-
work modeling to the exact results of the CPLEX program. The convergence is al-
most ideal. Results of U.S. Long-Distance Network modeling for all three protec-
tion/restoration schemes are discussed in the concluding part of the paper.

2 ILP Model to Find Node-Disjoint Path Pairs
(Dedicated Backup)

We consider a directed network Γ(N,A), where: N – set of nodes; |N| = N; A - set of
directed arcs; |A| = M. Each arc em ∈ A is characterized by length, cost and offers L
channels, each of a standard capacity. Source-destination pairs of nodes (sk, tk) (de-
mands) are given, where: k = 1, 2,…, K; 1< K ≤ N × (N-1).

It is to find paths transporting required flows from sources to destinations, protect-
ing them against a single node failure and minimizing the linear cost:

)()x(,,
1 1 1

,
l

mk
l

mk

K

k

L

l

M

m
mk yx += ∑∑∑

= = =

κϕ (1)

where:
mk ,κ = cost per unit flow of the k-th commodity on the arc

l
mkx ,

 (l
mky ,

) = k-th demand flow on the l-th channel on the arc of

a working (backup) path, respectively;

subject to:

− flow conservation constraints for the l-th channel on working (backup)3 paths:

⎪⎩

⎪
⎨
⎧

=−
=

=− ∑∑
≠=

∈≡∈
≠=

∈≡∈ otherwise 0

1

1

};,...,2,1
;),(:{

,

};,...,2,1
;),(:{

, k

k

niNi
niemm

l
mk

njNj
jnemm

l
mk tnif

snif

xx
mm AA

 (2)

 where: em = (i, n) = arc incident into node n; em = (n, j) = arc incident out of node n;
 k=1, 2,. ., K; l=1, 2,. ., L; n=1, 2,. ., N;

− finite arc capacity constraints:

3 Equations for backup paths are similar to (2) with l

mkx . replaced with l
mky .

Lcyx m
l

mk

L

l

K

k

l
mk =≤+∑∑

= =

)(,
1 1

,
 (3)

where: m=1, 2, …, M;

 em ∈A;

em ∈A

444 W. Molisz and J. Rak

− constraints to ensure that every backup path is node-disjoint with its working path:

1)(,,

};,...,2,1
;),(:{1

≤+∑∑
≠=

∈≡∈=

l
mk

l
mk

njNj
jnemm

L

l

yx
m A

(4)

1)(,,

};,...,2,1
;),(:{1

≤+∑∑
≠=

∈≡∈=

l
mk

l
mk

niNi
niemm

L

l

yx
m A

(5)

where: n ≠ sk ; n ≠ tk; for transit nodes (when both paths consist of at least two arcs);

n≠ tk; for (4), when the working path consists of one direct arc;
n≠ sk; for (5), when the working path consists of one direct arc;

− nonnegativity constraints
all the variables should obtain nonnegative values

Unfortunately, the optimization problem (1) – (5) is NP complete [1]. For that rea-
son we developed an efficient heuristic algorithm.

3 Heuristic SCRP Algorithm

In Fig. 1 we describe the SCRP algorithm finding survivable connections in the con-
text of region protection. Each backup path is node-disjoint with a certain region of
the active path. It’s main advantage is the polynomial complexity.

SCRP ALGORITHM

Step 1. Find the active path kΠ between nodes),(kk ts , using Dijkstra’s [2] algorithm.

Step 2. Set the source node ks as the starting node b.

Step 3a. Find the shortest path tree kT from kt to b.

Step 3b. Start computing the backup path from b, using Dijkstra’s algorithm, until the
current node (say node x) reaches the tree kT .

Step 3c. Determine the next part of the backup path as the fragment of the shortest path
tree kT from node x to the first node (say node y) that belongs both to the tree

kT and to the active path kΠ .

Step 3d. Accept the path between nodes b and y (calculated in steps 3b and 3c) as the
backup path.

Step 3e. Set b = z where z is a node of an active path, preceding the node y (i.e. placed
upstream towards the source node).

Step 4. If b <> kt then go to step 3a else return the paths for the connection.

Fig. 1. SCRP algorithm

 Region Protection/Restoration Scheme in Survivable Networks 445

4 Modeling Results

In this section we evaluate and compare restoration times and network resource utili-
zation ratio obtained by both ILP and heuristic algorithm for the NSF network, shown
in Fig. 2 We also modeled the U.S. Long-Distance Network [7], shown in Fig. 3, but,
due to the size of the network, we applied only the heuristic algorithm.

1

2

3

4

5

6

7

8

9

10
11

12

13

14

0

1

4

2

3

6

7

15

12

11

5 8 9

10

14

18

21

20

17
19

24
16

13

25

22

27

26

23

Fig. 2. NSF network Fig. 3. U.S. Long-Distance Network

For each of the examined network, in each experiment, 30 logical topologies were
generated. Each topology was determined by a graph having a fixed number of ran-
domly chosen source-destination pairs of nodes. After establishing connections in
each logical topology, single node failures were randomly generated. We assumed
equal channel capacity and the same number of channels available in each link. For
each connection we assumed protection against a single node failure, the distance
metrics and no resource optimization in channel capacity allocation. Each demand of
resource allocation was equal to the one channel capacity.

4.1 Accuracy of Heuristic Algorithm

We modeled the path protection in the NSF network to check the accuracy of our
heuristic algorithm. Network resource utilization ratio per connection obtained with
help of CPLEX program and our algorithm for 4-8 channels per link and 8 and 12
demands is shown in Table 1. Fig. 4 illustrates the rate of additional resource utiliza-
tion ratio, obtained with help of heuristic algorithm, compared to the optimal results
of CPLEX. Results prove that the heuristic algorithm is nearly as efficient as the op-
timal ILP approach. In particular, when increasing the number of available channels
per link, the results for the heuristic approach tend to differ very little from the
analogical ones for the ILP formulations.

Table 1. Network resource utilization ratio per one connection

number of demands per logical topology 8 12

number of channels per link 4 5 6 7 8 4 5 6 7 8

(CPLEX) 3,62 2,90 2,42 2,07 1,81 3,58 2,88 2,42 2,07 1,82 resource utilization per
connection [%] (heuristics) 3,70 2,93 2,44 2,09 1,83 3,72 2,97 2,45 2,09 1,83

(CPLEX) 0,13 0,10 0,08 0,07 0,01 0,11 0,07 0,05 0,04 0,04
95% confidence interval [%]

(heuristics) 0,15 0,12 0,09 0,07 0,01 0,14 0,09 0,06 0,05 0,04

446 W. Molisz and J. Rak

4.2 Comparison of the Three Protection Schemes

In this section we evaluate and compare results of our heuristic algorithm for path,
link and region protection schemes for the U.S. Long-Distance Network. Here each
link was assumed to have 32 channels; 30 demand pairs formed each scenario.

4.2.1 Network Resource Utilization Ratio
Fig. 5 shows the number of links as a function of percentage of link utilization ratio
for all three protection schemes. Results from Fig. 5 prove that the smaller the indi-
vidually protected area is, more network resources are necessary to protect a connec-
tion. Fig. 6 illustrates the relative network resource utilization ratio per connection. It
shows that the region protection is almost as good as the path protection, giving about
60 % of the respective value for link protection. It is because the total number of links
used by backup paths gets bigger when the size of individually protected area de-
creases. The region protection model leads to only insignificantly worse results re-
garding relative network resource utilization ratio per connection than those obtained
by using the best model (i.e. path restoration), as shown in Table 2.

0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

4 5 6 7 8

number of channels per link

ad
di

tio
na

l r
es

ou
rc

e
ut

ili
za

tio
n

8 demands per logical topology 12 demands per logical topology

0

40

80

120

160

200

1 26 51 76

link utilization [%]

 n
um

be
r o

f l
in

ks

path protection region protection link protection

Fig. 4. Rate of additional resource utiliza-
tion obtained by heuristic algorithm, com-
pared to the optimal results of CPLEX

Fig. 5. Number of links as a function of
percentage of link utilization ratio for all
three protection schemes

Table 2. Link capacity utilization for three protection schemes

 path protection region protection link protection

network resource utilization [%] 18,30 20,01 30,56

95% confidence interval [%] 1,05 1,54 2,38

4.2.2 Restoration Times
Fig. 7 shows the cumulative distribution function of restoration times for all three
protection schemes while Table 3 the respective average values.

Results show that the values of restoration times get smaller while decreasing the
size of individually protected area. They represent values of time needed to restore a
connection after a failure of a network component, according to the protocol taken
from [5]. The lower the values of restoration time are, the smaller amount of data is
lost within the period of restoration.

 Region Protection/Restoration Scheme in Survivable Networks 447

Table 3. Average restoration times for three protection schemes

 path protection region protection link protection

average restoration times [ms] 47,92 43,79 23,98

95% confidence interval [ms] 1,54 1,71 1,07

0

0,4

0,8

1,2

path
protection

region
protection

link
protection

lin
k

re
so

ur
ce

 u
til

iz
at

io
n

[%
]

0

0,25

0,5

0,75

1

1 21 41 61 81 101 121 141

restoration time [ms]

p
ro

ba
b

ili
ty

path protection region protection link protection

Fig. 6. Relative network resource utiliza-
tion ratio per connection for all three pro-
tection schemes

Fig. 7. Cumulative distribution function of
restoration time depending on protection
model

5 Conclusions

Our results prove that region protection approach is the best way of keeping both
restoration times and network resource utilization at the acceptable level.

Concluding the paper, we point out that one cannot simultaneously have the short-
est restoration times and the smallest ratio of network resource utilization. One of
these two factors plays against the second one and vice-versa. If they are of the same
importance, the best solution is to use a region protection model, which provides the
medium values of both restoration time values and network resource utilization.

References

1. Andersen, R., Chung, F., Sen, A., Xue, G.: On disjoint path pairs with wavelength continu-
ity constraint in WDM networks. Proc. INFOCOM (2004) 524–535

2. Dijkstra, E.: A note on two problems in connection with graphs. Numerische Mathematik,
1, (1959) 269–271

3. Kodialam, M., Lakshman, T.V.: Dynamic routing of bandwidth guaranteed tunnels with
restoration. Proc. INFOCOM (2000) 902–911

4. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part I – protection.
Proc. IEEE INFOCOM (1999) 744–751

5. Ramamurthy, S., Mukherjee, B.: Survivable WDM mesh networks, Part II – restoration.
Proc. IEEE-ICC, Vol.3 (1999) 2023–2030

6. Suurballe, J.W.: Disjoint paths in a network. Networks, John Willey & Sons (1974) 125-145
7. Xiong, Y, Mason, L.G.: Comparison of two path restoration schemes in self-healing net-

works. Computer Networks 38 (2002) 663–674

Massive Data Mining for Polymorphic Code
Detection

Udo Payer, Peter Teufl, Stefan Kraxberger, and Mario Lamberger

Institute of Applied Information Processing and Communications,
Inffeldgasse 16a, 8010 Graz, Austria

{Udo.Payer, Peter.Teufl, Stefan.Kraxberger,

Mario.Lamberger}@iaik.tugraz.at

Abstract. Driven by the permanent search for reliable anomaly-based
intrusion detection mechanisms, we investigated different statistical
methodologies to deal with the detection of polymorphic shellcode. The
paper intends to give an overview on existing approaches in the litera-
ture as well as a synopsis of our efforts to evaluate the applicability of
data mining techniques such as Neural Networks, Self Organizing Maps,
Markov Models or Genetic Algorithms in the area of polymorphic code
detection. We will then present our achieved results and conclusions.

