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Preface

This volume contains papers presented at the 3rd International Workshop on
Mathematical Methods, Models and Architectures for Computer Network Se-
curity (MMM-ACNS 2005) held in St. Petersburg, Russia, during September
25–27, 2005. The workshop was organized by the St. Petersburg Institute for
Informatics and Automation of the Russian Academy of Sciences (SPIIRAS) in
cooperation with Binghamton University (SUNY, USA).

The 1st and the 2nd International Workshops on Mathematical Methods,
Models and Architectures for Computer Network Security (MMM-ACNS 2001
and MMM-ACNS 2003), hosted by the St. Petersburg Institute for Informatics
and Automation, demonstrated the keen interest of the international research
community in the subject area. It was recognized that conducting a biannual
series of such workshops in St. Petersburg stimulates fruitful exchanges between
the different schools of thought, facilitates the dissemination of new ideas and
promotes the spirit of cooperation between researchers on the international scale.

MMM-ACNS 2005 provided an international forum for sharing original re-
search results and application experiences among specialists in fundamental and
applied problems of computer network security. An important distinction of the
workshop was its focus on mathematical aspects of information and computer
network security addressing the ever-increasing demands for secure computing
and highly dependable computer networks.

A total of 85 papers from 20 countries related to significant aspects of both
theory and applications of computer network and information security were sub-
mitted to MMM-ACNS 2005. Twenty-five papers were selected for regular and
12 for short presentations. Six technical sessions were organized, namely: Math-
ematical Models, Architectures and Protocols for Security; Authentication, Au-
thorization and Access Control; Information Flow Analysis, Covert Channels
and Trust Management; Security Policy and Operating System Security; Threat
Modeling, Vulnerability Assessment and Network Forensics; and Intrusion De-
tection. The panel discussions were devoted to the challenging problems in vul-
nerability assessment, intrusion detection and security policy management. The
MMM-ACNS 2005 program was enriched by five distinguished invited speakers:
Naranker Dulay, Ming-Yuh Huang, Sushil Jajodia, David Nicol, and Douglas
Summerville.

The success of the workshop was assured by team efforts of sponsors, organiz-
ers, reviewers, and participants. We would like to acknowledge the contribution
of the individual Program Committee members and thank the paper reviewers.
Our sincere gratitude goes to the participants of the workshop and all authors
of the submitted papers. We are grateful to our sponsors: European Office of
Aerospace Research and Development (EOARD) of the US Air Force, US Office
of Naval Research Global (ONRGlobal) and US Army Research Laboratory-
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European Research Office (AFL-ERO) for their generous support. We wish to
express our gratitude to the Springer LNCS team managed by Alfred Hofmann
for their help and cooperation.

September 2005 Vladimir Gorodetsky
Igor Kotenko

Victor Skormin
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Danièle Beauquier, Marie Duflot, Marius Minea . . . . . . . . . . . . . . . . . . . 206

Generalized Abstract Non-interference: Abstract Secure
Information-Flow Analysis for Automata

Roberto Giacobazzi, Isabella Mastroeni . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Detection of Illegal Information Flow
Alexander Grusho, Alexander Kniazev, Elena Timonina . . . . . . . . . . . . 235

Towards More Controllable and Practical Delegation
Gang Yin, Huaimin Wang, Dianxi Shi, Haiya Gu . . . . . . . . . . . . . . . . . . 245

Security Policy and Operating System Security

Policy-Driven Routing Management Using CIM
Félix J. Garćıa Clemente, Jesús D. Jiménez Re,
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Self-managed Cells for Ubiquitous Systems 

Naranker Dulay1, Emil Lupu1, Morris Sloman1, 
Joe Sventek2, Nagwa Badr2, and Stephen Heeps2 

1 Department of Computing, Imperial College London, 
180 Queen’s Gate, London SW7 2AZ, United Kingdom 

{n.dulay, e.c.lupu, m.sloman}@imperial.ac.uk 
2 Department of Computing Science, University of Glasgow, 
17 Lilybank Gardens, Glasgow G12 8RZ, United Kingdom 

{joe, nagwa, heeps}@dcs.gla.ac.uk 

Abstract. Amongst the challenges of ubiquitous computing is the need to pro-
vide management support for personal wireless devices and sensors.  In this ex-
tended abstract we introduce a policy-based architecture that supports manage-
ment at varying levels based on the concept of a self-managed cell.  Cells in-
clude policy-driven agents that support context-based and trust-based access 
control and system adaptation.  Cells can also organize themselves through fed-
eration and nesting. 

1   Introduction 

Advances in ubiquitous computing infrastructures have the potential to dramatically 
broaden the role of computing in the everyday lives of people with a greater prolifera-
tion of personal wireless devices, and more significantly with wireless computing 
devices starting to be embedded in the environment: in buildings, in roads, in vehi-
cles, in the landscape, in home appliances, in clothing, on packaging of consumer 
goods in shops; even as implants in plants, animals and humans.  The challenges of 
ubiquitous computing will not only be about building such ubiquitous environments, 
they will also be about managing the resources and omnipresent information which 
ubiquitous systems will need to discover, capture, process and publish behind the 
scenes. This information will be ephemeral, mobile, fragmented and voluminous with 
no predictable flows between producers or users of the information. 

1.1   Ubiquitous Systems Management 

Existing architectures for network and systems management are aimed at large-scale 
corporate environments, telecommunications networks and Internet service providers 
and do not cater for ubiquitous environments, although specific techniques for moni-
toring, event correlation, service discovery, quality of service and policy-based man-
agement can be used to some degree. For ubiquitous systems, architectures are needed 
that can scale down to small devices with local decision-making. The limitations of 
small devices, e.g. memory size, CPU speed, battery life, screen size, network range 
and changing connectivity; require new techniques for optimizing resource usage and 
tailoring information within tight deadlines. Management will also need to be per-
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formed according to measures of context and trust and tailored to the individual pref-
erences and circumstances of users. Flexible techniques will be needed to filter infor-
mation and perform access control, as well as defining and enforcing privacy.  Users 
will expect management functions to be invisible and carried out automatically.  

We are developing a policy-based architecture that supports management at vary-
ing levels of granularity, using the concept of a self-managed cell (or simply a cell).  
A cell consists of a set of hardware and software components that represent an admin-
istrative domain. Cells are able to function autonomously and thus capable of self-
management. A cell could represent the resources available in a PDA, a body area 
network of physiological sensors and controllers.  At the enterprise level, a cell could 
represent the resources and application components relating to a set of collaborating 
partners forming a virtual organisation spanning multiple countries. In each case, cells 
include and evolve the required management services, appropriate to the scale and 
environment of the cell. These management services interact with each other through 
asynchronous events exchanged over an event bus. In essence, a cell is a “closed-
loop” system where changes of state in the managed objects and resources trigger 
adaptation that in turn affects the state of the system. In ubiquitous environments, the 
cells would also typically include management components that provide service dis-
covery and contextual management. 

A cell includes a policy-driven agent that supports context-based and trust-based 
access control and system adaptation for one or more ubiquitous devices.  Cells can 
load additional management functions and organise themselves into larger manage-
ment cells through federation and nesting.  Potentially, each ubiquitous device that a 
user carries, and each device situated in the environment, is capable of being a self-
managed cell and running a management agent that carries out management functions 
and policies.  In practice, we envisage that some devices (e.g. sensors) will be too 
primitive to run their own management agent, but will be capable of being managed 
by an external cell, such as a mobile phone, over a wireless link, such as bluetooth. 
This extended abstract introduces the architecture of self-managed cells. 

2   Self-managed Cells 

Each self-managed cell consists of a number of core management components: the 
cell watchdog, the event service, the discovery service, the policy service, and the 
domain service.  Cells can also load components for context and trust management as 
well as monitoring and intrusion detection.  Proxies are required to interact with the 
various communication interfaces of devices and managed components, for example 
to enable cell policies to perform actions on device-specific management interfaces, 
and to convert low-level signals to cell events.  The following outlines the core ser-
vices of each self-managed cell. 

2.1   Cell Watchdog 

When a cell is first instantiated, it starts up the cell watchdog.  This is a special ser-
vice that is responsible for loading and instantiating the core components of the cell, 
typically from local storage (e.g. a memory card), or from a remote cell.  The cell 
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watchdog is also responsible for cleanly removing and restarting core components 
when a core component fails, or if a core component needs to be updated.  Essentially 
the cell watchdog has the responsibility to ensure the survivability of the core man-
agement components, and ideally should be in firmware and always alive. 

2.2   Event Service 

Management systems are essentially event-driven, as changes of states need to be 
notified to several, potentially unknown management services.  Examples of events 
include: the discovery of a new device, a change in context (e.g. battery level low), an 
intrusion alert. The event service provides at-most-once, persistent publish/subscribe 
delivery and is used for both intra-cell and inter-cell management. The event service 
supports event correlation for flexibility. 

2.3   Discovery Service  

The discovery service is responsible for detecting the presence of devices that come 
into wireless range. These may be primitive devices that are managed by the cell, 
devices that are managed by others cells, or devices that are not currently managed by 
any cell.  Once a device is discovered, the discovery service communicates with the 
device to get further attributes (e.g. type, profile, services provided) and generates a 
“new-device” event for other management components.  The discovery service needs 
to distinguish between transient failures, which are common in wireless communica-
tions, and when some device is really no longer available (e.g. out of range or 
switched off). 

2.4   Policy Service 

The policy service is responsible for the execution of policies.  Policies are rules that 
govern the choices in behaviour of the cell.  Two kinds of policy are currently sup-
ported. Obligation policies (event-condition-action rules), which define what actions 
to carry out when specific events occur, and authorisation policies which define what 
actions are permitted or not permitted, for what or for whom, and under what condi-
tions.  Policies can be added, removed, enabled or disabled to change the behaviour of 
a cell.   See cell policy language (section 3). 

2.5   Domain Service 

The domain service provides a means of hierarchically grouping references to objects 
(c.f a filesystem).  Objects include devices, services (including core services), poli-
cies, neighbouring cells.  For example, when a new device is discovered, a reference 
to it, is normally added to the domain /dev as well as to application-specific do-
mains, for example, /music/headset/bluetooth.   Domains are also used to 
define authorisation policies in the cell policy language, e.g. objects within the subject 
domain /players/mp3 are permitted to perform the action play on objects in the 
target domain /headsets. 
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2.6   Context Service and Trust Service 

In addition to the core components, cells can also load a context service and a trust 
service.  These allow context and trust information to be defined, gathered and com-
bined, and used in evaluating policy constraints. Changes in context and trust can 
raise events that trigger obligation policies that cause adaptation. 

3   Cell Policy Language  

Central to the management of cells is the Cell policy language and interpreter.   The 
language is loosely based on the Ponder policy language developed at Imperial Col-
lege London. All primitive policies are encapsulated into one composite type called 
the relationship.  There are no roles, groups, or management structures. There are no 
domain scope expressions. Subjects can be based on credential verification as well as 
domain membership. The language includes explicit support for domain crea-
tion/removal as well as enabling/disabling of policies.  Composite event can be de-
fined.  There are explicit rules for authorisation conflict resolution based on explicit 
relationship ordering rules.  The syntax is also cleaner and less cluttered than Ponder 
and is suitable for interactive execution.  