1 Introduction

This paper is based on a set of known polymorphic shellcode generators (AD-
MMutate [7], CLET [4], JempiScodes [17]) and will discuss the effectiveness of
statistical methods like neural networks (NN) [5], Self Organizing Maps (SOM)
[8] or finite Markov chains (MC) [20] for detecting malicious code. After an-
alyzing existing polymorphic shellcode detection techniques (such as FNORD
[16], APE [19] or Buttercup [12]), we have developed several possible approaches
which have all in common, that they only make use of payload information
without any use of additional information (e. g. header information).

For a good introduction on the concept behind shellcodes and polymorphic
shellcodes we refer to [1] and [4].

2 Data Mining Approaches

2.1 Hybrid Detection Engine Using Neural Networks- HDE

In [13], we proposed a HDE which uses three phases to detect polymorphic
shellcodes:

1. NOP zone detection: This phase searches the network traffic for consec-
utive chains of predefined NOP instructions (taken from ADMMutate and
CLET). Whenever a chain exceeding a threshold length is found, the next
phase is triggered. To overcome the problem with short or no NOP zones,
this phase is scalable and can be turned off completely.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 448–453, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Massive Data Mining for Polymorphic Code Detection 449

2. Search for execution chains: This phase analyzes the data after the NOP
zone by using a recursive function capable of following different execution
chains in disassembled code. Whenever a controlflow instruction is detected,
the function extracts the destination address and continues disassembling at
this address. Depending on the instruction the function also follows the code
directly after the instruction. For a similar approach we refer to [19].

3. Neural network classification: Whenever a termination criterion is met
(see [13] for details), the recursive function stops to follow the code and
starts neural network classification.

The input for the neural network is the spectrum of encountered in-
structions along an execution path. (Here and in the course of this paper, by
spectrum we mean a representation of the relative frequencies.) If the output
of the neural network is larger than zero, a possible shellcode is reported.

The features of the neural network were chosen by investigating the in-
structions used by the available polymorphic shellcode engines. These in-
structions were then used to create groups of similar instructions. Further
instructions from the X86 set were then added to the groups. The groups
are numbered and represent the features/inputs for the neural network. A
complete list can be found in [13].

Results:
HDE was evaluated with six shellcode engines. There are three public available
engines, that can be used to generate polymorphic shellcodes. These are ADM-
Mutate [7], CLET [4] and JempiScodes [17]. With the knowledge we got from
investigating these engines, we also made up our minds on alternative methods to
generate polymorphism. As a result, we developed three independent shellcode
engines which are based on different concepts.

In what follows, we will call these engines EE1, EE2 and EE3 (Experimental
Engine). The purpose of these engines was to improve our detection mechanism
by experimenting with concepts that could possibly evade HDE. EE1 was based
on inserting junk instructions and XOR encryption. Such a mechanism was also
proposed by the authors of [4]. EE2 uses the Tiny Encryption Algorithm (TEA)
to encrypt the payload. EE3 uses random chains of simple instructions which
are applied to the payload to transform the payload. The inverted instruction
chain serves simultaneously as decryption engine and key.

Evaluation of HDE was made by training six neural networks (one for each
polymorphic shellcode engine) and applying them to test data provided by the
six engines and to real data known to be free of shellcodes. The results can be
seen in table 1. To increase the detection accuracy for unknown engines, a new
network was trained with positive training data used for the two best neural
networks (ADMMutate and EE3) 2. In general, evaluation shows that HDE is
able to detect engines not available during the training process.

2.2 Self-organizing Maps

Since we already applied the theory of Self-Organizing Maps in the context of
traffic classification (cf. [14]), we also wanted to see them perform in anomaly
detection. For the theory of SOMs, we refer to [8].

450 U. Payer et al.

Table 1. Neural network performance

ADMMutate CLET JempiScodes EE1 EE2 EE3
ADMMutate 100% 38.8% 100% 79.2% 93% 75.9%

CLET 3.2% 100% 0% 1.7% 0% 3.5%
JempiScodes 26.6% 0% 100% 13% 0.1% 17.7%

EE1 17.4% 91.2% 0.8% 100% 100% 100%
EE2 2.3% 33% 0% 4.7% 100% 1.5%
EE3 20% 98.9% 0.8% 100% 97% 100%

Table 2. ADMMutate-EE3 network performance (30 NOPS)

ADMMutate CLET JempiScodes EE1 EE2 EE3
100% 100% 71.4% 100% 98.3% 100%

Our SOM-based detection engine is virtually identical with the one described
in Section 2.1, except that SOMs are used instead of a neural network. There
are several reasons why choosing a SOM instead of a neural network could make
sense:

– SOMs are based on unsupervised learning, neural networks use supervised
learning

– SOMs can be trained with only positive examples
– SOMs can be used to visualize high dimensional data

This detection engine was not implemented for SnortTM, because we only
wanted to gather experience with SOMs. We made use of the SOMToolbox [6]
for MatlabTM, which we used for training and testing purposes.

Unfortunately, our achieved results lead to the conclusion that SOMs are
incapable of replacing NNs for anomalous code detection, the detection rates
were very poor even in simple test cases.

2.3 Finite Markov Chains

Another very promising approach in the field of abnormal code detection was the
use of Finite Markov Chains (FMC). First, we trained the FMC-transition matrix
by using ”normal” network traffic. Thereafter, this transition matrix was used
to calculate the probability of a dedicated Markov sequence, to find differences
between the trained normal traffic and characteristic parts of a polymorphic
shellcode.

By the knowledge of the intrinsic structure of the investigated engines, we
were able to adjust the transition matrix manually. This lead to much bet-
ter detection results. In addition, we applied some preprocessing functions due
to efficiency and performance reasons (e.g. sequence preprocessing and NOP-
filtering).

Massive Data Mining for Polymorphic Code Detection 451

A substantial improvement of performance could be achieved be introducing
the concept of Genetic Algorithms for the automatic training sequence of the
FMC approach. Genetic algorithms are adequate tools if just little knowledge
about the search space is available and the complexity of the problem is very
hard (NP-complete).

The performance of a GA-improved transition matrix is shown in Figure 1.

0 50 100 150 200 250 300
10

−88

10
−86

10
−84

10
−82

10
−80

10
−78

10
−76

10
−74

10
−72

10
−70

10
−68

Normal traffic probability

Fig. 1. Conditional probability of a 30-byte sequences with a GA-trained transition
matrix

In Figure 1 we can see that the optimized transition matrix is highly qualified
to detect deciphering engines. This is, since just deciphering-engines are used for
the GA-algorithm.

Table 3 was generated by calculating the conditional probability of 37.785.600
30-byte sequences. After setting an empirically determined threshold we tested
real network injected with shellcode examples. What we can see in Table 3 is that
FMC produces no false-negatives. This is due to the fact that the GA-optimized
transition matrix was tested by using the same category of shellcode as we used
for the training process. We know that due to the relatively small number of test-
sequences and the use of a single shellcode generator the presented results are
not very significant. On the other hand, we just want to show that the number
of false-positives can be reduced dramatically by the use of optimized transition
matrices. Table 3 we can also reflects the fact that the GA modification process
is much better than the manual process. (In Table 3, P1 denotes the case of a

452 U. Payer et al.

Table 3. Markov model detection performance with different transition matrices

P1 P2 P3
False negatives 0 0 0
False positives 33540 2540 13

learned transition matrix from normal traffic, P2 denotes the case of a manually
manipulated transition matrix and P3 is the GA optimized transition matrix.)

3 Conclusions and Outlook

In this paper we give a short overview about three approaches to apply data
mining techniques in the field of polymorphic code detection. The main idea was
to find the most promising candidates which can be trained automatically. We
think that commercial detection mechanisms can only be successful if they are
based on automatic training mechanisms and do not require human interactions.
We analyzed the concepts of NNs, SOMs, and FMCs by implementing
SNORTTM-plugins or simple MatlabTM simulations - but always in combina-
tion with real network traffic.

The main difference between our approach and other solutions (found in
the literature) is the exclusive use of payload information without any use of
additional information (header information for instance).

In comparison, the NN-based approach showed very good results together
with the most flexibility in detecting unknown shellcode. On the other hand, the
Markov chain approach has the advantage of keeping the sequence information
of the data. Our result can only be seen as a first glimpse on data mining
techniques in malicious code detection. Clearly, the list of remaining tasks seems
to be endless. Complexity-based comparison of proposed mechanisms and the
search for possible new candidates are heading the list.

References

1. AlephOne: Smashing the stack for fun and profit. Phrack Magazine 49(14) (1996)
2. Biles, S.: Detecting the Unknown with Snort and the Statistical Packet Anomaly

Detection Engine (SPADE).
http://www.computersecurityonline.com/spade/SPADE.pdf retrieved on (2005)

3. Bishop, C.M.: Neural networks for pattern recognition. The Clarendon Press
Oxford University Press, New York. With a foreword by Geoffrey Hinton (1995)

4. CLET team: Polymorphic shellcode engine. Phrack Magazine 61(9) (2003)
5. Duda, R., Hart, P., Stork, D.: Pattern classification. Wiley-Interscience, New York,

second edition (2001)
6. Helsinki University of Technology. Som toolbox for matlab. http://www.cis.hut.fi/

projects/somtoolbox/ (2005)
7. K2. Admutate 0.8.4. http://www.ktwo.ca. Retrieved (2004)
8. Kohonen, T.: Self-Organizing Maps. Springer (2001)

Massive Data Mining for Polymorphic Code Detection 453

9. Kraxberger, S., Payer, U.: Markov Model for Polymorphic Shellcode Detection.
accepted at INC 2005. (2005)

10. Mathworks. Neural network toolbox.
http://www.mathworks.com/products/neuralnet/ (2004)

11. NASM SourceForge Project. http://nasm.sourceforge.net (2005)
12. Pasupulati, A. Coit, Levitt, J., Wu, K., Li, S.F., Kuo, S.H., Fan, J.C.: Buttercup:

on network-based detection of polymorphic buffer overflow vulnerabilities. Network
Operations and Management Symposium, 2004. NOMS 2004. IEEE/IFIP, Vol. 1
(2004) 235–248

13. Payer, U., Teufl, P., Lamberger, M.: Hybrid Engine for Polymorphic Shellcode
Detection. accepted at DIMVA (2005)

14. Payer, U., Teufl, P., Lamberger, M.: Traffic classification using Self-Organizing
Maps. accepted at INC 2005 (2005)

15. Roweis, S.: Levenberg-marquardt optimization.
http://www.cs.toronto.edu/˜roweis/notes/lm.pdf (2005)

16. Ruiu, D.: Snort preprocessor - Multi-architecture mutated NOP sled detector.
http://cansecwest.com/spp fnord.c (2005)

17. Sedalo, M.: Polymorphic Shellcode Engine. http://www.shellcode.com.ar (2004)
18. Snort. Open Source Network Intrusion Detection System. http://www.snort.org

(2005)
19. Toth, T., Kruegel, Ch.: Accurate buffer overflow detection via abstract payload

execution. RAID 2002, Lecture Notes in Computer Science, Vol. 2516 (2002) 274–
291

20. Weisstein, E.W.: Markov Chain. From MathWorld–A Wolfram Web Resource.
http://mathworld.wolfram.com/MarkovChain.html

Key Escrow with Tree-Based Access Structure

Martin Schaffer and Peter Schartner

University of Klagenfurt, Austria, Computer Science · System Security
{m.schaffer, p.schartner}@syssec.at

Abstract. In this paper we propose a system in which a set of people is
able to confidentially communicate using a common session key. Due to
required governmental surveillance properties, this key will be escrowed
using a multi-party version of the ElGamal cryptosystem. The resulting
shares of the ciphertext are stored over a set of trusted servers to provide
availability and to hamper ciphertext-based attacks. Using a particular
tree-based multi-party decryption, the session key can be reconstructed
by a tree-structured set of escrow agencies without reconstructing the
private ElGamal key and the ciphertext.

1 Introduction

While monitoring people human rights are often neither protected by the govern-
ment nor by other (private) organisations. Focused on this fact, it is very useful
to store the monitored information confidentially. With the help of key escrow
we are able to archive the corresponding key at a trusted third party. In this
simple consideration we quickly find several problems. Firstly, we do not want to
trust one single party that is able to recover the key. As a matter of fact, many
solutions provide well defined access structures to the escrowed key (e.g. secret
splitting/sharing or software solutions). Secondly, the escrow agencies require
the availability of the database in which the key is stored. If we simply build
redundant memories, this problem can be solved, but what happens if the access
structure has been compromised? Another problem arises, if a communication
process, such as a conferencing phone call between several instances, has to be
monitored. For efficiency reasons only one key might have been generated in a
fair way among users, but who is responsible for escrowing it?

The proposed key escrow system fulfils the following requirements:

– Fair distributed (tree-structured) generation of a private key d.
– Fair distributed generation of a session key k.
– Multi-party ElGamal encryption of k to provide its confidentiality.
– Distributed storage of the ciphertext (c1 and shares of c2) to provide avail-

ability, to avoid unauthorized encryption if d has been compromised and to
hamper several ciphertext-based attacks.

– Tree-structured multi-party ElGamal decryption over c1 and shares of c2.

The proposed system consists of a set P of l monitored instances who generate
and encrypt a common session key k for a confidential teleconference using multi-
party ElGamal encryption. Furthermore, a set S of m ciphertext-servers exists

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 454–459, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Key Escrow with Tree-Based Access Structure 455

where c1 and shares of c2 are archived. Finally, a possibly tree-structured set
E of escrow agencies exists, where each instance owns a (recursively generated)
share of the private key d.

The tree-based access structure can be achieved by recursively using thresh-
old cryptography. In order to be able to perform encryptions and decryptions
in a distributed way, we need the concepts of secure multi-party computation
(MPC) based on threshold security firstly introduced in [3]. There, any publicly
known mathematical formula with secret inputs can be computed by a qualified
set of instances (so called players) without revealing any information about the
secrets but giving them enough power to compute and reconstruct the output.
Basic solutions in this research field provide addition and multiplication of shared
secrets as well as public constants (scalars). Due to the fact, that multiplication
of two shared secrets is not very practical, we reduce our requirements to the
exclusive usage of addition and multiplication with scalars. To provide a better
understanding of our approach, the given protocols are only resistant against
passive adversaries who always stand to the rules (for considerations with active
adversaries we refer to our technical report [6]). Multi-party computation based
on threshold security requires secret sharing in several stages, which is also re-
quired for availability reasons of the ciphertext. This heads to the output of the
distributed encryption process which remains shared over S. While performing a
distributed decryption, the private key also always remains recursively shared by
using ElGamal threshold decryption (likely proposed in [1]). Different from [1]
we propose d to be tree-shared on the one hand and a very strong requirement
on the other hand: decryptions are only allowed to be performed over shares of
the ciphertext. As far as monitored instances are honest we can hamper several
ciphertext-based attacks up to a particular grade.

2 Fundamentals

Due to the usage of the ElGamal cryptosystem and its system parameters p and
q, every computational step in this paper is either reduced modulo q (within ex-
ponents) or modulo p (within bases). For sake of simplicity we use a multi-pseudo
code that we developed especially for representing multi-party protocols. In order
to run such a protocol in pseudo-code representation the participating input and
output-players with the corresponding input and output-values (within brack-
ets) have to be specified. Every direct successor of the root of the tree is called
first-level-player (FLP). Although we shortly describe the used fundamentals,
we assume the reader to be familiar with the basic ElGamal cryptosystem [2] as
well as the paradigm of secure multi-party computation [4] and secret sharing
[9] respectively.

2.1 Shamir’s Secret Sharing and Reconstruction

A secret value s of group ZZq is shared among a set of n players by using
Shamir’s secret sharing [9] with threshold t (short: s �→ (s1, . . . , sn)). For unique

456 M. Schaffer and P. Schartner

reconstruction of s we have to interpolate at least t+1 shares using the formula
of Lagrange: s =

∑n
i=1 si · λs

0,i, where λs
0,i =

∏n
j=1 j · (j − i)−1 is the weight

of si corresponding to s. One big disadvantage of Shamir’s secret sharing is the
fact that incorrect shares head to the reconstruction of a wrong secret. Although
we can never prevent from active misbehaviour of participating instances, it is
possible to detect them up to a particular grade (for more information see [4]).

2.2 ElGamal Cryptosystem

Assuming the discrete-logarithm-based key generation has already taken place
resulting in the public key e and the private key d the encryption of a session
key k can be done by computing c1 = gα and c2 = k · eα, where α ∈R ZZq. The
decryption can be done by computing k = c2 · c−d

1 .

2.3 Fair Tree-Shared Generation of a Private Key

In this paper we need a fair distributed generation of a (secret) value. We use
a simplified version of the key generation protocol based on discrete logarithms
proposed in [5]. The protocol in [5] is useful to generate a private key with-
out reconstructing it. However, we need a fair tree-structured generation of the
private key. Moreover, we need substitutability for every FLP within E in case
of absence which can be realized by recursively sharing computations over the
corresponding sub-trees. For lack of space we are forced to refer to our technical
report [7].

3 Distributed Computation of the ElGamal Cryptosystem

Based on our strict requirement not using multiplication of two shared secrets
we now try to split the ElGamal encryption and decryption function into several
parts respectively so that it can be performed by different sets of players without
revealing information about the session key k, the private key d, the ciphertext-
part c2 and randomness α up to a particular grade. We consider the ElGamal
cryptosystem as one common multi-party computation where the computation-
stage consists of three sub-stages: session key generation, encryption- and de-
cryption. We assume, that d is already shared over E and players in P already
know e.

Input. Each player Pi in P generates and shares two secret random values
k′

i �→ (k′
i1, . . . , k

′
il) and α′

i �→ (α′
i1, . . . , α

′
il) over P .

Computation (Session Key Generation). Each player in Pi combines the
received share-shares to a share of k [5]: ki =

∑l
j=1 k′

ji · λki

0,j .

Computation (Encryption). All players in P and S compute the encryption
over the shares of k, α and the constant eα resulting in c2 that remains shared

Key Escrow with Tree-Based Access Structure 457

over S. Protocol 1 (see fig. 1) starts with the combination of the received share-
shares of α to a share of it. Then every player computes and broadcasts a share
of eα over P . Now each player Pi is able to compute a share of c2 by multiplying
his share of k by eα. Furthermore, he sends c1 to S. A resharing of c2 results in
c2 shared over S. First we have to proof, that any value z that is shared over x
players can be reshared over a set of y players without reconstructing z:

Proof (of Correctness (xy-Resharing)).

x∑
i=1

zi · λz
0,i =

x∑
i=1

y∑
j=1

zij · λzi

0,j · λz
0,i =

y∑
j=1

x∑
i=1

zji · λz
0,i · λzi

0,j =
y∑

j=1

zj · λzi

0,j (1)

��

input: (S1[c1, c21], . . . , Sm[c1, c2m], E1[d1], . . . , En[dn]) MPC: c2 · c−d
1

output: (E1[k1], . . . , En[kn])
l.1 for all i ∈ {1, . . . , m} do // decryption stage 1 (S & E)+
l.2 Si: c2i �→ (c2i1 , . . . , c2in)
l.3 send(Si[c1, c2i1 , . . . , c2in]) → (E1[c1, c2i1], . . . , En[c1, c2in])
l.4 for all i ∈ {1, . . . , n} do // decryption stage 2 (E)+
l.5 Ei: c∗1i = cdi

1 , c∗2i =
∑m

j=1
c2ji · λc∗2i

0,j

l.6 send(Ei[c∗1i]) → (E1[c∗1i], . . . , En[c∗1i])
l.7 for all i ∈ {1, . . . , n} do // decryption stage 3 (E)+
l.8 Ei: k∗

i = c∗2i · (
∏n

j=1
c∗1j

λd
0,j)−1, k∗

i �→ (k∗
i1, . . . , k

∗
in)

l.9 send(Ei[k∗
i1, . . . , k

∗
in]) → (E1[k∗

i1], . . . , En[k∗
in])

l.10 for all i ∈ {1, . . . , n} do // decryption stage 4 (E)+
l.11 Ei: ki =

∑n

j=1
k∗

ji · λki
0,j

Fig. 1. Multi-Party Protocol 1: Distributed ElGamal Encryption

A proof of correctness of protocol 1 can be given referring to the proof of xy-
Resharing and the lines of the encryption protocol:

Proof (of Correctness (Multi-Party Protocol 1)).