3.1   Relationships 

Relationships encapsulate one or more policies. Currently obligation (event-
condition-action) policies and authorisation policies are supported.   Relationships can 
also encapsulate other relationships.  Relationships are created, enabled, disabled, 
removing as a whole, e.g. policies cannot be added to a running relationship, other 
than by disabling and removing the relationship, and replacing it with a new relation-
ship with the additional policy.  The policies act as an atomic unit, for example, dis-
abling an individual authorisation may lead to unexpected results. The policy service 
includes a multi-threaded interpreter for concurrently executing obligation policies.   
The following examples illustrate the Cell policy language. 

Example 1.   Authorisation policy.  Members of the family domain are allowed to play games 
on the pda but only at home or in the car. 

  context home_car: location=home or location=car  

  auth+ /family -> home_car ? /pda/games.play 

Example 2.   Authorisation policy.  Doctors who can present a credential issued by the British 
Medical Association (BMA) can issue commands to the cell’s medical devices in an emergency 
in the UK. 

  credential medic:role=Doctor and issuer=BMA and issueyear>2005 
  context UK_emergency: location=UK and condition=wounded 

  auth+ -> medic and UK_emergency ? /medical/devices.commands 
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Example 3. Obligation policy.  On discovering a new bluetooth headset add it to the 
sound/output/bluetooth domain.    

on HeadsetDetect (X) -> X.type=bluetooth ? 
                     /sound/output/bluetooth.add(X) 

Example 4. Obligation policy.  After 20 failures to enter a PIN, disable the Mobile Phone pol-
icy and enable the Stolen mobile phone policy    

event Stolen: count (PIN_failure, 20) 

on Stolen () -> /policy/mobile/normal.disable (),  
                /policy/mobile/stolen.enable () 

4   Inter-cell Interactions and Self-organisation  

Although self-managed cells provide the management capability for supporting con-
figuration and adaptation within a device, there is a need to support management 
across multiple cells.  The cell architecture supports two forms of inter-cell organisa-
tion: 

• Federated to support peer-to-peer interactions between cells in order to 
collaborate and share resources, for example police, ambulance and fire workers 
collaborating and sharing resources at car-accident. Management relationships 
between federated cells are often transient, but can be longer-lived.  

• Nested, where several cell nest within an enclosing cell and nested cells are not 
visible to cells external to the enclosing cell i.e. any management interaction is 
via the enclosing cell.  Cells can move and out of enclosing cells, for example, 
the cell of a patient returning home, may nest in the home cell, and be governed 
by the policies of the home cell. 

We model cell-cell interactions through relationships.  Each cell defines its own re-
lationships with respect to other cells.  When a new cell is discovered it is subject to a 
similar procedure as devices.  However for cells, additional actions and protocols are 
supported including exchange of policies, event registrations, and domain member-
ship details.  These protocols allow cells to share management information and re-
sources and self-organise through federation and nesting.  

5   Current Status and Future Work 

We are currently developing Java-based implementations of the cell architecture to 
run on Series 60 Nokia phones, HP iPaq PDAs and laptops over bluetooth, wi-fi, and 
GPRS.  We are also experimenting with body sensor nodes with Zigbee wireless 
capability that communicate by low-power radio with the iPaq.  A simulator to test 
larger cells and more easily simulate repetitive events or devices coming into and out 
of range is being developed.   

There are many issues still to be resolved, such as making sure the protocols opti-
mise the use of battery power; how to make sure a device is ‘owned’ by the appropri-
ate cell and not taken over; how to present management information and policies to 
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end-users and elicit policy settings; investigating the best design patterns for inter-cell 
management; how to specify and implement privacy policies that allow users to con-
trol access to personal information, and what mechanisms to use to anonymise per-
sonal information and prevent tracking. 
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Abstract. Today’s information assurance (IA) is no longer about keeping 
people out. It's about letting people in — the right people, securely, to the right 
place. In modern military and commercial systems, partners, suppliers, and 
customers are all constantly accessing the infrastructure through the network. 
Once there, each needs to be taken directly to the appropriate data and 
resources. Secure and efficient access control in this context lays the foundation 
of next-generation business paradigm shift. Such new paradigms create new 
revenues and increase operation efficiency. Those who fail to make the 
transition are bound to face daunting challenges in competition. IA is a business 
enabler. It is vital piece that allows the paradigm shift to take place. This is the 
new but realistic way to look at security. This paper examines a broad range of 
critical issues in today’s closely knitted environment and discusses potential 
architectural and technological directions from the perspective of large and 
distributed infrastructures. To fully illustrate the significant issues, this paper 
also uses a major cyber crime case that went through the US Federal Court in 
2001 for analysis purpose. 

1   Background 

First international connection to the ARPANET was made by University College of 
London (England) via NORSAR (Norway) in 1973. In the same year, Bob Metcalfe's 
Harvard Ph.D. thesis outlines idea for Ethernet. The concept was tested on Xerox 
PARC's Alto computers, and the first Ethernet network was implemented. In 1978, 
TCP split into TCP and IP and, in 1980, ARPANET suffered the first significant 
network security failure due to an accidentally-propagated status-message virus. The 
network was grinded to a complete halt on October 27th.  

It was not until later part of 1980’s that a major cut-over to TCP/IP was made and 
Internet became truly available. IETF was established and ARPANET creased to exist 
in 1990. Nevertheless, prevalent usage of Internet will not come until mid 1990’s 
when WWW (World Wide Web) became greatly accessible. Since then, computing 
and Internet have fundamentally changed human society. 

1.1   Castles and Moats 

In process of computing technology evolutionary, information assurance (IA) usually 
comes along as after-fact patch-up measures. IA is often treated as the necessary evil 
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that creates inconveniences and performance downgrades. It is there because it’s 
mandated. 

In the 1980’s and 1990’s, the security concerns brought upon by the network 
connectivity forced us to became very good at building castles and moats. DEC 
(Digital Equipment Corporation) was a relatively progressive company at that time 
and its SERVNET effort at the end of 1980’s served as a good example. The concept 
of SERVNET was to connect all of DEC’s customers together so that DEC could 
deliver new paradigm of field services such as on-line service delivery (instead of a 
man with a van), remote system patches and distributed preventive maintenance 
remotely. Such thinking was innovative at that time and clearly had its business 
advantages. So new business paradigm led to new IA requirements: 

1. Businesses were living within the castles and DEC saw a business opportunity by 
connecting them together. 

2. Security implication was paramount and DEC was planning to deploy a large 
number (multiples of hundreds) of VMS machines as gateways/firewalls for these 
connections. 

In reality, DEC could not possibly hire enough system administrators to man these 
gateway machines 7x24. Nevertheless, the risk was high due to potential intrusions to 
DEC as well as liability from possible intrusions amongst the customers. 
Consequently, DEC’s Artificial Intelligence Technology Center located in 
Marlborough, Massachusetts developed a real-time expert system in Knowledge Craft 
to analyze VMS syslog files as security monitoring. The code name was ESSENSE 
(Expert System for SERVNET Security). ESSENSE led to one of world’s earliest 
host-based intrusion detection system (IDS) product in the early 1990’s — 
PLOYCENTER Security ID. 

1. New business paradigm led to new IA requirements. 
2. New IA requirements led to new IA technology development. 

The beginning of IDS technology illustrated that the focus of IA then was to 
protect the perimeters. This is often described as the French-bread model — crunchy 
crust and soft inside. The focus of the protection is on the boundary. Thus, following 
that strategy, we became very good at building tall, thick walls and deep moats for 
these medieval castles. On top of that, in order to facilitate connection to the outside, 
we also became very proficient in putting in draw-bridges and drilling holes on the 
castle wall to accommodate various protocols. The assumption was such that if the 
wall was thick and tall enough, the number of the holes was controlled and the 
activities around the wall were well monitored, everything would be safe. It was not 
until after year 2000, this castles-and-moats model started to fall apart. The evolution 
has accelerated into a revolution, and the world is moving rapidly away from the 
castles and the moats. 

2   Fundamental Changes to the Sociological Computing Game 

2.1   The Slippery Definition of “Computing” 

21st century computing is that of a revolution, not an evolution.  
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“Computers” were first invented to calculate the trajectory of the artillery shells. 
However, the very definition of “computing” has been changing even since. 

1. While mainframes dominated the landscape in the 60’s and 70’s, computing was 
very much limited to the scope of “calculations” such as payroll, accounting, 
number crunching or engineering calculations. 

2. When mini-computers became available in the 70’s and 80’s, computing took a 
broader jump into areas such as graphics, messaging (email/notes), real-time data 
acquisition/monitoring, education, software development and business operation, 
while the heavy lifting such as weather prediction were still left to the mainframes. 

3. In the 1990’s, when PC/workstation and network connectivity became widely 
available, the definition of computing took on another meaning. Computing was 
about word processing, spread sheet, email, chat, graphics, WWW and e-
commerce. At this point, much of the daily number crunching needed was buried 
between the CPU, memory and registers. 

4. In the 21st century, coupled with increased CPU & memory power, network 
connectivity became the major player and has produced more intrinsic impacts to 
the very definition of computing than anything else. At this point, computing is far 
from number crunch. Computing is about MP3, VOIP, personal assistance, video 
teleconferencing, virtual holiday, online auctions, virtual enterprise, pervasive 
information access, e-government and network centric operation. People are just 
figuring out what to do with all the increased computing power and connectivity. 

5. For the future, one may extrapolate that given the connectivity and the bandwidth, 
connectivity becomes storage, connectivity becomes CPU, connectivity becomes 
application, connectivity becomes knowledge, and connectivity becomes part of 
human daily life. Computing will be much more sociologically oriented — arts, 
human interactions and health. Further, upon the rendezvous with bio-technology, 
computing will be a much bigger part of human life. 

New computing technology encourages new business paradigms. Recursively, new 
business paradigms accelerate the development of new computing paradigm. How we 
use, or intend to use, computing today is very different from the past. Connectivity 
and computing power brought a fundamental change in today’s business model. IA 
needs to address the requirements coming from the new paradigms, not the old 
paradigms. Protecting 90’s computing/business paradigms adds very little to where 
we need to go in the future.  

2.2   The Ever-Changing “Value” 

Historically, human use rare commodities such as gold or silver for “value” 
manifestations. As civilization progresses, so are the manifestations of values — 
coins, money, deed, bond, credit, etc. Today’s IA protects the value of the past. It fails 
to recognize the new values brought along by the new business paradigm shift. 

In the past, protecting the server itself was important because that’s where the 
action was. However, in today’s context, protecting the transactions and the data 
across multiple distributed servers is even more important. In this new business 
paradigms where data and transactions are distributed everywhere and shared by 
many international partners, different sets of requirement such as export control or 
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federated authentication and authorization need to be enforced. Protecting just the 
server itself becomes insufficient. One can even venture to say that if the transactions 
and data are protected, the server itself can be sacrificed. On the networking side, 
dutiful IP packets inspection to protect castle walls and moats aides little in detecting 
and preventing hackers from executing fake transactions from within to steal millions. 
The value is at transaction and data, not castle and moats. We have become the ever-
chasing security Don Quixote — good in protecting the walls, not the values. 