c1
l.8=

l∏
i=1

c
λα
0,i

1i
l.2= gα, c2 =

m∑
i=1

c2i · λc2
0,i

(1)
=

l∑
i=1

c′2i · λk
0,i

l.5=
l∑

i=1

ki ·
⎛⎝ l∏

j=1

e
λα
0,j

j

⎞⎠ · λk
0,i

l.2=
l∑

i=1

ki · λk
0,i · eα = k · eα

��

458 M. Schaffer and P. Schartner

Computation (Decryption). All players in S and E compute the decryption
over c1, the shares of c2 and the shares of d resulting in k that remains shared
among the players of E until reaching the output-stage (see fig. 2). S starts
protocol 2 by resharing c2 over E and sending c1 to E . Then each player Ei

computes and broadcasts a share of cd
1. Furthermore, he combines a share of c2

and computes his part c2i · c−d
1 of the main decryption (multiplication of a share

with a scalar) resulting in a share of k. However, broadcasting this share enables
every Ei to reconstruct c2. Due to this fact, we blind c2 by resharing k over E .

input: (S1[c1, c21], . . . , Sm[c1, c2m], E1[d1], . . . , En[dn]) MPC: c2 · c−d
1

output: (E1[k1], . . . , En[kn])
l.1 for all i ∈ {1, . . . , m} do // decryption stage 1 (S & E)+
l.2 Si: c2i �→ (c2i1 , . . . , c2in)
l.3 send(Si[c1, c2i1 , . . . , c2in]) → (E1[c1, c2i1], . . . , En[c1, c2in])
l.4 for all i ∈ {1, . . . , n} do // decryption stage 2 (E)+
l.5 Ei: c∗1i = cdi

1 , c∗2i =
∑m

j=1
c2ji · λc∗2i

0,j

l.6 send(Ei[c∗1i]) → (E1[c∗1i], . . . , En[c∗1i])
l.7 for all i ∈ {1, . . . , n} do // decryption stage 3 (E)+
l.8 Ei: k∗

i = c∗2i · (
∏n

j=1
c∗1j

λd
0,j)−1, k∗

i �→ (k∗
i1, . . . , k

∗
in)

l.9 send(Ei[k∗
i1, . . . , k

∗
in]) → (E1[k∗

i1], . . . , En[k∗
in])

l.10 for all i ∈ {1, . . . , n} do // decryption stage 4 (E)+
l.11 Ei: ki =

∑n

j=1
k∗

ji · λki
0,j

Fig. 2. Multi-Party Protocol 2: Distributed ElGamal Decryption

Analogous to protocol 1 a proof of correctness can be given as follows:

Proof (of Correctness (Multi-Party Protocol 2)).

k =
n∑

i=1

ki · λk
0,i

(1)
=

n∑
i=1

k∗
i · λc∗2

0,i
l.8=

n∑
i=1

c∗2i ·
⎛⎝ n∏

j=1

c∗1j
λd
0,j

⎞⎠−1

· λc∗2
0,i

l.5=
n∑

i=1

c∗2i · λc∗2
0,i · c−d

1

(1)
=

m∑
i=1

c2i · λc2
0,i · c−d

1 = c2 · c−d
1

��
Output. Every player Ei ∈ E sends ki to every player Ej ∈ E . Then each Ej

can reconstruct the session key by computing k =
∑n

i=1 ki · λk
0,i.

3.1 Performance and Security Analysis

The performance of the proposed protocols depends on the number of players in
P , S and E . The following table shows the number of sent messages, performed
multiplications and exponentiations of big integer values during the encryption
and decryption-stages for one player (additions are not considered):

Key Escrow with Tree-Based Access Structure 459

Player Sent Messages Multiplications Exponentiations
Pi(encryption) O(l + m) O(l + m) O(1)
Si(encryption) − O(l) O(1)
Si(decryption) O(n) O(n) O(1)
Ei(decryption) O(n) O(n + m) O(1)

The security of the protocols lies in the difficulty of breaking the discrete log-
arithm problem and threshold multi-party computation with computational se-
curity (see [4]). An external adversary has to compromise at least t + 1 players
in S to reconstruct c2 and at least t + 1 FLP in E to reconstruct d in order to
be able to decrypt k. The distributed storage of c2 has two effects: firstly, the
availability of ciphertext and secondly, the restriction of several ciphertext-based
attacks. However, if an adversary is able to force any player in P to compute
and publish c2 the second advantage disappears. Considering the decryption of
k, it is obvious that internal adversaries (S or E) do not really have more power
than external ones. Performing ciphertext-based attacks is not possible for up
to t players in S and E (if P remains honest).

4 Conclusion

We proposed a key escrow system that fulfils the requirements stated in section 1
by using a particular version of distributed ElGamal to achieve several security-
properties (discussed in section 3.1). For a detailed description of our proposal
including more applications we refer to our technical report [8]. An extended
version considering active adversaries can be found in our technical report [6].

References

1. Desmedt, Y., Frankel, Y.: Threshold Cryptosystems. Adv. in Crypt.: CRYPTO’89,
Springer-Verlag (1990) 307–315

2. ElGamal, T.: A Public-Key Cryptosystem and a Signature Scheme Based on Dis-
crete Logarithms. Adv. in Crypt.: CRYPTO’84, Springer-Verlag (1985) 10–18

3. Goldreich, O. et al: How to play any mental game – a completeness theorem for
protocols with honest majority. Proc. 19th ACM STOC (1987) 218–229

4. Hirt, M.: Multi-Party Computation: Efficient Protocols, General Adversaries,
and Voting. Ph.D. thesis. ETH Series in Information Security and Cryptography,
Hartung-Gorre Verlag, Konstanz (2001)

5. Pedersen, T.: A threshold cryptosystem without a trusted party. Adv. in Crypt.:
EUROCRYPT’91, LNCS, Vol.547 (1991) 522–526

6. Schaffer, M.: Hierarchical Key Escrow with Active Adversaries. Technical Report
TR-syssec-05-03, University of Klagenfurt, Austria (2005)

7. Schaffer, M.: Tree-shared Generation of a Secret Value. Technical Report TR-syssec-
05-01, University of Klagenfurt, Austria (2005)

8. Schaffer, M., Schartner, P.: Hierarchical Key Escrow with Passive Adversaries.
Technical Report TR-syssec-05-02, University of Klagenfurt, Austria (2005)

9. Shamir, A.: How to share a secret. Comm. of the ACM, Vol.11 (1979) 612–613

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 460 – 465, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Security Checker Architecture
for Policy-Based Security Management

Artem Tishkov, Igor Kotenko, and Ekaterina Sidelnikova

SPIIRAS, 39, 14 Liniya, St.-Petersburg, 199178, Russia
{avt, ivkote}@iias.spb.su, kittykate137@yandex.ru

Abstract. Policy-based management systems are now the object of steadfast
attention in network security theory and applications. Due to a complex
structure of subject role hierarchies, target grouping, and action mutual
dependence the security policy conflicts are complicated to detect and resolve.
Moreover, an initially consistent policy ruleset may lead to inconsistent or
unenforceable rules during the system lifecycle. The paper presents the
architecture of Security Checker module (intended for disclosure and resolution
of policy conflicts) and illustrates conflict detection based on event calculus.

1 Introduction and Motivation

Recently, common standard for policy-based security architecture is the one provided
by the IETF through several of its working groups, mainly policy framework (policy)
WG [2]. Policy rules are stored in a repository and policy decision point (PDP) is
separated from the policy enforcement point (PEP). Centralization of policy rules
store allows to build separated (passive) software tool for verification of security
policy as a whole. However, since verification process includes decision making in a
conflict situations, the verification tool should provide a conflict resolution strategy
used by PDP. PDP in turn sends decision to PEP which has to be appropriate to PEP
capabilities. Therefore, the verification tool needs three kind of information: policy
rules from repository, resolution strategy, and security capabilities of PEP.

Proposed policy-based framework which is under development in the Positif
Project [10] contains two input languages: System Description Language (SDL) and
Security Policy Language (SPL). SDL formally describes the information system. The
language supports the description of (1) system topology as network elements and
physical connections, (2) the network services offered and the applications supported
for each network element, (3) the security functionality of element such as network
filters, OS intrinsic controls, application-level ACL, etc. SPL specifies a security
policy. The language is able to describe high-level and low-level security policy rules.
High-level rules express a composite task that implies a number of actions to
implement. For example, to enforce the rule “Split the network into two independent
subnetworks”, the system should perform gateway reconfiguration, change of IP
addresses and subnet mask, and, possibly, addition of new filtering policies. Low-
level rules are more specific and in most cases could be considered as atomic action.
For example the rule “block any packet from network 195.19.200” would be

 Security Checker Architecture for Policy-Based Security Management 461

translated to one ACL item. One more kind of SPL rules defines decision algorithms.
There might be Deny Take Precedence, Permit Take Precedence, More (Less)
Specific Take Precedence, or another user-defined algorithm. Thus, policy rules and
conflict resolution strategies are described in SPL, security capabilities of a network
node (PEP) are defined in SDL.

Present-day policy-based security systems also include these three categories of
information, but not all three at the same time. Extended access control markup
language (XACML) supports access control policies. Three-level structure of policy
description (rule – policy as a set of rules – set of policies) allows to build flexible
resolution system using formalized notion of decision algorithm on the levels of
policy and policy set. XACML does not support system description language directly,
as network nodes are represented in rules. Ponder language [9] contains rules for
positive and negative authorization, obligation and delegation. The authors of Ponder
suggested several approaches for conflict resolution strategies [7]. Flexible
Authorization Framework (FAF) [3,4] studies access control policies. The advantage
of proposed system and reasoning is deep consideration of object, subject, and
privileges hierarchies. The language allows the specification of positive and negative
authorization and incorporates notions of authorization derivation, conflict resolution
and decision strategies.

The are also several relevant papers devoted to different techniques of conflict
detection and resolution, including deontic logic (L.Cholvy, et. al.), dynamic conflict
detection and resolution (N.Dunlop, et. al.), detecting conflict of duty (D.Ferraiolo,
R.Sandhu, et. al.), policy conflicts specification and resolution (Morris Sloman, et.
al.), credential-based approach to specification of access control policies, conflict
resolution in event-based policy management (Jan Chomicki), etc.

In our approach we try to use a set of different approaches in one common
framework for conflict detection and resolution in different policies (authentication,
confidentiality, filtering, etc.). The paper presents the architecture of Security Checker
intended for disclosure and resolution of policy conflicts and illustrates methods of
conflict detection based on event calculus. Section 2 describes the architecture of
policy-based security system proposed, the Security Checker architecture and
implementation issues. Section 3 characterizes the event calculus-based verification
module. Section 4 summarizes the results of the paper.

2 Security Checker Architecture and Implementation

The general architecture of policy-based security system is presented in fig. 1 [10].
Security checker (SEC) checks if the policies are consistent and can be implemented
with the functionality available in the information system. SEC plays a role of
SDL/SPL debugger, which interacts with user approving SPL/SDL descriptions or
pointing to inconsistencies. Configuration Generator produces Generic Security
Rulesets (GSR) which are the set of rules that do not keep into account the specific
implementation of security block (e.g. firewall type and manufacturer). Security
Technology Mapper transforms GSR into a specific configuration for each security
block in the system. This step will need the help of Block Security Maps provided by
the manufacturer of the block. Security Deployment Engine transfers configuration to

462 A. Tishkov, I. Kotenko, and E. Sidelnikova

Fig. 1. General architecture of security policy-based system [10]

the security blocks. Proactive Security Monitor (PSM) is an evolution of the concept
of Intrusion Detection System. PSM additionally uses two proactive techniques:
compare network traffic and system behavior against the allowed policy and generate
deliberate attacks to perform automatic checks of the deployed configuration. The
fifth section describes main results and directions of future research.

The SEC architecture is presented in fig. 2. The central box presents SEC, arrows
define dataflow (input or output).

System description (on SDL) is firstly validated using software/hardware
compatibility database. Security policy (on SPL) could be formulated on high or low
level. High-level rule is usually expanded to two or more low level rules for different
security properties, such as authentication, authorization, confidentiality, filtering, etc.
The system stores links between high- and low-level rule formulations. These links
are used to inform system administrator about contradictory high-level rules when
policy conflict is found on low-level. After translation of high-level (HL) rules to

“High-level -> Low-
level” translation

HL Rules
validation

Verification
(behavior modeling

and conflict resolution)

Security level evaluator

Components
compatibility info

!! Alerts SDL
validationHL-LL

translation
rules

Descriptions
of conflicts

Data for
security

levelevaluatio

HL – LL rule
interconnection

Info about active / inactive
part of SDL and SPL

specifications

Security level

Answer
(GO/NO GO) SPL

SEC

SDL

Fig. 2. Security checker architecture

 Security Checker Architecture for Policy-Based Security Management 463

low-level (LL), the verification process is started. Verification has three purposes: (1)
detect parts of specifications on SPL and SDL that have inconsistencies, (2) detect
parts of specifications on SPL and SDL that cannot be activated in the current
configuration (i.e. SPL-SDL compatibility checking), and (3) evaluation of security
level (SL) that could be achieved with these SPL-SDL descriptions.

The verification tool architecture is a multi-module one. Currently three modules
based on different mathematical approaches have been designed. These modules are
as follows: (1) the model checking module implemented using SPIN; (2) the theorem
prover that uses Event Calculus [6] and implemented in Jess [5]; and (3) the module
that implements semi-lattice approach [1]. Two first modules have been implemented.

The verification tool architecture is an open one: the signature of base Java class
VerificationModule, that represents a module, is fixed and a developer could provide
his/her own verification module inherited from VerificationModule. The Verification
Manager determines the order of modules processing.

3 Implementation of Event Calculus-Based Module

One of the modules of verification tool uses Event Calculus (EC) [6]. The
implementation of this module has been done by Jess rule engine [5]. The input data
are SDL and SPL descriptions. The module implementation is based on forward
chaining techniques: initialization rules generate a database of facts, and then the rules
are fired which conditions satisfy the facts. So an SDL description is transformed into
initialization rules which place network nodes, users, roles and services into the
database of facts. SPL rules are translated into operational rules. Inconsistencies are
determined by using conflict predicates. The example below shows the definition of
an authorization conflict. When initialization rules are fired, the module tries to derive
conflicts. This is a static conflict search. When the system is working, any new user
event is also put in the database of facts, and the conflict search procedure is
initialized. This use of the module is a dynamic conflict search.

Formally EC uses multi-sorted first-order language. Additionally to standard
domain of individual objects, EC defines three sorts: fluents − time-varying properties
of the world, actions − their instances (events) change state of fluents, time − real or
integer numbers starting from 0.

The following predicates define the states of fluents, their initiation and
termination, and events happening: HoldsAt(f,t) is true iff fluent f holds at timepoint t
; Happens(a,t) is true iff action a happens at timepoint t ; Initiates(a,f,t) expresses that
fluent f holds after timepoint t (but not at t) if action a happens at t ; Terminates(a,f,t)
expresses that fluent f does not hold after time point t (but not at t) if action a happens
at t ; InitiallyTrue(f) and InitiallyFalse(f) define whether f holds or not at timepoint 0 .

The auxiliary predicate Clipped(t1,f,t2) expresses whether a fluent f was terminated
during a time interval [t1,t2). Similarly, the auxiliary predicate Declipped(t1,f,t2)
expresses if a fluent f was initiated during a time interval [t1,t2). The domain
independent EC axioms are as follows:

• (EC1) Clipped (t1,f,t2) Happens(a,t1) & t1 t< t2 & Terminates(f,t2)
• (EC2) Declipped (t1,f,t2) Happens(a,t1) & t1 t<t2 & Initiates(f,t2)

464 A. Tishkov, I. Kotenko, and E. Sidelnikova

• (EC3) HoldsAt (f,t2) Happens(a,t1) & Initiates(a,f,t1) &t1<t2 & ¬Clipped (t1,f,t2)
• (EC4) ¬HoldsAt(f,t2) Happens(a,t1) & Terminates(a,f,t1) & t1<t2 &

¬Declipped(t1,f,t2)
• (EC5) HoldsAt (f, t) InitiallyTrue(f) & ¬Clipped(0,f,t)
• (EC6) ¬HoldsAt (f,t) InitiallyFalse(f) & ¬Declipped(0,f,t)
• (EC7) InitiallyTrue(f) | InitiallyFalse(f)

Let us consider a typical example of authorization conflict, which arises when user
is assigned to two roles that have opposite authorization permissions.

The following predicates are introduced: (1) User(<name>) denotes a user with a
name <name>, (2) Action(<name>) defines an action with a name <name> that a user
(subject) can process on a target, (3) Role(<name>) determines a role with the name
<name>, (4) ContradictoryRoles (<role1>, <role2>, <time>, <action>) describes that
roles role1 and role2 have opposite (negative and positive) permissions for processing
an action <action> at a time point t.

The following events are used: (1) AssignUserRole(<user>,<role>) denotes a
request of a user <user> for assignment to a role <role>, (2)
RolePermitAction(<role>,<action>) specifies a request for permission of an action
<action> for a role <role>, (3) RoleDenyAction(<role>,<action>) defines a request
for denial of action <action> for a role <role>.

The following fluents are assumed: (1) Assigned(<user>,<role>) specifies that user
<user> is assigned to a role <role>, (2) RoleHavePermission(<role>, <action>)
defines that a role <role> is permitted to a process action <action>, (3)
horizationConflict(<role1>,<role2>) denotes that there is an authorization conflict in
the system, i.e. there exist a user who is assigned to contradictory roles.

Domain dependent axioms are as follows:

• The first axiom initiates RoleHavePermission(r,a) fluent when the
RolePermitAction(r, a) event happens if this fluent is currently not true:

(AC1) Initiates (RoleHavePermission(r, a), RolePermitAction(r, a), t)
Happens(RolePermitAction(r, a), t) & (¬ HoldsAt(RoleHavePermission(r, a), t)) ;
• The second axiom implements deny for role r to process the action a as a

termination of fluent RoleHavePermission(r, a) when RoleDenyActivity(r, a) event
happens:

(AC2) Terminates (RoleHavePermission(r, a), RoleDenyActivity(r, a), t)
Happens(RoleDenyActivity(r, a), t) & HoldsAt(RoleHavePermission(r, a), t) ;
• The third axiom assigns user u to the role r when AssignUserRole (u, r) event

happens if AuthorizationConflict(r, r0) between the role r and some other role r0
is not presented in the system:

(AC3) Initiates(Assigned (u, r), AssignUserRole (u, r), t) Happens(AssignUserRole (u, r),
t) & (¬ HoldsAt(AuthorizationConflict(r, r0), t)) ;
• The fourth axiom defines two roles, one of which has and another one does not

have permission for some action. Here we note that OR-statement allows to not fix
which role has positive permission and which role has negative permission. Thus,
ContradictoryRoles is symmetrical regarding r1 and r2.

(AC4) ContradictoryRoles (r1, r2, t, a) (HoldsAt (RoleHavePermission (r1, a),t) & (¬
HoldsAt (RoleHavePermission (r2, a), t))) | (HoldsAt (RoleHavePermission (r2, a), t) & (¬
HoldsAt (RoleHavePermission (r1, a), t))) ;

 Security Checker Architecture for Policy-Based Security Management 465

• The fifth axiom defines a notion of authorization conflict: the user requested the
assignment for the second of two contradictory roles:

(AC5) Happens(conflictEvent, t); Initiates (AuthorizeConflict (r,r0), conflictEvent,t)
HoldsAt(Authorized(u, r0), t) & Happens(AuthorizeRequest(r, u), t) & ContradictoryRoles (r,
r0, a, t) .

4 Conclusions

This paper describes the architecture and implementation of security checker intended
for consistency verification in policy-based security framework. We have
implemented two verification modules: (1) the model checking module implemented
using SPIN; (2) the theorem prover that uses Event Calculus and implemented in Jess
[5]. The example of authorization conflict detection based on event calculus-based
module was presented. In the future evolution of security checker we plan to improve
the possibilities of Event Calculus and model checking modules for detection and
resolution of security policy conflicts.

Acknowledgement

This research is being partly supported by grant of Russian Foundation of Basic
Research (04-01-00167), grant of the Department for Informational Technologies
and Computation Systems of the Russian Academy of Sciences (contract 3.2/03)
and funded by the EC as part of the POSITIF project (contract IST-2002-002314).

References

1. Basile, C., Lioy, A.: Towards an algebraic approach to solve policy conflicts. Proceedings
of FCS'04 Workshop on Foundations of Computer Security (2004) 331–338.

2. IETF Policy Framework (policy) Working Group. http://www.ietf.org/html.
charters/policy-charter.html

3. Jajodia, S., Samarati, P., Sapino, M.L., Subrahmanian, V. S.: Flexible support for multiple
access control policies. ACM Trans. Database Systems, Vol. 26, No.2 (2001) 214–260

4. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A Logical Language for Expressing
Authorizations. IEEE Symposium on Security and Privacy (1997)

5. Jess, the Rule Engine for the JavaTM Platform. http://herzberg.ca.sandia.gov/jess/
index.shtml

6. Kowalski, R.A., Sergot, M.J.: A Logic-Based Calculus of Events. New Generation
Computing, 4 (1986) 67–95

7. Lymberopoulos, L., Lupu, E., Sloman. M.: Ponder Policy Implementation and Validation
in a CIM and Differentiated Services Framework. IFIP/IEEE Network Operations and
Management Symposium (NOMS 2004), Seoul, Korea (2004)

8. OASIS: eXtensible Access Control Markup Language (XACML). http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=xacml

9. Ponder: A Policy Language for Distributed Systems Management. Department of
Computing, Imperial College. http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml

10. POSITIF Project leaflet, June 2004. http://www.positif.org/idissemination.html (2004)

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 466 – 471, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Efficient Access Control Model
Utilized the Attribute Certificate Structuring

Soomi Yang

The University of Suwon,
Kyungki-do Hwasung-si Bongdam-eup Wau-ri san 2-2,

445-743, Korea
smyang@suwon.ac.kr

Abstract. For an efficient role based access control using attribute certificate,
we use a technique of structuring role specification certificates. It can reduce
management cost and overhead incurred when changing the specification of the
role. Especially, the highly distributed computing environments that cannot
have global or broad control need another attribute certificate management
technique. In this paper, the roles are grouped and made them into the relation
tree. In order to be scalable distribution of the role specification certificate, we
use multicasting packets. Also, performance enhancement of structuring role
specification certificates is quantified in the sense of taking into account of the
packet loss. In the experimental section, it is shown that role updating and dis-
tribution are secured and efficient.