2.3   The Concept of “Collaborative Sharing” 

The concept of ownership is no longer based on that of owning the data physically. 
Instead, it is based on the accessibility to the data. Given the web and the encryption 
technology, data can be everywhere — just like encrypted satellite downlink. As such, 
the ownership is being defined as the “entitlement” to read, write and make use of the 
data. Business transactions go beyond the delivery of business artifacts such as a 
piece of singed paper or even its digitally signed electronics copy. It will be based on 
direct information access and manipulation owned by the other party. For example, in 
a virtual Just-In-Time (JIT) environment, customers ordering parts will not be just 
sending digitally signed Purchase Orders to the suppliers. They actually manipulate 
the supplier’s computing infrastructure and interact with the ordering system. This 
updates the production data corresponding to the parts needed. As a result, the order is 
automatically incorporated into the supplier’s production process, as well as 
supplier’s partner network for any inventory supply support. Conversely, when the 
parts are delivered, there will be no digitally signed paper-equivalence to “document” 
the delivery information. The supplier actually modifies the customer’s system to 
reflect the delivery. This results in virtual JIT updates of accounting business process 
and even the manufacturing inventory system across the entire virtual enterprise with 
multiple distributed business partners around the globe. It is a much tighter integration 
at the business and computing level. 

2.4   “Business Objects” vs. “System Objects” 

Business information residing on the computing infrastructure takes two forms of 
existence — the data itself (business objects), and their electronic manifestations — 
files, databases or electronic communications (system objects). Traditional IA 
implementations treat business objects as system objects and protect them as such. 
However, the line of distinction between business object and system objects has 
always been blurry and the level of implementation has been coarse. 

1. Business objects (e.g. an engineering design) do not necessarily map to system 
objects (e.g. a file). They are many one-to-many, many-to-one or even many-to-
many mappings. Protecting business objects does not equate to protect system 
objects. 

2. While business objects tend to have more level of abstraction to faithfully reflect 
the business needs, system objects are bounded by the system environment (e.g. 
file system). Consequently, not all the level of granularity can be appropriately 
implemented in system objects. Since IA has been designed to protect system 
objects, this level of protection is coarse. 

M. Huang 
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3. Modern distributed and collaborative business paradigms add additional 
challenges. 
• We now have an environment where one computing system grows into many 

distributed systems owned by many different partners; and one system object 
(e.g. a file) now becomes many distributed system objects. Enforcing IA 
operation on remote systems that one does not have ownership becomes an 
immediate issue. 

• In a collaborative environment, business objects such as designs, intellectual 
properties are owned and shared by many. The traditional approach of 
protecting the business object that one owns by protecting the system object on 
the system that one also owns is breaking down. This is because of the 
expansion of shared ownership of business objects as well as the distributed 
nature of the system objects. 

• The logic of sharing is becoming more complex. These are requirements such as 
business contracts, operation procedure and export control. While it’s straight 
forward to specify these logics in natural language, system objects are extremely 
cumbersome and resource-intensive in terms of management. 

3   Crises for the Castles and Moats 

Today’s large infrastructure security depends heavily on controlled access across the 
external/internal perimeter lines. This is normally achieved by the deployment of 
firewall technology that makes use of packet filters and proxy services at major entry 
points. Access control is typically coupled with intrusion detection capability on 
major firewall machines.  

Like the medieval castle, this resulted in a strongly protected perimeter with 
limited access through a small number of highly protected gateways. However, there 
are two major risks associated with this scenario. First is the insider threat which 
grows as the complexity and the size of the infrastructure grows, second is each 
opening in the walls presented a potential point of weakness. Like castles that build 
complicated structures to protect these sensitive areas such as double portcullis to 
create a holding cell where intruders could be safely dispatched, network security 
added sacrificial host machines, twin host firewalls and electronics dungeons to trap 
intruders. In the world of old days consist of simple network transactions such as 
telnet, ftp and email, this architecture served it purpose. Today, the very success of 
the Internet as a commercial vehicle has caused its obsolesce. Under the heavy 
demands resulted from the proliferation of WWW and e-Commerce, the practice of 
gathering all the local resources into protected area and fortifications is facing 
collapse. This architecture is doomed from within and without; from the outside by 
the invention of longer ranger and more powerful assault technology and from within, 
by the need of frequent and tightly coupled interaction of one fortification to another. 
In essence, this architecture is facing serious challenges in the next generation virtual 
business paradigm where collaboration and integration are the keys. 
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3.1   Volume 

A paradigm shift is taking place; the volume of data being exchanged for modern 
corporations has grown exponentially in the recent years and shows no sign of 
slowing down. Bandwidth has also increased dramatically and is on the verge of 
another leap of technology with the next generation of Internet speed.  

 

Fig. 1. High traffic volume coupled with fast networks challenges firewall audit CPU 
performance problem 

For example, Internet-II and NGI (Next Generation Internet) call for bandwidth 
requirements beyond OC-48. Such firewall protection architecture depends heavily on 
the technology of examining each packet — header and content, for destination. The 
destination table look up determines if the policy allows for delivery. Sometimes, 
specific filtering mechanisms are devised to further looking into the content of the 
packet to prevent attacks such as email spamming or virus propagation. With this 
approach, as the communication volume grows the accounts of processor cycles must 
be increased on the perimeter to match up. High speed software and hardware device 
solutions are assisting firewalls and routers with traditional means of monitoring but 
there will soon come to a limit. Current situation is just that of a delaying tactic. It is 
unlikely that this packet examination technology can be scaled to handle the new 
broad-band communication. In essence, the volume of transmitted data is increasing 
faster then the firewall architecture can handle it. 

3.2   Variety 

Beyond the traditional email, ftp and remote accesses such as telnet, today’s network 
has added a plethora of new channels of communication. Devices like firewalls and 
NAT (Network Address Translation) must recognize which protocol is appropriate for 
which source or destination address. The protocol information is usually part of one 
of the network packet header of to be deduced by the TCP port number. Although 
each protocol has its benefits and weaknesses, some protocols present much greater 
risks than others do. Recognizing this, firewalls and routers are often designed to 
implement limited protocols based on the interpretation of company security policy. 
This implementation limitation is largely based on information in the packet header, 
port number and destination/source addresses. For example, while the corporation’s 
public web server would emit HTTP packets, the presence of similar packets from 
machines not designated as corporate web server could cause alarm and could be 
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blocked. Increased variety of protocol adds to the complexity of the problem. It is 
quite common for products to wrap a risky protocol inside a less risky one to increase 
the possibility of passing through a firewall. Since inbound HTTP is so common these 
days, this is often the protocol of choice. Furthermore, the information used to 
identify the protocol type can also be altered. For example, port 23 is the standard 
“well known port” for e-mail. Since it’s usually taken for granted that other machines 
use this port for such purpose, if an application uses port 23 without prior 
arrangement then firewall machine will risk either blocking a benign convenient 
access or allowing a malicious attempt in disguise. An insider could easily configure 
an email server to a different port and bypass firewall block as long as the 
correspondent knows about the port change. Under the same token, it is also possible 
to modify the TCP header and even forge the TCP header checksum. There is no sure 
way for the firewall or router to know how the packet is being used without detail 
analysis. The previously mentioned volume issue coupled with the protocol variety 
makes this an infeasible option. 

 

Fig. 2. Protocol varieties create holes on firewall 

3.3   Visibility 

Increasing usage of encryption technology also provides another obstacle that 
prevents firewall and router machines from examining the packets in detail. 
Application level encryption obscures the data while leaving the packet information 
alone. When monitoring, the network devices must trust the packet header 
information without being able to look inside. It has no way to tell that what looks 
like an normal web page being sent out from the company’s public web server is 
really an email or a telnet access. 

The usage of application level encryption such as PGP and S/MINE encrypted 
email is gaining ground. Packet level protection is being provided by protocols such 
as SSL, and its successor — TLS. This provides TCP level network connection 
protection. For levels above IP, IPSec is coming into play today. IPSec is designed 
not only to protect data at the packet level, but also to protect the network 
infrastructure itself. Thus, IPSec encrypts and digitally signs all of the header 
information in the protocols that it wraps. This includes all TCP headers along with 
the associated checksum, packet type and TCP port number. 
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The only solution is to decrypt the packets at each network access point, read, copy 
and analyze header information and then re-encrypt the packets before sending it on. 
In addition to the added computation expense, this defeats the purpose of the trusted 
relations between the communicating parties and exposes them to immense risks. 
Instead of providing security by increasing visibility on the encrypted packets, this 
solution actually created new points of failure from the information security’s 
perspective. 

? ? ? ??? ??? ? ? ??? ??

 

Fig. 3. Encrypted traffic visibility problem for firewall audit 

4   Intrusion Detection Systems (IDS) 

Large-scale heterogeneous networks generate tremendous amounts of temporal event 
data in very diverse formats. In reality, much of these data has very little to do with 
security at all. Most of them are related to system/network faults as a result of wrong 
configuration. When doing analysis, only careful analysis can distinguish between 
security and non-security data. This is an extremely noisy environment. When IDS 
attempts to analyze and correlate these events, correct interpretation of the event 
semantics becomes very important to minimize false positives (false alarms). 
 
1. Intrusion detection architecture. Today's IDS products depend heavily on 

centralized event processing — a traditional passive and one-way information-
processing architecture. IDS sensors are placed at many locations in the network. 
The sensors’ role is to collect data and perform simple analysis. Bulk of analysis, 
discovering and correlation are done at the centralized monitoring engine. This 
architecture faces considerable challenge when scaling up to meet the demand of 
today’s large and complex networks. Too much burden is being placed on the 
central machine to perform the analysis. Also, in a centralized event-processing 
architecture, by the time huge amount of data arrives at the centralized location the 
contextual information needed to properly analyze the event has already been lost. 
That information existed only in the original environments where data were 
generated. Without the right information for interpretation, it is difficult to perform 
adequate correlation. Worse even, the time latency might have made it impossible 
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to go back and collect critical environmental information to confirm or exonerate 
the suspicions. 

2. Host-based and network-based IDS. Host-based IDS works by monitoring system 
generated events, correlating them with other information such as user or 
application profiles, to detect intrusions. Network based IDS works by examining 
network traffic, most often IP packets, to recognized known attack patterns such as 
spoofing or flooding. One major problem is the separation of network IDS and 
host-based IDS. When today’s attack happens, it cuts across multiple platforms — 
network and host devices. There is no limitation as to what the intruder can do. In 
fact, many hacking tools available for download from the web actually offer the 
combined network and host attacks. When attacks happen across network and 
hosts, it is necessary to detect by analyze network and host events together. Failing 
to do so implies many missed opportunities. Realizing this, today’s network and 
host IDS products are adding each other’s functionality and coming together 
slowly. However, at this stage, IDS lack the capability for effective coordinated 
protection. 