1 Introduction

American National Standards Institute, International Committee for Information
Technology Standards (ANSI/INCITS) as ANSI INCITS 359-2004 is the information
technology industry consensus standard for RBAC[1,2]. It reflects the importance of
role based access control and shows that it makes the base of information technology.

 Highly distributed collaborating environments such as ubiquitous network usually
support the authorization of resources at varying levels of access. Furthermore, a
significant characteristic of highly distributed environments is the need for interac-
tions of highly collaborating entities to be secure. However, it could not have any
central or global control. Due to the lack of central control, the autonomous entities
form trust relations [3]. In the trust model, role based access control through the dele-
gation of privileges to entities trusted via the use of certificates are used. They can
be chained to represent recommendations and the propagation of trust.

For secure communication of highly distributed environments, we distribute the
role specifications according to the levels of access. It accords with the characteristics
of the distributed environments and sometimes is inevitable. In this paper, the concept
of trust model is adopted. Our method is different from the privilege delegation [2]
and it can be thought of as the distribution of privileges. In addition, we group roles,
which is different from the typical methods which group subjects only [1,6,7]. The
property of the role group not only results in reduced network traffic but also reduces
the overhead on the group manager. For scalability, we use multicast for distribution

 An Efficient Access Control Model Utilized the Attribute Certificate Structuring 467

of role specifications. Our work is related to the technique used for group key man-
agement [8,9]. In the experimental section, it is shown that our method can enhance
the performance.

The rest of this paper is organized as follows. In the next Section, we describe the
secure role group model. In Section 3, the group communication model for updating
role specification is presented. In Section 4, the performance of our method is shown.
In Section 5, we conclude.

2 Secure Role Group Model

The ITU-T X.509 Recommendation (ISO/IEC 9594-8)[2] and the IETF RFC 3281 [4]
define AC. Specific privileges are assigned to a role name through role specification
certificate. The level of indirection enables the privileges assigned to a role to be
updated, without impacting the certificates that assign roles to individuals. We make a
chain of role specification certificates.

 For structuring role specification certificates, we make role groups different to the
subject groups. The structure of the role groups differs from that of the delegation of
roles [2]. It gathers common roles and builds the trust structure. It forms the tree
structure. The chain of role specification certificates can incur the overhead when a
subject is going to use some privileges. The problem can be solved using coherent
caching of role specification certificates [5]. Possible increase in increased admini-
stration and key management effort do not exceed the performance gain using attrib-
ute certificate [5]. In highly distributed environment, the distribution of the specifica-
tions of roles is inevitable. In this paper, only the change of the role specification
certificates is considered when the roles update. For the case that the role groups are
distributed geographically and the role specifications are changed, the performance
enhances. If the role group is not used, the role holder should possess all the role
specifications. In this case, the application of the role can be done directly without
following the role specification certificates. However, each subject should have all the
role specification certificates, and the small memory devices commonly used in ubiq-
uitous computing environment cannot afford it.

3 The Communication Model for Updating of Role Specification

Updated role specification certificates are delivered by the multicast communication.
The distribution of updated role specification certificates of our method can be mod-
eled as following:

R : the number of roles

G: the maximum number of the lowest level role groups, =
R
i iR C1

S : the maximum number of the lowest level role specification certificates, S=G

ig : role group i

is : role specification certificate related to role group ig

468 S. Yang

h : height of the tree structure

id : degree of role group ig

If id equals to d for all i then G equals to hd . In general, the roles are included in

not all of role groups. Thus, an unnecessary role group creation can be avoided for

determining the proper value of h. If the roles are not grouped, is needs to be trans-

mitted to lhd − members. From the viewpoint of the reliable delivery, a role specifica-

tion certificate at level l of the tree structure has to be delivered to lhdlW −=)(

receivers. If the roles are grouped, is needs to be transmitted to d members. Thus, it

has to be delivered to ()W l d= receivers. Let M(l) be the frequency of the trans-

mission of a role specification certificate is in order to be successfully delivered to

all W(l) receivers.
The probability that one of these W(l) receivers (say w) will not receive the updated

role specification if it is transmitted once is equal to the probability of packet loss, p,

for that receiver. Let wM be the frequency of role specification transmissions neces-

sary for receiver w to successfully receive the role specification certificate. Since all
the packet loss events for receiver w, including replicated packet and retransmissions,

are mutually independent, wM is geometrically distributed as in [14]. Thus,

[] 1 , 1m
wP M m p m≤ = − ≥ (1)

[] 1/(1)wE M p= − (2)

Equation (1) represents the probability that the role specification certificate is deliv-
ered successfully within m packet transmissions. Equation (2) represents the expected
number of packet transmission. Since lost packet events at different receivers are
independent each other, the probability [()]P M l m≤ that all the W(l) receivers will

receive the packet within m transmissions is as shown in Equation (3).
()

()

1

[()] [] (1)
W l

m W l
w

w

p M l m P M m p
=

≤ = ≤ = −∏ (3)

The expected frequency of the role specification packet transmission can be computed
as following:

1 ()

1 1

[()] [()] (1 (1))m W l

m m

E M l P M l m p
∞ ∞

−

= =
= ≥ = − − (4)

We can compute F(l) numerically using Equation (4) by truncating the summation
when the mth value falls below the threshold.

4 Performance Evaluation

From Equation (1) through (4), we can measure the expected number of role specifi-
cation packet transmission, E[M(l)], for the performance comparison. For each given

 An Efficient Access Control Model Utilized the Attribute Certificate Structuring 469

packet loss p, we can inspect the effects to the average role specification certificate
transmission by degree. Fig. 1 shows the difference of the role-grouped case
(grouped-pd.dat) and the role-ungrouped case (ungrouped-pd.dat). When the packet
loss is small, the difference is very small. However, as the packet loss gets bigger, the
role-ungrouped case suffers from steeply increasing packet transmission. The per-
formance enhancement obtained by role grouping is proportional to d. For the follow-
ing comparison, we set d to 50 for the performance analysis.

Fig. 1. A comparison of the expected packet transmission as a function of p and d

We examine the average packet transmission, E[F(l)], for the various values of
threshold m. In Fig. 2, the E[F(l)] becomes stable when m becomes greater than 10.
Let’s calculate the impact of p on E[F(l)] when m=20 for two cases; one is when roles

Fig. 2. A comparison of the expected packet transmission as a function of p and m

470 S. Yang

are not grouped (ungrouped-pm.dat), the other is when roles are grouped(grouped-
pm.dat). For the first case, the E[F(l)] results in higher value than the other. When p is
0.1, E[F(l)] is reduced by 50% and when p=0.16, by 40%.
 Fig. 3 shows the plot of the expected packet transmission E[M(l)] for packet loss p
and the degree difference (h-l). Fig. 3 shows the great increase in E[M(l)] when the
roles are not grouped (ungrouped-pl.dat) and shows small increase in E[M(l)]when
the roles are grouped (grouped-pl.dat). If we take a specific sample case, (h-l)=5,
when p=0.02, there is 40% reduction of packet transmission, when p=0.1, 30% reduc-
tion, and when p=0.18, 26% reduction. When the quality of network is more inferior
(so p is greater), the performance obtained through role grouping improves.

Fig. 3. A comparison of the expected packet transmission as a function of p and h-l

5 Conclusion

For optimized access control, the use of the established characteristics and trust rela-
tion is efficient and natural. Thus, we adopt the characteristics of highly distributed
computing environments and the useful trust model. As an efficient access control
using attribute certificate, we use the technique of structuring role specification cer-
tificates. It can reduce the management cost and overhead incurred when changing the
specification of the role. Especially, highly distributed computing environments such
as ubiquitous computing which cannot have global or broad control need another
attribute certificate management technique. Even though, the role specification cer-
tificate itself reduces management cost, the structuring of role specification is needed
in order to get better performance. We grouped roles, made the role group relation
tree, and showed the model description. It provides the secure and efficient role up-
dating and the distribution. For scalable role specification certificate distribution, we
used multicasting packets. The performance enhancements are quantified with taking
into account the packet loss, too. Also, we showed that our scalable access control
technique outperformed the existing access control techniques.

 An Efficient Access Control Model Utilized the Attribute Certificate Structuring 471

References

1. Ferraiolo, D. F., Sandhu, R., Bavrila, S., Kuhn, D. R., Chandramouli, R.: Proposed NIST
Standard for Role-Based Access Control, ACM Transactions on Information and System
Security, 4(3), (2001) 224-274

2. ITI (Information Technology Industry Council), Role Based Access Control ITU/T. Rec-
ommendation X.509, ISO/IEC 9594-8, Information Technology Open Systems Interconnec-
tion - The Directory: Public-Key and Attribute Certificate Frameworks (2003)

3. English, C., Nixon, P., Terzis, S., McGetrtrick, A., Lowe, H.: Dynamic Trust Models for
Ubiquitous Computing Environments. Workshop on Security in Ubiquitous Computing
(2002)

4. Farrell, S., Housley, R.: An Internet Attribute Certificate Profile for Authorization. IETF
RFC 3281 (2002)

5. Yang, S.: Role Based Access Control Supporting Coherent Caching of Privilege Delegation
Which Utilizes Group Key. The Journal of Suwon Information Technology, Vol. 3 (2004)

6. Joshi, J.B.D., Bertino, E., Ghafoor, A.: Temporal hierarchies and inheritance semantics for
GTRBAC. Proceedings of the seventh ACM symposium on Access control models and
technologies, Monterey, California, USA (2002) 74 - 83

7. Goldberg, A., Buff, R., Schmitt, A.: Secure Web Server Performance Dramatically Im-
proved by Caching SSL Session Keys. Workshop on Internet Server Performance held in
conjunction with SIGMETRICS '98 (1998)

8. Setia, S., Zhu, S., Jajodia, S.: A Comparative Performance Analysis of Reliable Group Re-
key Transport Protocols for Secure Multicast, proc. of the Performance (2002)

9. Rafaeli, S., Hutchison, D.: A Survey of Key Management for Secure Group Communica-
tion. ACM Computing Surveys, Vol. 35, No. 3 (2003)

Secure Protected Password Change Scheme

Eun-Jun Yoon, Eun-Kyung Ryu, and Kee-Young Yoo

Department of Computer Engineering, Kyungpook National University,
Daegu 702-701, Republic of Korea

{ejyoon, ekryu}@infosec.knu.ac.kr, yook@knu.ac.kr

Abstract. Recently, Lin-Hwang proposed a password authentication
scheme with secure password updating. The current paper demonstrates
the vulnerability of Lin-Hwang’s scheme to server data eavesdropping
and presents improvements to resolve this problem. In contrast to Lin-
Hwang’s scheme, the proposed scheme can simply update user passwords
without a complicated process and provide explicit key authentication
in the case of a session key agreement.