3. Network-based IDS. There is a difficult for network based IDS to scale up dealing 
with network traffic volume. The variety of protocols adds to the burden of 
performance. Encryption creates opaque tunnels that cannot be analyzed. The 
encryption problem is particular serious because when coupled with traffic volume, 
it creates large and opaque pipes that are almost impossible to audit. Also, as the 
infrastructures move toward switched environment. Visibility in this environment 
presents yet another challenge to network based IDS. In a switched environment, if 
two machines are connected via a switch at two different ports, their 
communication will never go higher than the switch itself. With a hierarchical 
switch architecture, local traffic will never be visible for network IDS to monitor. 
One solution is to deploy IDS on each switch all the way down to the lowest level. 
This is an extremely expensive solution with serious performance consequences. 
Switched environment does not implied no attacks, it simply means the 
fundamental working principles of network based IDS is facing a real challenge.  

4. Static Data collection. Today’s IDS’ static data collection method contributes to 
high false positive (false alarm) rate. Traditionally, IDS are setup to monitor a fix 
set of events. This fix set is adjust only when the operator change the auditing 
parameters. The model works well as long as there is a knowledgeable operator 
sitting in front of the console around the clock to respond the attacks in real time 
and to adjust the parameters to trace the progression of the attack. Without this, the 
traces of the attack can be easily lost and the system ended up with a large set of 
irrelevant data — more false alarms. Today’s IDS has very little audit tuning 
taking place to ensure right set of data is being collected. The issue of high false 
positives will remain and it is a critical real-life operation problem. 

5   A Real-Life Awakening 

Examining the real-life failures of today’s on-line transaction systems provides useful 
insights into how the traditional IA is failing by just protecting the castles and moats. 
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Criminal activities in the “U.S. vs. Gorshkov” case took place during 1999 and 2000. 
Several complaints were filed with the F.B.I. in multiple jurisdictions including 
computer intrusion, system outage and attempted extortion. The coordinated effort of 
several offices and investigating agents ultimately resulted in an undercover operation 
that took place during November 2000. Two suspects were arrested in Seattle as a 
result of the FBI undercover operation that involved fictitious international job 
advertisements and interview offerings. They were subsequently charged with 
numerous offences. 

The internet-connected computers at the undercover operation were fitted with 
keystroke recorders. One of the suspects logged in to their “home system” and the 
keystroke recorder obtained the system name, username and login password. FBI 
subsequently reconnected to the remote system and downloaded approximately 
2.3GB of compressed data. The downloaded data was analyzed in conjunction with 
data obtained from victims’ systems. This revealed the true nature and the extent of 
the criminal activities that had been conducted. Seized evidence and victim data 
revealed that the following types of incidents took place during the 1999–2000 
timeframe: 

• Numerous computer intrusions including the subversion of systems and networks, 
for example ATM connected systems at a school district in Michigan 

• Computer outage, for example at an internet service provider in Bellevue, 
Washington 

• Credit card fraud, for example at online retailers and internet payment systems 
• Attempted extortion, for example at a bank in Southern California 
• Large-scale identity theft 

Compromised systems were frequently used as web relays/proxies. If the 
compromised system had “business value” then it was also used for other purposes. In 
one instance a system connected to a high-bandwidth ATM network was employed as 
a Domain Name Server (DNS) and Internet Relay Chat (IRC) server. In another 
instance the web site of an online bank had undergone creative enhancements that 
bypassed the normal user log-on procedure. 

The evidence also contained numerous Perl programming language software 
scripts and temporary file residuals resulting from their execution. The Perl scripts 
implemented a virtual web browser and were customized for email, auction and 
payment functions. The Perl scripts appeared in numerous forms of developmental 
evolution ranging from simple connection test scripts, SSL connection test scripts 
with embedded links to X.509 certificates through to connectivity to a fully integrated 
backend database. Thousands of email addresses were mined from the seized 
evidence. These addresses were correlated to activity at a web email service provider.  

The Ebay auction scripts represented a full-function user account 
creation/management and auction creation/bid/close capability. The auction 
management capability also included a feature that limited transactions to below the 
$500 PayPal threshold. Support for the automated generation of Ebay buyer and seller 
feedback was also incorporated. The $500 threshold check and automated feedback 
represent a deliberate “fly below the radar” strategy.  

The PayPal scripts demonstrated the capability of being able to create and 
manipulate PayPal accounts. The PayPal accounts were associated with stolen credit 
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card information. The ingenuity of the Perl scripts also provided a clear evidence of 
suspects’ in-depth understanding of the operation of the email, PayPal and Ebay web 
servers. All of these systems had been carefully analyzed and effectively reverse 
engineered by the suspects. Not only were the systems understood in terms of 
implementation technology but also in terms of business level transactions and the 
relation between these systems and others with which they had interaction. 

The nature of the computer intrusion attack methodology is also noteworthy. We 
frequently hear that attacks follow an intelligence and reconnaissance phase. Intrusion 
Detection Systems typically report sensor events during reconnaissance probes (e.g., 
port scans). The intelligence phase of these attacks consisted of assembling a long list 
of potential target systems. There was no need to initiate reconnaissance probes. One-
click “attack/compromise/subvert” scripts were developed. These scripts targeted 
known and “as-yet unknown” (i.e., unpublished) vulnerabilities and fully automated 
the installation of trojan-horse software, root kits, web proxies/relays as well as the 
search, gathering and retrieval of information contained on the compromised system 
and the network to which it was attached to. The targeting of the “as-yet unknown” 
vulnerabilities highlights the limitations of today’s IDS and anti-virus systems which 
primarily based on the “20-20 hindsight” band-aid approach and working at the 
wrong level of abstraction. It also highlights the fallacy that there is benefit in keeping 
unpublished security vulnerabilities secret until patches are available. 

The case was prosecuted in Seattle US Federal Court in 2001. The Federal 
Prosecutors successfully presented the cased by showing the reconstructing the fraud 
transaction scenario. The effort eventually led to multiple criminal convictions.  

5.1   Check-List Mentality 

Modern day system development has become increasingly complex and this has led to 
the common approach of relying heavily on the integration of “off-the-shelf” 
components. When systems are constructed in this manner, security functionalities, if 
addressed at all, also frequently end up being simply “off-the-shelf”, component-
based castles-and-moats solutions. This “checklist-mentality” is incapable to address 
the distributed collaborative nature of the new online business paradigm. It treats 
security as a second-class citizen and defines IA merely as the sum of security 
functionalities of all products to be integrated into the system. However, is the sum of 
parts equal to the total? Protecting the castles (firewall, IDS, encryption, security file 
system, virus checking, user authentication, PKI, etc.) offers little protection to the 
true values (the inter-castle transactions) in this new business paradigm.  

5.2   IA System Engineering Process 

For the purpose of expediency and convenience, security is usually not tightly 
integrated into overall system architecture from the start. One critical question must 
be asked — Can IA be simply treated as a last minute add-on or should it be part of 
the entire solution and thus be integrated into the system engineering process from the 
very beginning? Software development utilizes software engineering process. In 
contrast, there is no IA engineering process where the security requirement is defined, 
analyzed, architected and then finally implemented, tested and maintained in the 
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target environments. If such an IA engineering process exists, specific requirements 
of the new business paradigm should have been able to be captures along the way. 

5.3   Trusts and Assumptions 

When the business paradigm shifts from trading within the castle to trading between 
amongst the castles, trusts become a critical issue. What are the assumptions being 
made here? Can assumptions, and the trusts that come along with it, be inherited from 
the old paradigm?  

1. Virtual web browser and virtual web server. Beneath the reality of on-line business 
transactions, all tangible communication protocols, including HTTP and HTTPS, 
represent nothing more than a stream of bits formatted according to a specification. 
Most protocols, including HTTP and HTTPS, were specifically designed to permit 
interoperability between the different components that implement the same 
protocols. Anything that communicates like a web server is most likely a web 
server. Likewise, anything that communicates like a web browser is likely a web 
browser. These assumptions carry a significant implication on how a system is 
assembled in the first place. 

2. Transaction states. Both web servers and browsers incorporate means of 
implementing “states” to support the concept of “web sessions” in support of 
higher level “business transaction sessions”. “Web sessions”, for example, can be 
achieved through the use of cookies or by identifiers that are generated on the fly 
and embedded in script code for a given session. A common assumption here is 
that anything that maintains a correct, consistent, & logical state-based transaction 
is assumed to be truthful and legitimate transaction partner. 

3. Virtual users. Web proxies and relays have been developed as a means of bridging 
between routable and un-routable IP address spaces as well as providing firewall 
capability. Web proxies and relays can both be constructed to mask the true origin 
of the web traffic. The web server’s view of the web client is thus further obscured. 
These intermediate, “apparent traffic” origins can also be used by criminal 
elements to mask routes tracing back to sources of undesirable activity. The usage 
of web proxies and relays can further amplify the deployment and effectiveness of 
“virtual web browsers”, permitting a single virtual browser backend to mimic the 
behavior of a large number of “human” users.  

4. Virtual messaging. Numerous “free” web-based email services exist. These include 
for example, Yahoo!, Gmail and Hotmail to name a few. A feature-rich messaging 
system can be constructed using the virtual web browser and “free” email services. 
Such a messaging system can create and manipulate web-mail accounts, send, 
receive, parse and process messages and utilize a database system to maintain user 
context, as well as message context, message content and web session, business 
transaction states. Use of proxies/relays allows the messaging system to appear as 
multiple “human” users. Traffic and user-activity resulting from the synthetic users 
goes easily undetected by the email service provider. One fatal assumption is being 
made here — a logical sequence of email messages validates the legality and 
trustworthiness of an on-line transaction. 

5. Virtual payment and virtual payment trigger. There are numerous web-payment 
services in existence today. These services frequently associate a bank account or 
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credit card to an internet identity. Their intent is to facilitate the transfer of funds 
between parties conducting business online. The “PayPal” online payment system 
is an example. The virtual browser can be used to create an automated payment 
system. With an appropriately constructed virtual browser, traffic generated by 
these synthetic users is again indistinguishable from human users. The virtual 
browser, combined with proxy/relay intermediates that give the appearance of 
multiple, legitimate, synthetic users, can literally create, manage and pay for items 
that do not even need to exist. 

6. Visibility and scopes. Sensors are limited in their visibility. Businesses that provide 
web services such as email, payment and auction have severely limited abilities to 
detect their users’ participation in such illegal activities because their ability to 
observe is well constricted within their own domains. This constraint holds true in 
both computing and business contexts. Not having the sensors in the right place or 
not sampling data at the right time within an on-line business transaction system 
guarantees that unusual behavior will go undetected. In fact, improper placement of 
sensors can convey the false impression that everything is normal and “safe”.  

7. Wrong sensors. Sensors and security applications are at the wrong level of 
abstraction. As the case clearly illustrated, neither today’s neither network-based 
IDS nor today’s host-based IDS can be of much value in this kind of real-life 
transaction-level intrusion. Sensors suitable for the platforms (network and host-
based IDS) are not necessarily appropriate for detection at the application and 
transaction levels. What is not observed can never be seen. 

6   The Future Beyond the IA Corner Stones 

21st century business paradigm shift presents additional and unique challenge beyond 
traditional security areas. This complexity rises due to the increasingly frequent, 
dynamic and finer-granularity level of interactions between collaboration partner 
users and often distributed, and diversely owner, data. Such intensive interaction is a 
vital function for the modern virtual enterprise. Legacy IA comes out short addressing 
this critical issue.  

6.1   Multiple Authorization Requirement Sets 

Take a large multi-national virtual enterprise for example, in order to effectively 
perform collaborative engineering, design, manufacturing or even coalition warfare 
operations; partners need to access and share value assets on a very frequent basis. 
The business logic of who can access what, at what time, under what conditions, is a 
very complex one. The logic could contain export control regulations from multiple 
countries. It could also contain business contracts between any partnership 
arrangements within this virtual enterprise. Moreover, each partner likely also has 
internal operation process and standards that dictates additional protections and 
disclosures. For all of them to be enforced appropriately, the security mechanisms 
(e.g. access control list, user group setting, and access matrix) buried deep within the 
end environments (e.g. file-system, database) must be correctly configured. This is no  
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Fig. 4  Challenges in providing the right mapping from the user to the data 

small task considering the complexity of authorization logic within this diverse 
context and the difficulties of configuring the cumbersome, inflexible, low level 
system security mechanisms. 

6.2   Consistency, Correctness and Completeness 

Consider the following set of hypothetical access control requirements: 

• Mechanical engineers who are citizens have access to privileged engineering 
information 

• Interns have no access to any information 
• Any one with access to secret information has access to both privileged and 

confidential information 
• Technicians have access to privileged information only if they have clearance 
• CEO cannot be auditor, and vice versa 

 
It is not difficult to see that access control policies are in reality a formal logic model. 
 

• (∀X) (∀τ) (M(X) ∧ C(X) ∧ Π(τ)  A(X, τ)) 
• (∀X) (∀τ) (Ι(X) ∧ (Π(τ) ∨ Γ(τ) ∨ Σ(τ))  ¬A(X, τ)) 
• (∀X) (∀τ) (S(X) ∧ Σ(τ)  A(X, τ)) 
• (∀X) (∀τ) (∀Z) (Σ(τ) ∧ A(X, τ)  (Π(Z) ∨ Γ(Z))  A(X, Z)) 

(1) 

User Authentication 
•Password/Certificate Mgmt. 

•Public Key Infrastructure 

•Biometric Authentication 

•Smart Cards, Tokens 

•Directory 

Data Protection 
•Encryption 

•Opaque Tunneling 

•Watermarking, DRM 

•Data Tagging 

•Tethered Documents 

•Vulnerability Analysis 

•Risk Management 

Infrastructure Protection 
•Intrusion Detection (Network, Host, Application, Policies) 

•Firewall, VPN, Intelligent Gateway, Survivable System 

•Pro-active System Health Monitoring, Automated Recovery 

•MLS Servers, Intrusion Response 

.
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• (∀X) (∀τ) (T(X) ∧ Π(τ) ∧ A(X, τ)  CL(X)) 
• (∀X) (CEO(X)  ¬ACT(X)) 
• (∀X) (ACT(X)  ¬CEO(X)) 

Where the first axiom reads as “for all X, for allτ, if X is a mechanical engineer, X is 
a citizen, τ is a privileged engineering information, then access is allowed for X to τ”. 
The last two read as “for all X, if X is CEO, then X cannot be an accountant” and “for 
all X, if X is accountant, X cannot be a CEO.” 

As one can see, it is quite possible for the requirements sets to be in conflict with 
each other without carefully examination particularly when the logic are implemented 
in the low-level, trivial, system-level security mechanisms. It is also possible that the 
authorization requirement sets do not cover the entire access control space needed 
from both logical and business perspectives. In a one-castle scenario, this issue is less 
pronounced due to the lower complexity level. However, the complexity multiplies 
when the number of partners, data and data ownership increases. The issue is both a 
logical one as well as a business one. Thus, mathematical modeling of the formal 
access control policies is essential before the complex logic is implemented into the 
target system environments. Legacy IA does not address these challenges, especially 
considering the fact that there has never been IA engineering process to follow to 
capture the requirements. 

6.3   Dynamism 

Access control requirements in virtual enterprise change all the time. There are 
contract expiration, updates as well as suspensions. There are also people, 
organization and data updates. Whenever there is a change, all systems need to be 
updated. Legacy IA treats authorization as a matrix conceptually with users on one 
side and data objects on the other side. This matrix is sparsely populated and the cells 
represent allowable access of a user to an object. The cells are eventually 
implemented into the end systems. In the old business model where activities only 
take place within a castle, this matrix is relatively small and updates are also straight 
forward. In the modern virtual enterprise, the scale and complexity make the matrix 
very large. When authorization requirements changes occur, it becomes also 
extremely difficult to these cumbersome, inflexible, low level system security 
mechanisms. Without an explicit policy representation and a management framework, 
legacy IA is incapable to catch up with the rate of change in today’s virtual enterprise. 

6.4   Coherent Implementation 

For a large virtual enterprise with many systems, business mandates that same set of 
authorization requirements needs to be enforced across multiple environments for the 
same set of data objects. For example, export control regulation on the same set of 
design data regardless whether it’s accessed through CAD/CAM system, file system 
or databases should be consistent with each other. Legacy IA focuses on islands of 
enforcement. Such coherent implementation is unattainable by today’s IA. 
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7   Conclusion 

Security without being cognizant of the underlying business paradigm it needs to 
protect is a risky business. This paper presents many critical modern IA shortfalls. 
These failures largely come from inheritance the old IA paradigm and the inability to 
recognize the revolutionary security requirements. Having all the tools, lumbers and 
materials does not equate a house built. It is the blueprint that put the house together. 
Ad-hoc application of materials and tools builds only leaky house. IA also needs to be 
more than the last minute patch-up. It needs to be a business-enabler — the 
technology that leads the creation the next generation of business paradigm. Playing 
the IA catch-up game and gambling on the shaky security assumptions are major 
roadblocks to the security of modern large-scale infrastructures. 
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Abstract. Attack graphs represent known attack sequences that attack-
ers can use to penetrate computer networks. Recently, many researchers
have proposed techniques for automatically generating attack graphs for
a given computer network. These techniques either use model checkers
to generate attack graphs and suffer from scalability problems, or they
are based on an assumption of monotonicity and are unable to represent
real-world situations.

In this paper, we present a vulnerability analysis technique that is
more scalable than model-checker-based solutions and more expressive
than monotonicity-based solutions. We represent individual attacks as
the transition rules of a rule-based system. We define noninterfering rule-
sets and present efficient, scalable algorithms for those sets. We then con-
sider arbitrary nonmonotonic rulesets and present a series of optimiza-
tions which permit us to perform vulnerability assessment efficiently in
most practical cases. We motivate the issues and illustrate our techniques
using a substantial example.

1 Introduction

An attacker typically penetrates a computer network by probing and modify-
ing the network configuration and by exploiting vulnerabilities. For instance,
an attacker might execute a sequence of actions that first probe a network for
vulnerable systems, then exploit a detected vulnerability to gain user-level priv-
ileges on a remote host, then exploit another vulnerability to gain root-level
privileges, and finally use the privileges to compromise the system. As another
example, consider a network with firewall rules that prevent external packets
from reaching a critical server directly. An attacker might launch an attack on
port 80 of some internal machine (thus bypassing the firewall) and then use that
intermediate host to attack the critical server.
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Several graph-based vulnerability analysis techniques have been proposed to
analyze the vulnerability of networked systems to composite attacks. These tech-
niques model a computer network as a state transition system. A state represents
a computer network configuration (e.g., network topology, software versions) as
well as attacker capabilities (e.g., sniffed passwords, access to user or root-level
shells). State transitions represent actions that modify network configurations
and attacker capabilities. Analysis techniques determine, for instance, whether
an attacker can reach a compromised state from an initial state; the likelihood
of him doing so; a minimal set of actions that, if thwarted, would prevent an
attacker from reaching any compromised state; a representation of all attack
paths available to an attacker; etc.

One approach [14,7,15,6] to vulnerability analysis is to use model checking
to find attack paths that compromise a stated system security goal. While this
approach is very general and takes advantage of the substantial body of work on
model checking, its complexity grows exponentially in the size of the state space
and hence it does not scale to the enormous state space of real-world computer
networks. This problem has been addressed in an alternate approach [12,1] that
makes the assumption that an attacker’s capabilities and the exploits available
to him are never reduced by any action. With this assumption (called mono-
tonicity), the complexity of vulnerability analysis grows linearly in the state
space size and it results in efficient and scalable algorithms. However, this is not
a realistic assumption. For instance, buffer overflow attacks typically result in
the termination of the attacked service, thereby preventing other uses of that
service. In some cases, the exploit may cause the host to crash and even to halt,
or may not provide the attacker with sufficient privileges to restart the service.

In this paper, we present a rule-based approach to vulnerability analysis. We
use a state transition model as in prior work, but we express state transitions
as a set of rules. Rules may reduce the capabilities of attackers (e.g., as in the
buffer overflow case), and may depend on the absence of certain capabilities or
configuration attributes (e.g., a rule may depend on the absence of a service).
We examine common rule cases that represent typical attacks and we present
efficient and scalable vulnerability analysis algorithms for them. We motivate
the issues and illustrate our techniques using a substantial example.

The remainder of this paper is organized as follows. Section 2 presents a
formal model for graph-based vulnerability analysis. In Section 3, we define and
analyze the notion of noninterfering rules and we present efficient algorithms for
testing the security of systems under such rules. In Section 4, we consider rules
of arbitrary form and we show that, under a reasonable assumption, we can still
test system security efficiently. Section 5 presents related work and Section 6
concludes this paper.

2 Topological Vulnerability Analysis

We model the topological vulnerability analysis problem using the state tran-
sition system approach. A state represents a computer network configuration
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(e.g., network topology, software versions, etc.) as well as attacker capabilities
(e.g., sniffed passwords, access to user or root-level shells, etc.). State transitions
represent actions that modify computer network configurations (e.g., changing
firewall rules) and attacker capabilities (e.g., exploits of vulnerabilities). The
initial state of the transition system represents the capabilities of a specific ad-
versary, e.g., an adversary with root access on a networked computer that is
external to the networked system under consideration. The goal states of the
transition system represent compromised states, e.g., states where the adversary
has root privileges on critical servers.

2.1 Model

Formally, a state transition system is a tuple T = (S, τ, s0, SG) where S is a set
of states, τ ⊆ S × S is a state transition relation, s0 ∈ S is a start state, and
SG ⊆ S is a set of goal states. A system T ′ = (S′, τ ′, s′0, S

′
G) is a subsystem of

system T = (S, τ, s0, SG) if S′ ⊆ S, τ ′ ⊆ τ , s′0 = s0, and S′
G ⊆ SG. We write

T ′ ≤ T to denote that T ′ is a subsystem of T .
A state sn ∈ S is reachable from state s0 ∈ S if there exist states

s1, . . . , sn−1 ∈ S such that (si, si+1) ∈ τ for 0 ≤ i ≤ n − 1. A vulnerable
state is a state from which some goal state is reachable. A successful attack path
is a sequence of state transitions that takes a transition system from its initial
state to a goal state. We are interested in attack graphs which represent all the
successful attack paths in a system.