Keyword: Cryptography, Password authentication, Key agreement.

1 Introduction

User authentication is an important part of security, along with confidentiality
and integrity, for systems that allow remote access over untrustworthy networks,
like the Internet. In 2000, Peyravian and Zunic [1] proposed a protected pass-
word authentication scheme based on a one-way hash function to achieve user
authentication and to arbitrarily change a password. Subsequently, Hwang-Yeh
[2] pointed out that Peyravian-Zunic’s scheme was vulnerable to guessing, server
spoofing, and stolen-verifier attacks and proposed a new protected password au-
thentication scheme by using a public server key to eliminate security flaws.
Thereafter, in 2003, Lin-Hwang [3] pointed out that Hwang-Yeh’s scheme was
vulnerable to a Denial-of-Service attacks and proposed an improved scheme that
could withstand such attacks and could provide forward secrecy property. They
also claimed that if the password-verifier were stolen from a server, it could not
be used to masquerade as a legitimate user in a user authentication execution (a
stolen-verifier attack). Yet, Lin-Hwang’s improved scheme is still susceptible to
server data eavesdropping [4], where obtaining the secret data stored in a server
can allow an illegitimate user to login to the server as a legitimate user.

Accordingly, the current paper demonstrates that Lin-Hwang’s scheme [3]
is vulnerable to server data eavesdropping and improvements to the scheme to
isolate such a problem are presented. In contrast to Lin-Hwang’s protected pass-
word change scheme, the proposed protected password change scheme can simply
update user passwords without the need for a complicated process. Our proposed
protected password change scheme is similar to Yang-Chang-Li’s scheme [4], but
the proposed scheme provides explicit key authentication and perfect forward
secrecy in the case of a session key agreement [5].

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 472–477, 2005.

c© Springer-Verlag Berlin Heidelberg 2005

Secure Protected Password Change Scheme 473

The remainder of this paper is organized as follows: Section 2 briefly re-
views Lin-Hwang’s protected password change scheme, then Section 3 demon-
strates server data eavesdropping with Lin-Hwang’s scheme and examines some
related problems. The proposed protected password change scheme is presented
in Section 4, while Section 5 discusses the security of the proposed scheme. The
conclusion is presented in Section 6.

2 A Review of Lin-Hwang’s Schemes

This section briefly reviews Lin-Hwang’s protected password change scheme.
Readers are referred to [3] for a complete list of references. The main difference
between Lin-Hwang’s protected password transmission scheme and protected
password change scheme is that in the latter, the client sends a password change
request to the server. Some of the notations used in Lin-Hwang’s scheme and
the proposed scheme are defined as follows:

– id: public user identity of client.
– pw: secret and possibly weak user password.
– KS : public server key.
– {M}KS : public key encryption of message M with public server key KS .
– rc, rs: session-independent random numbers chosen by client and server, re-

spectively.
– p, g: large prime p and generator g in cyclic group Z∗

p , in which the Diffie-
Hellman problem is considered hard.

– x, y: session-independent random exponents chosen by client and server, re-
spectively.

– SK: shared session key computed by client and server.
– H(·): strong one-way hash function.
– ⊕: bit-wise XOR operation.

In Lin-Hwang’s scheme, the server stores vpw = H(pw) for each client in the
database. The protected password change scheme allows a client to change their
old password pw to a new password newpw.

(1) Client→Server: id, {rc, pw}KS

The user submits their id and pw to the client. The client then randomly
chooses an integer rc and encrypts rc and pw, using the server’s public key
KS , and sends it with the id as a login request to the server.

(2) Server→Client: rs⊕ rc, H(rs)
The server decrypts {rc, pw}KS to obtain rc and pw using its private key
K. Then, the server computes the hash value H(pw) and checks whether
H(pw) = vpw holds. If it holds, the server randomly chooses an integer rs,
computes rc ⊕ rs and H(rc), then the server sends rc ⊕ rs, H(rc) to the
client.

474 E.-J. Yoon, E.-K. Ryu, and K.-Y. Yoo

(3) Client→Server: id, H(rc, rs), H(newpw) ⊕H(rc + 1, rs), H(H(newpw), rs)
The client retrieves rs by computing rc⊕rs⊕rc, then verifies the consistency
between the retrieved rs and the received H(rs). If the result is positive,
the client computes ‘one-time’ values as follows:
C auth token = H(rc, rs),
C auth token mask = H(newpw) ⊕H(rc + 1, rs),
C auth token mask verifier = H(H(newpw), rs).
Finally, the client sends these ‘one-time’ values with the id to the server.

(4) Server→Client: Access granted / denied
The server computes the hash value H(rc, rs) using its own copies of rc
and rs, and checks whether H(rc, rs) = C auth token holds or not. If it
holds, the server can obtain H(newpw) by computing C auth token mask⊕
H(rc + 1, rs). Then, the server replaces H(pw) with H(newpw), only if the
hashed result of the obtained H(newpw) and rs is equivalent to the received
C auth token mask verifier.

3 Cryptanalysis of Lin-Hwang’s Schemes

This section demonstrates that Lin-Hwang’s protected password authentication
scheme and protected password change scheme [3] are both vulnerable to server
data eavesdropping [4]. Also, it can be shown that Lin-Hwang’s protected pass-
word change scheme is complex.

Server Data Eavesdropping: The hash value of the user password stored
in the server can be eavesdropped and then used to masquerade as the original
user. Lin-Hwang claimed that their schemes were resistant to security flaws when
secret data vpw = H(pw) is eavesdropped by an attacker, in order to forge the
login request to pass authentication. In practice, a long random string password
is difficult to use and remember, whereas a meaningful string that people can
recognize easily, such as a natural language phrase, is much more user-friendly as
a password. Natural language phrases, however, narrow down the possibilities for
attackers. Thus, if an attacker somehow acquires the secret data vpw = H(pw)
stored in the server, they can verify the guessed password guess pw by checking
whether H(guess pw) = vpw holds. If the password is guessed, the login request
can then be easily forged to pass authentication.

Inefficient Password Change: In Step (3) of Lin-Hwang’s protected password
change scheme, the client sends three ‘one-time’ values with the id to the server
as follows:

C auth token = H(rc, rs),
C auth token mask = H(newpw) ⊕H(rc + 1, rs),
C auth token mask verifier = H(H(newpw), rs).
Then, the server replaces H(pw) with H(newpw) in Step (4). For a password

change and to avoid a Denial-of-Service attack, the scheme requires additional
calculations between the client and the server. This can be solved by the client
sending a new password by using the server’s public key in Step (1). Therefore,
Lin-Hwang’s protected password change scheme is inefficient.

Secure Protected Password Change Scheme 475

4 Proposed Protected Password Change Scheme

This section proposes an improved protected password change scheme so to as
overcome the above mentioned problems. The server stores vpw = H(id, pw, K)
using the server’s secret key K instead of H(pw) for each client in the database,
in order to overcome server data eavesdropping.

(1) Client→Server: id, {gx, pw, newpw}KS

The user submits their id and pw to the client. The client then randomly
chooses an integer x ∈ Z∗

p , computes gx(modp) and encrypts gx, pw, and
newpw using the server’s public key KS. Then, the client sends it with the
id as a login request to the server.

(2) Server→Client: C1 = gy, C2 = H(newpw, gx, SK)
The server decrypts {gx, pw, newpw}KS to obtain gx, pw and newpw us-
ing its private key K. Then, the server computes H(id, pw, K) and checks
whether H(id, pw, K) = vpw holds. If it holds, the server randomly chooses
an integer y ∈ Z∗

p , computes session key SK = gxy(modp), C1 = gy(mod
p), and C2 = H(newpw, gx, SK). Then, the server sends C1 and C2 as the
server’s authentication token to the client.

(3) Client→Server: id, C3 = H(pw, gx, SK ′)
The client computes SK ′ and H(newpw, gx, SK ′) using its new password
newpw and random exponents x, where SK ′ = (C1)x = gxy(modp). Then,
the client verifies the consistency between the computed H(newpw, gx, SK ′)
and the received C2. If the result is positive, the client can ensure the legality
of the server. Finally, the client computes hash value C3 = H(pw, gx, SK ′)
as the client’s authentication token and sends this token with the id to the
server.

(4) Server→Client: Access granted/denied

The server computes the hash value H(pw, gx, SK) using its session key
SK = gxy(modp) computed in Step (2) and user’s password pw received
in Step (2). Then, the server checks whether C3 = H(pw, gx, SK) holds.
If it holds, the server can ensure the legality of the client and replaces
H(id, pw, K) with H(id, newpw, K).

After mutual authentication is ensured by both the client and the server,
gxy(modp) is used as the session key.

5 Security Analysis

In the past, some desired security attributes for password authentication and
change schemes have been identified [3,4,5]. In addition, the following security
properties of session key agreement protocols should be considered, since they are
often desirable in some environments [5,6,7,8,9,10,11,12]. The following analyzes
the security of the proposed scheme:

476 E.-J. Yoon, E.-K. Ryu, and K.-Y. Yoo

(1) Replay attack: The attacker intercepts id, {gx, pw, newpw}KS sent by the
client in Step (1) and uses it to impersonate the client when sending the next
login message. For a random challenge, however, the gx and gy separately
generated by the client and server are different every time, and the replay
of the client’s old login message in Step (1) is encrypted under the server’s
public key KS . Furthermore, obtaining x and y is computationally infeasible,
as it is a discrete logarithm problem [5].

(2) Guessing attack: For a random challenge, the gx generated by the client
is protected by the server’s public key KS . As such, no one can reveal
the gx from the client’s login message {gx, pw, newpw}KS without know-
ing the server’s private key K. Hence, the attacker cannot verify the cor-
rectness of the guessed password by checking {gx, guess pw, newpw}KS =
{gx, pw, newpw}KS without knowing gx and newpw.