Definition 1. Let T = 〈S, τ, s0, SG〉 and T ′ = 〈S′, τ ′, s′0, S
′
G〉 be state transition

systems. Then, T ′ is called an attack graph of T if T ′ ≤ T and if all states in
S′ are both vulnerable and reachable from s′0 in T ′.

Definition 2. G is called the greatest attack graph of a state transition system
T = (S, τ, s0, SG) if G is an attack graph of T and if for all attack graphs G′ of
T , G′ ≤ G.

Proposition 1. Every state transition system has a greatest attack graph.

We define topological vulnerability analysis to be the construction and anal-
ysis of greatest attack graphs. In this paper, we focus on the construction of
the graphs and present efficient algorithms that map state transition systems to
their greatest attack graphs.

2.2 States

A state represents a computer network configuration and attacker capabilities.
A state is defined to be a set of ground predicates (called attributes). Let K be
a finite set of individual constants and P be a finite set of predicate symbols.
Each predicate has an assigned arity ≥ 1. Then the (finite) set of all atoms, G,
is defined as follows: all constants in K are in G; further, if p ∈ P has arity n
and if k1, . . . , kn ∈ K then p(k1, . . . , kn) ∈ G. Finally, the set of all attributes is
A ⊆ G and the set of all states is S = 2A.
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For instance, we use the attribute reachable(s, d, p) (where s, d, and p are
constant strings) to denote that network packets that match pattern p can tra-
verse the network from source IP address s to destination IP address d. In this
paper, we restrict p to be a port number. As another example, we use the at-
tribute sh(a, u, h) to denote that the attacker a has an executable shell on host
h with privilege level u. Finally, we use service(f, p, u, h) to denote that the
service f is running on port p of host h with privilege level u.

2.3 State Transition Rules

Let A, B, C, D ⊆ A be sets of attributes with A={a1, . . . , am}, B = {b1, . . . , bn},
C = {c1, . . . , cj}, and D = {d1, . . . , dk}, and consider the transition relation
δ(A, B, C, D) ∈ S × S given by:

δ(A, B, C, D) = {(s, s′) | (s, s′ ∈ S)∧ (A ⊆ s)∧ (B ∩ s = ∅)∧ (s′ = (s∪C)−D)}

Informally, the transition rule δ(A, B, C, D) applies to states that contain the
attributes in A and do not contain the attributes in B; the rule transforms a state
by adding the attributes in C and deleting the attributes in D. We represent
δ(A, B, C, D) by the transition rule:

a1, . . . , am; b1, . . . , bn �δ c1, . . . , cj ; d1, . . . , dk

The transition relation of a set of transition rules is given by the union of the
transition relations of the individual rules. Note that we only consider ground
rules in this paper; in our examples, a rule with variables should be interpreted
as the set of ground instances of the rule.

Proposition 2. Let S = 2A for finite A. Then, any transition relation τ : S×S
can be expressed as a finite set of transition rules over A.

Definition 3. A state transition rule system is a tuple T = (A, Δ, s0, SG) where
A is a set of attributes, Δ is a set of transition rules over A, s0 ∈ 2A is a start
state, and SG ⊆ 2A is a set of goal states.

2.4 Goal States

We consider attackers whose goal is to acquire some set of attributes (i.e., capa-
bilities). A goal state is defined as a state that contains the desired attributes.
We require that if state s is a goal state, then every superset of s is also a goal
state. For instance, a goal state can be defined as any state which contains the
attribute sh(Charlie, root, DBMS).

We call s a minimal goal state if s is a goal state but no proper subset of s is
a goal state. Let Ψ(s) = {s′ | s′ ⊆ s, s′ is a minimal goal state} be the set of all
minimal goal states that are subsets of s. We say that goal state s1 dominates
goal state s2 (written s1 ≥ s2) if Ψ(s1) ⊇ Ψ(s2).
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2.5 Example 1

We now consider an example consisting of four distinct exploits. Each exploit
is represented as a state transition rule. An attacker can chain these together
in various ways (see Figure 1), some of which let him penetrate a protected
network. We will use this example in the remainder of this paper to illustrate
and motivate our algorithms and contributions.
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Fig. 1. An example of exploit chaining

Exploits BIND NXT Remote Root Exploit
The incorrect processing of DNS NXT records by a BIND name server may
allow an attacker to gain a root level privilege on a remote vulnerable name
server [3,19]. Let P be the primary name server which is authoritative for some
domain, say “foo.com”. The attacker A first establishes his machine H as the
authoritative name server for some subdomain of “foo.com”, say “bar.foo.com”.
The victim name server V is then interactively queried for some host in that
subdomain. V then queries P which redirects the query to H . H returns a NXT
record containing exploit code, overflowing V ’s buffer, and spawning a shell for
the attacker. The shell has the same process level that the DNS process had.
Note that the exploit requires that H is not running DNS on port 53. We model
the exploit as a rule δ1.

a1, a2, a3, a4, a5, a6, a7, a8, a9; b1 �δ1 c1; d1

where: a1 = sh(A, root, P), a2 = sh(A, root, H), a3 = reachable(H, V, 53),
a4 = reachable(V, P, 53), a5 = reachable(P, H, 53), a6 = service(DNS, 53, l1,
P), a7 = service(vul-DNS, 53, l2, V), a8 = DNS-authority(P, “foo.com”), a9 =
DNS-subdomain(P, “bar.foo.com”, H), b1 = service(DNS, 53, l3, H), c1 = sh(A,
l2, V), and d1 = service(vul-DNS, 53, l2, V).

Generic SSHd Remote Buffer Overflow Exploit
The remote SSHd buffer overflow exploit allows an attacker to get a shell on a
remote host with root privileges. We model this exploit by a transition rule δ2
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where an attacker A on host H launches a remote SSHd attack against a victim
host V .

a1, a2, a3 �δ2 c1; d1

where: a1 = reachable(H, V, 22), a2 = service(vul-SSHd, 22, root, V), a3 =
sh(A, l1, H), c1 = sh(A, root, V), and d1 = service(vul-SSHd, 22, root, V).

Remote Buffer Overflow Exploit in Sendmail
A popular message transfer agent, Sendmail, can be remotely compromised al-
lowing an attacker to gain a root level privilege on a remote victim’s host [2].
A malicious custom e-mail message is sent to the victim’s machine V , which
overflows the victim mail server’s buffer. We model this exploit as a rule δ3. An
attacker A launches the exploit from his machine H .

a1, a2, a3 �δ3 c1

where: a1 = reachable(H, V, 25), a2 = service(vul-Sendmail, 25, l1, V), a3 =
sh(A, l2, H), and c1 = sh(A, l1, V).

Anonymous FTP .rhosts Remote Login Exploit
The purpose of the FTP .rhosts file attack is to obtain a trust relationship
between two hosts, say H and V , as described in [15,6]. The FTP vulnerability
allows an attacker A to write/overwrite any files in the home directory of an
FTP user F . This permits an attacker to create/modify a .rhosts file in the FTP
home directory on host V , and thus to masquerade as a legitimate user of the
system without the need for a password. We model the FTP .rhosts attack as a
transition rule δ4.

a1, a2, a3, a4 �δ4 c1

where: a1 = sh(A, l1, H), a2 = service(vul-FTP, 21, l2, V), a3 = reachable(H,
V, 21), a4 = writable-ftp-home-dir(F, l3, V), and c1 = rshTrust(H, l3, V).

And finally, we model the remote login trust exploit as a transition rule δ5.

a1, a2, a3 �δ5 c1

where: a1 = sh(A, l1, H), a2 = rshTrust(H, l3, V), a3 = reachable(H, V, .rlogin),
and c1 = sh(A, l3, V).

Chaining of Exploits. Let Δ = {δ1, δ2, δ3, δ4, δ5} where the rules δ’s are as
described above. These exploits can be chained together as illustrated in Figure 1
depicting two simple attack paths. A firewall with only two ports in an open
state, ports 25 and 53, isolates the internal hosts from the external (Internet)
hosts. That is, the firewall only allows DNS and mail network packets into the
network. Also, note that the critical server (CS) and DBMS host are not directly
accessible from outside the network. This can be represented by the following
reachability predicates:
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reachable(H, DNS, 53), reachable(H, Mail, 25),
reachable(DNS, CS, all), reachable(Mail, CS, all), and
reachable(CS, DBMS, all).

The attacker’s goal is to gain root level privilege on server CS, and a user level
privilege on host DBMS. Figure 1 depicts two different attack paths that achieve
the attacker’s goals in this system. In one attack path, the attacker first gains
root level privilege on the DNS server. Once inside the network, the attacker
gains appropriate privileges on hosts CS and DBMS. In the second attack path,
the attacker first gains root level privilege on the Sendmail server instead of the
DNS server.

3 Noninterfering Rules

We first consider a class of rules (which we call noninterfering rules) that can
never interfere with an attacker’s goal of performing a successful attack. While
these rules can provide the attacker with new capabilities that assist him in his
goal, they can never restrict the set of goal states that he can reach. This means
that an attacker can invoke such rules freely (whenever they are applicable)
without worrying about the order in which he invokes them, and he never needs
to backtrack in order to reach his goal.

Definition 4. Let T = (A, Δ, s0, SG) be a state transition rule system. We say
that a rule δ(A, B, C, D) ∈ Δ is a noninterfering rule in T if:

– For all c ∈ C and for all rules δ(A′, B′, C′, D′) �= δ(A, B, C, D) ∈ Δ, c �∈ B′.
– For all d ∈ D and for all rules δ(A′, B′, C′, D′) �= δ(A, B, C, D) ∈ Δ, d �∈ A′.
– For all d ∈ D, d is not a member of any minimal goal state in SG.

We call a set of noninterfering rules a noninterfering ruleset.

Proposition 3. Let δ ∈ Δ be a noninterfering rule in system T and let s, t be
states such that (s, t) ∈ δ. Then, for every goal state sg that is reachable from s,
there exists a dominating goal state tg ≥ sg that is reachable from t.

Figure 2 presents an algorithm for constructing the set of noninterfering
rules of a state transition rule-system. The complexity of computeNRS() is
O(|A|2.|Δ| + |A|.|SM |). Figure 3 presents an algorithm for extending a state
transition sequence using only noninterfering rules. findMaximal() takes as ar-
guments a partial attack path seq (in reverse order, so s0 is the last element of
the state sequence seq), and a noninterfering ruleset Δ. It uses the rules in Δ to
extend seq until the path cannot be extended further, and it returns the resulting
path (again in reverse order). The complexity of findMaximal() is O(|Δ|2.|A|2).
Proposition 4. If T = (A, Δ, s0, SG) has a goal state that is reachable from
s0, and if Δ is a noninterfering ruleset in T , then findMaximal(〈s0〉, Δ) is a
successful attack path in T .

In particular, if the first state in findMaximal(〈s0〉, Δ) is not a goal state,
then T is secure, i.e., no goal state is reachable from s0.
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Input:
Δ – set of rules.
SM – set of minimal goal states, SM ⊆ SG.

Output:
Δ′ – set of noninterfering rules.

Algorithm:
computeNRS(Δ, SM)

P = Q = R = ∅
for each δ(A,B, C, D) ∈ Δ do

P = P ∪ A
Q = Q ∪ B

for each sm ∈ SM do
R = R ∪ sm

Δ′ = ∅
for each δ(A,B, C, D) ∈ Δ do

if C ∩ Q = ∅ and D ∩ P = ∅ and (D ∩ R = ∅) then
Δ′ = Δ′ ∪ {δ}

return Δ′

Fig. 2. Computing the noninterfering rule subset of a ruleset

Input:
seq – a reverse attack path, seq ∈ S∗.
Δ – set of noninterfering rules.

Output:
A maximal state transition sequence

Algorithm:
findMaximal(seq, Δ)

s = head(seq)
if A ⊆ s and B ∩ s = ∅ for some rule δ(A, B, C, D) ∈ Δ then

s′ = ((s ∪ C) − D)
return findMaximal(s′.seq, Δ − {δ})

else
return seq

Fig. 3. Computing a maximal state transition sequence using a noninterfering ruleset

3.1 Monotonicity

A ruleset Δ is called monotonic if for all rules δ(A, B, C, D) ∈ Δ, B and D
are empty. Clearly, if T = (A, Δ, s0, SG) is a state transition rule-system with
monotonic ruleset Δ, then all rules in Δ are noninterfering rules in T . Hence,
from Propositions 3 and 4, monotonic rules may be applied in any order and
findMaximal yields a successful attack path if one exists.

4 Nonmonotonic Rules

We now consider transition rules δ(A, B, C, D) where A, B, C, D can be arbitrary
sets of attributes. Such rules (called nonmonotonic rules) can represent actions
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that require the absence of some attributes and that cause the absence of other
attributes.

In order to see why monotonic rules are inadequate for some real-world situ-
ations, consider that a buffer overflow attack typically results in the termination
of the attacked service. Further, it may also cause the victim host to crash or
halt. An attacker may use this to disable a host while he hijacks a connection it
had with another host. However, in doing this, the attacker may lose access to
the host and may no longer benefit from trust relationships (e.g., as represented
in .rhosts files) that the host has with other hosts. Thus, in this example, the
attacker must execute actions in a specific order so as to achieve his goal. In a
more complex situation, the constraints may be such that an attacker cannot
succeed since exploits invalidate each other.

Such situations may be represented directly using nonmonotonic rules. Some
researchers have suggested that such situations may also be captured by the
careful design of monotonic rules. One approach is to ignore some constraints
while modeling or analyzing the system. The monotonic approximation that we
present in Section 4.1 is an example of this approach. However, as we will show,
this approach yields attack paths that are not available in practice due to order-
ing constraints on individual exploits. Another approach is to carefully design
attributes and rules so that all constraints are captured by monotonic rules.
However, this is as hard as doing the nonmonotonic analysis since the system
modeler must determine the consequences of all nonmonotonic constraints while
modeling the system. In fact, this is quite undesirable both since it is unnatural
and since it shifts the burden from the computational analysis to the human
modeler.

While nonmonotonic rulesets capture real-world constraints directly, they
also introduce two problems. First, rules must be invoked in a specific order
and hence searching for a path may involve backtracking. Second, a successful
attack path may take the system through all (or a large number of states) before
reaching a goal state. Hence, the length of attack paths is bounded by the number
of states |2A| (as opposed to the number of attributes |A| for monotonic rulesets).

4.1 Monotonic Approximation

Let Δ be a set of transition rules. Let Δ′ be a set of monotonic transition rules
such that δ(A, ∅, C, ∅) ∈ Δ′ if and only if δ(A, B, C, D) ∈ Δ for some B, D ⊆ A.
We call Δ′ the monotonic approximation of Δ, and we call rule-system T ′ =
(A, Δ′, s0, SG) the monotonic approximation of rule-system T = (A, Δ, s0, SG).

A key observation is that an adversary can reach a goal state in a rule-
system T only if he can reach a goal state in the monotonic approximation of T .
That is, a system is vulnerable to attacks only if its monotonic approximation
is vulnerable.

Proposition 5. Let T = (A, Δ, s0, SG) be a state transition rule-system and let
T ′ = (A, Δ′, s0, SG) be the monotonic approximation of T . For each goal state
sg ∈ SG that is reachable from s0 in T , there exists a goal state s′g ∈ SG such
that sg ⊆ s′g and s′g is reachable from s0 in T ′.
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Corollary 1. If T ′ has no reachable goal state, then T has no reachable goal
state.

The corollary provides us with an efficient way of testing that a system is
secure (i.e., has no exploitable vulnerabilities): A system is secure if its monotonic
approximation has no reachable goal state. Note that this test is sufficient but
not necessary—a system may be secure even if its monotonic approximation is
vulnerable.

Figure 4 presents an algorithm transform() (with complexity O(|Δ|)) for com-
puting the monotonic approximation of a state transition system. The algorithms
of Section 3 can then be used to check whether the monotonic approximation is
secure.

Input:
T – state transition rule-system.

Output:
T ′ – monotonic state transition rule-system.

Algorithm:
transform(T )

let T = (A, Δ, s0, SG) in
Δ′ = ∅
for each δ(A,B, C, D) ∈ Δ do

Δ′ = Δ′ ∪ {δ(A, ∅, C, ∅)}
return (A, Δ′, s0, SG)

Fig. 4. Monotonic approximation algorithm

Example 2 Let δ1 be the transition rule for the BIND NXT remote root exploit
described in Section 2.5. Then, Δ = {δ1}, where δ1 is (as defined earlier):

a1, a2, a3, a4, a5, a6, a7, a8, a9; b1 �δ1 c1; d1

The rule δ1 has two negative attributes, namely b1 = service(DNS, 53, l3, H)
and d1 = service(vul-DNS, 53, l2, V). Then Δ′, the monotonic approximation
of Δ, is Δ′ = {δ′1} where δ′1 is defined as:

a1, a2, a3, a4, a5, a6, a7, a8, a9;�δ′
1

c1;

If an attacker is unable to carry out the exploit δ′1 in a less restrictive environment
(i.e., in an environment where a DNS service may or may not be present on the
attacker’s host), then clearly the attacker will not be able to execute the exploit
δ1 in a more restrictive environment in which a DNS service is absent. This
simple example shows that if the monotonic approximation has no reachable
goal state, then the original system has no reachable goal state.

4.2 Nonmonotonicity

Let us assume that T = (A, Δ, s0, SG) is a state transition rule-system and
Δ′ = computeNRS(Δ) the noninterfering rule subset of T . Figure 5 presents
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an algorithm (TVA()) that returns a successful attack path if one exists. TVA
takes a partial reverse attack path σ as an argument, together with Δ and Δ′. It
also takes a fourth argument as which is the set of attributes that were deleted
by the last rule that was applied thus far. TVA first applies findMaximal to
extend the attack path since noninterfering rules can be applied in any order
as shown earlier. If the path is successful, it returns the path. Otherwise it
tries to recover the attributes in as. We have not included the pseudo-code for
recoverAttributes. However, when an attribute is first acquired, we mark the
attribute with the attack path that causes it to be acquired. Then, to recover an
attribute, recoverAttributes reapplies the rules in the stored attack path. Having
done this, TVA then tries completing the attack path. If it fails, it backtracks
and then tries each rule in Δ−Δ′ in turn; after applying each rule, it recurses
to repeat the above process.

We observe that in practice, most attributes that are lost due to some exploit
(e.g., as in the buffer overflow examples) can be immediately recovered without
impacting the attacker’s ability to reach a goal state. In this case, the algorithm
does not backtrack and remains efficient. Thus, the algorithm backtracks only
in the unusual event that the lost attributes must be recovered in a delayed
manner. Figure 6 shows a graphical representation of TVA() algorithm.

4.3 Example 3

The BIND and SSHd buffer overflow exploits described in Example 1 exhibit the
property of privilege loss: they provide an attacker with a root shell on the target
machine but terminate the BIND or SSHd service. Since the attacker has root
level privilege in the shell, the attacker is able to restart the previously crashed
BIND or SSHd service.

We can represent the transition rules for restarting the BIND and SSHd
daemons on host V for an attacker A as follows. Let δ6 be the transition rule for
restarting the SSHd daemon. Then,

a1 �δ6 c1

where: a1 = sh(A, root, V) and c1 = service(SSHd, 22, l1, V). Similarly, we can
write the transition rule for restarting the BIND daemon.

5 Related Work

Dacier et al. [4,5] and Ortalo et al. [8] represent the vulnerabilities in a system
by means of a privilege graph where nodes are sets of privileges owned by users
and edges represent vulnerabilities. Our attack graph representation is motivated
by their work. However, while they focus on security metrics that are based on
privilege graphs, we focus on the efficient construction of greatest attack graphs.

Templeton and Levitt [18] proposed a “requires/provides” model that models
attacks in terms of their preconditions and postconditions (expressed as pred-
icates over capabilities). The models presented in [1,7,14,13,15,6] all model at-
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Input:
σ – a reverse attack path, σ ∈ S∗.
Δ – set of rules.
Δ′ – noninterfering ruleset of Δ.
as – attributes to be reacquired.

Output:
A successful attack path, if one exists; else 〈〉.

Algorithm:
TVA(σ, Δ, Δ′, as)

σ′ = findMaximal(σ, Δ′)
s = head(σ′)
if s ∈ SG then

return σ′

else
if as 	= ∅ then

σ′′ = recoverAttributes(σ′, as)
σ′′′ = TVA(σ′′, Δ, Δ′, ∅)
if σ′′′ 	= 〈〉 then

return σ′′′

for each δ(A,B, C, D) ∈ Δ − Δ′ do
if A ⊆ s and B ∩ s = ∅ then

s′ = (s ∪ C) − D
if s′ 	= s then

σ′′ = TVA(s′.σ′, Δ, Δ′, s − s′)
if σ′′ 	= 〈〉 then

return σ′′

return 〈〉

Fig. 5. TVA() algorithm

tacks using a similar approach. Our model is also based on this representation
of attacks.

Phillips and Swiler [9] present a model which uses “attack templates” and
a “physical network topology” description to generate attack graphs. Swiler et
al. [17] describe a tool that implements this model but they do not present
or analyze the algorithms used to generate attack graphs. We present several
scalable algorithms for our formal model of vulnerability analysis.

Ritchey and Ammann [14] propose the use of model checking to automat-
ically generate attack paths, while Sheyner et al. [15,16] propose the use of
model checking to automatically generate attack graphs. Jha et al. [7,6] present
two analyses of attack graphs. Ramakrishnan and Sekar [10,11] use a model
checker to discover individual vulnerabilities on single hosts. Ritchey et al. [13]
present improvements to Ritchey and Ammann’s model [14] by presenting a
more expressive model for the connectivity of networks. This body of work pro-
vides a model checker with a model of a specific system and of known attacks,
and a safety property; the model checker determines whether the given safety
property is satisfied in the model. When the safety property is not satisfied, the
model checker generates a counterexample in the form of an attack path. While



Rule-Based Topological Vulnerability Analysis 35

S0

δ′0(S0), δ′0∈Δ′

��
S1

Δ′∗

����
��
��

Sn

δ1(Sn), δ1∈Δ−Δ′

����
��

��
�

�� ���
��

��
��

•
Δ′∗

����
��
��

•... ... •

⎫⎪⎪⎬⎪⎪⎭ Δ − Δ′

•

����
��

��
�

�� 		�
��

��
��

�

• •

Δ′∗
����
��
��

... ... •

⎫⎪⎪⎬⎪⎪⎭ Δ − Δ′

...