(3) Server data eavesdropping: Servers are always the target of attacks. An
attacker may acquire vpw = H(id, pw, K) stored in the server. Without
knowing the server’s secret key K, however, the attacker cannot forge a
login request to pass authentication, as pw is hidden in H(id, pw, K) using
the server’s secret key. Therefore, the correctness of the guessed password
cannot be verified by checking H(id, guess pw, K) = vpw.

(4) Server spoofing attack: The improved scheme uses the server’s public key
KS to ensure that only the real server can decrypt the client’s login message
{gx, pw, newpw}KS . Only the real server can obtain gx, pw and newpw from
the client’s login message. After verifying the identity of the client, the server
then sends C1 and C2 to the client to achieve mutual authentication.

(5) Denial-of-Service attack: In the improved scheme, the client’s new password,
newpw, is also encrypted using the server’s public key in Step (1). Therefore,
an attacker is unable to choose a random number to replace newpw.

(6) Mutual authentication: The improved scheme uses the Diffie-Hellman key
exchange algorithm [5] to provide mutual authentication. As a result, the
key is explicitly authenticated by a mutual confirmation session key.

(7) Perfect forward secrecy: In the improved scheme, since the Diffie-Hellman
key exchange algorithm is used to generate a session key gxy, forward secrecy
is ensured, as an adversary with a compromised server private key K is only
able to obtain the gx and gy from an earlier session. In addition, it is also
computationally infeasible to obtain the session key gxy from gx and gy, as
it is a discrete logarithm problem.

6 Conclusion

The current paper demonstrated that Lin-Hwang’s protected password authen-
tication scheme is vulnerable to server data eavesdropping and improvements
to isolate such a problem were presented. In contrast to Lin-Hwang’s protected
password change scheme, the proposed scheme can simply update user pass-
words without the need of a complicated process, and it also provides explicit
key authentication in the case of a session key agreement.

Secure Protected Password Change Scheme 477

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments to
improve our manuscript. This research was supported by the MIC (Ministry of
Information and Communication), Korea, under the ITRC (Information Tech-
nology Research Center) support program supervised by the IITA (Institute of
Information Technology Assessment).

References

1. Peyravian, M., Zunic, N.: Methods for Protecting Password Transmission. Com-
puters & Security. Vol. 19. No. 5. (2000) 466-469

2. Hwang, J.J., Yeh, T.C.: Improvement on Peyravian-Zunic’s Password Authentica-
tion Schemes. IEICE Transactions on Communications. Vol. E85-B. No. 4. (April
2002) 823-825

3. Lin, C.L., Hwang, T.: A Password Authentication Scheme with Secure Password
Updating. Computers & Security. Vol. 22. No. 1. (2003) 68-72

4. Yang. C.C., Chang. T.Y., Li, J.W.: Security Enhancement for Protecting Password
Transmission. IEICE Transactions on Communications. Vol. E86-B. No. 7. (July
2003) 2178-2181

5. Menezes, A.J., Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptograph.
CRC Press. New York. (1997)

6. Bellovin, S.M., Merritt, M.: Encrypted Key Exchange: Password based Protocols
Secure against Dictionary Attacks. In Proceedings 1992 IEEE Symposium on Re-
search in Security and Privacy. IEEE Computer Society. (1992) 72-84

7. Bellovin, S.M., Merritt, M.: Augmented Encrypted Key Exchange: A Password-
based Protocol Secure against Dictionary Attacks and Password File Compromise.
In Proceedings of the 1st ACM Conference on Computer and Communication
Security. (1993) 244-250

8. Boyko, V., MacKenzie, P., Patel, S.: Provably Secure Password-Authenticated Key
Exchange Using Diffie-Hellman. In Eurocrypt 2000. Springer-Verlag (LNCS 1807).
(2000) 156-171

9. Bellare, M., Poinycheval, D., Rogaway, P.: Authenticated Key Exchange Secure
against Dictionary Attacks. In Eurocrypt 2000. Springer-Verlag (LNCS 1807).
(2000) 139-155

10. Halevi, S., Krawczyk, H.: Public-Key Cryptography and Password Protocols. ACM
Transactions on information and system security. Vol. 2. No. 3. (1998) 230-268

11. Kobara, K., Imai, H.: Pretty-Simple Password-Authenticated Key-Exchage under
Standard Assumptions. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences. Vol. E85-A, No. 10 (2002) 2229-2237

12. Gennaro, R., Lindell, Y.: A Framework for Password-based Authenticated Key
Exchange. In Eurocrypt 2003. Springer-Verlag (LNCS 2656). (2003) 524-543

Author Index

Afinidad, Francis B. 406
Alharby, Abdulrahman 352

Badr, Nagwa 1
Badra, Mohamad 104
Baiardi, Fabrizio 298
Balbiani, Philippe 165
Baldwin, Rusty O. 412
Beauquier, Danièle 206
Boudriga, Noureddine 325
Buell, Duncan A. 76
Butts, Jonathan W. 412

Cheikh, Fahima 165
Chin, Shiu-Kai 179
Clemente, Félix J. Garćıa 259, 418

Daicos, Constantine 88
Demerjian, Jacques 104
Dritsas, Stelios 151
Duflot, Marie 206
Dulay, Naranker 1

Ferraz, Salim 104
Fu, Yuxi 119

Galatenko, Alexei 424
Giacobazzi, Roberto 221
Gorodetsky, Vladimir 366
Gritzalis, Dimitris 151
Grusho, Alexander 235, 424
Gu, Haiya 245
Gu, Yonggen 119

Hajjeh, Ibrahim 104
He, Yeping 286
Heeps, Stephen 1
Hornák, Zoltán 430
Huang, Ming-Yuh 7

Imai, Hideki 352
Irvine, Cynthia E. 406

Jajodia, Sushil 23
Jeges, Ernő 430

Jiang, Li 286
Jiménez Re, Jesús D. 259
Johnson, Joseph E. 129

Kalinin, Maxim O. 339
Karsaev, Oleg 366
Kim, Soon Seok 436
Kim, Sung Kwon 436
Kniazev, Alexander 235, 424
Knight, Scott 88
Körmöczi, Csaba 430
Kosiyatrakul, Thumrongsak 179
Kotenko, Igor 311, 460
Kraxberger, Stefan 448
Kvachev, Sergei V. 394

Lamberger, Mario 448
Levin, Timothy E. 406
Liang, Bin 286
Liljenstam, Michael 38
Lupu, Emil 1

Mastroeni, Isabella 221
Mills, Robert F. 412
Minea, Marius 206
Molisz, Wojciech 442
Moronski, James 54

Nguyen, Thuy D. 406
Nicol, David M. 38

Older, Susan 179

Pamula, Joseph 23
Park, Hong Jin 436
Payer, Udo 448
Pérez, Gregorio Mart́ınez 259, 418

Rak, Jacek 442
Rekhis, Slim 325
Ryu, Eun-Kyung 472

Samoilov, Vladimir 366
Schaffer, Martin 194, 454
Schartner, Peter 194, 454

480 Author Index

Serdiouk, Victor 380
Shi, Dianxi 245
Shi, Wenchang 286
Sidelnikova, Ekaterina 460
Skarmeta, Antonio F. Gómez 259, 418
Skormin, Victor 54
Sloman, Morris 1
Smirnov, Mikhail I. 136
Stepashkin, Mihail 311
Sukhorukov, Alexander V. 394
Summerville, Douglas 54
Sventek, Joe 1
Swarup, Vipin 23

Tarakanov, Alexander O. 394
Telmon, Claudio 298
Teufl, Peter 448
Timonina, Elena 235, 424
Tishkov, Artem 460
Tsoumas, Bill 151

Ulanov, Alexander 366

Volynkin, Alexander 54
Vovk, Alex M. 272

Wang, Huaimin 245

Yang, Soomi 466
Yeo, Sang Soo 436
Yin, Gang 245
Yoo, Kee-Young 472
Yoon, Eun-Jun 472

Zegzhda, Dmitry P. 272, 339
Zegzhda, Peter D. 339
Zhong, Farong 119
Zhou, Zhouyi 286
Zhu, Han 119

	Frontmatter
	Invited Papers
	Self-managed Cells for Ubiquitous Systems
	Critical Information Assurance Challenges for Modern Large-Scale Infrastructures
	Rule-Based Topological Vulnerability Analysis
	Models and Analysis of Active Worm Defense
	Prevention of Information Attacks by Run-Time Detection of Self-replication in Computer Codes

	Mathematical Models, Architectures and Protocols for Computer Network Security
	Calibrating Entropy Functions Applied to Computer Networks
	A Passive External Web Surveillance Technique for Private Networks
	A Secure Way to Combine IPsec, NAT \& DHCP
	A Generic Model for Analyzing Security Protocols
	Networks, Markov Lie Monoids, and Generalized Entropy
	Trust by Workflow in Autonomic Communication
	An Ontology-Based Approach to Information Systems Security Management

	Authentication, Authorization and Access Control
	Safety Problems in Access Control with Temporal Constraints
	A Modal Logic for Role-Based Access Control
	Unique User-Generated Digital Pseudonyms

	Information Flow Analysis, Covert Channels and Trust Management
	A Probabilistic Property-Specific Approach to Information Flow
	Generalized Abstract Non-interference: Abstract Secure Information-Flow Analysis for Automata
	Detection of Illegal Information Flow
	Towards More Controllable and Practical Delegation

	Security Policy and Operating System Security
	Policy-Driven Routing Management Using CIM
	Secure Hybrid Operating System ``Linux over Fenix''
	A Formal Description of SECIMOS Operating System

	Threat Modeling, Vulnerability Assessment and Network Forensics
	A Theoretical Model for the Average Impact of Attacks on Billing Infrastructures
	Analyzing Vulnerabilities and Measuring Security Level at Design and Exploitation Stages of Computer Network Life Cycle
	A Temporal Logic-Based Model for Forensic Investigation in Networked System Security
	Vulnerabilities Detection in the Configurations of MS Windows Operating System

	Intrusion Detection
	Hybrid Intrusion Detection Model Based on Ordered Sequences
	Asynchronous Alert Correlation in Multi-agent Intrusion Detection Systems
	Behavior-Based Model of Detection and Prevention of Intrusions in Computer Networks
	A Formal Immune Network and Its Implementation for On-line Intrusion Detection

	Short Papers
	Foundation for a Time Interval Access Control Model
	Developing an Insider Threat Model Using Functional Decomposition
	An XML-Seamless Policy Based Management Framework
	Statistical Covert Channels Through PROXY Server
	Encoding Private Key in Fingerprint
	A New Scheme for the Location Information Protection in Mobile Communication Environments
	Region Protection/Restoration Scheme in Survivable Networks
	Massive Data Mining for Polymorphic Code Detection
	Key Escrow with Tree-Based Access Structure
	Security Checker Architecture for Policy-Based Security Management
	An Efficient Access Control Model Utilized the Attribute Certificate Structuring
	Secure Protected Password Change Scheme

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