Fig. 6. Graphical representation of TVA() algorithm

the model checking techniques appear promising for automatic attack graph
generation, these techniques break down when handling non-trivial, real world
examples. The model checker’s complexity grows exponentially in the size of the
state space and hence it does not scale to the enormous state space of non-trivial,
real world computer networks. In this paper, we present scalable algorithms for
common real-world situations.

To compensate for the state explosion problem inherent in the model checking
approach, Ammann et al. [1] propose “a more compact and scalable graph-based
approach to network vulnerability analysis”. Their approach relies heavily on
the assumption of monotonicity: (i) an attacker can gain capabilities, but never
lose them; and (ii) gaining additional capabilities does not reduce the exploits
available to an attacker. The problem with this approach is that it does not allow
for non-monotonic rules in a system. In this paper, we present efficient algorithms
for vulnerability analysis of a system containing monotonic and non-monotonic
rules, thus reflecting a model for real world examples.

6 Conclusion

In this paper, we have presented a formal model and a set of scalable algorithms
for performing topological vulnerability analysis. Our approach is more scal-
able than model-checker-based solutions and more expressive than monotonicity-
based solutions. We represent individual attacks as the transition rules of a
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rule-based system. For noninterfering rulesets, our algorithms are similar to
monotonicity-based solutions. For arbitrary nonmonotonic rulesets, our algo-
rithms remain efficient in the most common case where if an attacker loses a
previously acquired capability, then the attacker can reacquire it when desired.
The algorithms only backtrack in the event that this does not hold. Our ap-
proach permits the modelling of real-world situations where exploits have the
side-effect of temporarily reducing an attacker’s capabilities.
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Abstract. The recent proliferation of Internet worms has raised ques-
tions about defensive measures. To date most techniques proposed are
passive, in-so-far as they attempt to block or slow a worm, or detect and
filter it. Active defenses take the battle to the worm—trying to eliminate
or isolate infected hosts, and/or automatically and actively patch sus-
ceptible but as-yet-uninfected hosts, without the knowledge of the host’s
owner. The concept of active defenses raises important legal and ethical
questions that may have inhibited consideration for general use in the
Internet. However, active defense may have immediate application when
confined to dedicated networks owned by an enterprise or government
agency. In this paper we model the behavior and effectiveness of differ-
ent active worm defenses. Using a discrete stochastic model we prove
that these approaches can be strongly ordered in terms of their worm-
fighting capability. Using a continuous model we consider effectiveness in
terms of the number of hosts that are protected from infection, the total
network bandwidth consumed by the worms and the defenses, and the
peak scanning rate the network endures while the worms and defenses
battle. We develop optimality results, and quantitative bounds on de-
fense performance. Our work lays a mathematical foundation for further
work in analysis of active worm defense.

1 Introduction

A computer worm is so called because it has a life of its own. Once burrowed into
a susceptible system, it attempts to propagate through the network. The usual
means is through “scans”, it attempts to connect to and infiltrate other hosts
throughout the network. Worms interfere with normal use of computers, and
exact an economic cost of eradicating them and repairing systems infected by
them. Worms have the potential to wreak havoc on the systems they infect, and
on the networks they traverse. This potential has been realized already, several
times.

The large-scale worm infestations in recent years have triggered several ef-
forts to model worm spread in order to understand how the low-level factors in
the propagation mechanism translate into macroscopic behavior, assess threat
levels of different worms, and evaluate the effectiveness of detection methods
and proposed counter-measures. Staniford appears to have been the first to rec-
ognize that the macroscopic propagation of the Code Red v2 worm could be
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well modeled through the logistic equation [10]. This model and the equivalent
simple epidemic model from the epidemic modeling literature (see e.g. [3]) have
since been used in several studies [11,6,7,5,13,14]. [12] proposed a model to take
removals into account (based on the general epidemic model) and [1] proposed
a discrete time model.

Our work is unique in considering a wide space of defensive capabilities, and
in sample path comparison of them. It is most similar in spirit to [7,1,14] as we
use epidemic models to evaluate proposed worm counter-measures. We extend
simple epidemic models to consider the interaction of worms and counter-worms
and other “active” counter-measures.

For the purpose of illustration the experimental portion of our paper uses
parameters reflective of the Code Red v2 worm, released in July 2001. It is
important to remember that as far as the mathematics goes, time-scale is irrele-
vant. Having said that, it is true that very fast worms have had their propagation
shaped by the impact they have on the network infrastructure, and the simple
mathematical models we develop would not apply.

We focus on worms that spread autonomously by probing other systems for
vulnerabilities that can be exploited to propagate from one machine to another.
This class of worms captures the essence of the rapidly spreading large-scale
infestations seen to date, such as Code Red v2, Code Red II, and Nimda in
2001, and Slammer, Blaster, and Welchia in 2003. Thus, we deliberately exclude
most typical email born viruses that require a user action to enable infection.
In contrast, worms such as Slammer have proven that the time-scales involved
for fast moving autonomously propagating worms can be so short that human
intervention to stop them is impossible. Consequently, this class of worms poses
a substantial threat and a trigger for development of automated defensive mech-
anisms, such as those we consider in this paper.

In the wake of one worm attack (Blaster), a counter-worm (Welchia) was
launched that sought hosts infected by Blaster, attempted to patch them, and
use them to find other infected hosts. Whatever the intentions of the authors
might have been, Welchia had consequences as bad or worse than Blaster—it was
harder to get rid of, and effectively created a denial-of-service attack on patch
servers, so that people trying manually to protect their systems had a harder
time doing so. The question is raised therefore of the effectiveness and impact
that an “active defense” might have. We examine this question agnostically and
without overt consideration of the legal and ethical issues raised by wide-spread
active defense. It is enough for us that an organization as large as the United
States Department of Defense could mandate such measures on its own gargan-
tuan networks; we seek to understand the power and the limitations of active
defense deployment, should they be deployed. Our approach is analytic. We con-
sider four aspects of active defense—patching uninfected hosts, increasing the
active defense population by using uninfected hosts that are susceptible to the
worm, suppression of infected hosts discovered through scans, and suppression of
infected hosts discovered through scans and traffic analysis. Using a very general
discrete stochastic model, we show that adding each capability (in that order)
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to the active defense assumptions results in a stochastically stronger increase
in worm-fighting power. Using a continuous model we quantify some aspects of
active defense behavior, and prove some results about it.

2 Active Defense

Imagine a network where there are N hosts with a particular set of vulnerabil-
ities, and then a worm is released that is able to exploit one or more of these.
We suppose that a host infected by this worm scans the network looking for
vulnerable hosts it may infect. We assume that a scan consists of a random
selection of an IP address— if that host is susceptible and uninfected it im-
mediately becomes infected. In our discrete model we assume that the address
selection is oblivious to the state of the network. This means that non-uniform
random scanning can be accommodated in the model, so long as the sampling
is not affected by any knowledge of other hosts, infected or not. This does not
preclude the sort of stratified sampling seen in some worms (where hosts “closer”
to the infected one are sampled with higher probability), but it does preclude a
dynamic partitioning of the search space based on coordination among infected
hosts. We assume a random delay of time between successive scans from a host,
once again assuming that the sampling is independent of network state.

Under these assumptions we can picture the behavior of a worm on a time-
line populated with scan events. Each scan event has a source and destination
identity. Each of the susceptible hosts has a state of uninfected, or infected. A
scan event that has an uninfected host as destination changes that host’s state,
and thereafter it contributes to the scanning. (It is straightforward to augment
the model to account for latency between when a scan is sent and when it is
received, we have not done so for simplicity of exposition).

2.1 Defense Capabilities

At time 0 the worm is launched from w0 of the N susceptible hosts. Each in-
fected host scans the network using a randomized strategy that is oblivious to
the network state. We assume that the worm immediately inhibits further pen-
etration through the same vulnerability, but that a counter-worm scanning it
can recognize the presence of the worm, (e.g. through observation of banner in-
formation that the host’s software returns, revealing a version and build that
admits penetration through the known vulnerability).

We envision a model of active defense as follows. At time T0 > 0, some I0

hosts begin executing an active defense. Each of those hosts scans, using a strat-
egy (probably, but not necessarily random) that is oblivious to the network state.
Whenever one of these scans targets a susceptible but uninfected host, that host
becomes (instantly!) patched to prevent infection from the worm. We call this a
simple patch defense. This defense (and all the others we consider) presumes
that the defensive mechanism was prepared before the worm was launched. So-
called 0-day attacks, ones that exploit previously unknown exploits, are fairly
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rare. The vulnerabilities that worms exploit are more typically announced when
discovered, often with patches available. More often than not the patch code re-
veals details worm writers use to target as-yet unpatched systems. It is not unrea-
sonable to suppose then that patching defense code could be crafted along with
the patch. A reason for not releasing the patching defense in anticipation of a
worm is that the release would contain the code to exploit the vulnerability, with
no work or further cleverness needed by a worm-writer. A patching defense must
be coupled with a worm-detection mechanism, such as those proposed in [5,13].

One could increase the presence of the active defense by increasing the num-
ber of hosts running the patching logic. So we define a spreading patch defense
as one where, when an uninfected susceptible host is scanned, it is endowed with
a counter-worm that both patches, and scans. While the number of patching
hosts remains constant in a simple patching defense, it grows in a spreading
patch defense. Such a mechanism has been seen in the wild [4].

A third presumed defensive capability is worm suppression. Suppose that
when a patching host scans an infected host it is able to identify the host
as infected, and to suppress the infecting scans from being seen elsewhere,
thereafter—it is able to nullify the infected host. For example, the spreading-
patch worm might have an ability to cause the infection traffic to be filtered
by a nearby router; another way might be if every machine in an organization
had a “lock”, such that when the proper “key” is applied, some or all of that
machine’s external communication is inhibited—an organization’s active defense
posture would include selective suppression of machines thought to be infected.
For our purposes, the important thing is that the infected host be discovered by
a scan, and that thereafter it is no longer a source of infection. We call this a
nullifying defense.

A fourth presumed defensive capability takes advantage of the fact that some
attacks are complex enough to require that the attacking host use its legitimate
IP address as source in its packets (and we may anticipate that in the future
the ability to spoof source addresses will become much diminished, through
more active router verification procedures). Because of this, a patching host that
receives a scan from an infected host could turn around and nullify the infection.
In this sniper defense one expects that infected hosts diminish in number faster
than when they are discovered merely by scans.

2.2 Metrics

There are different ways of assessing an active defense. When host integrity is
paramount, then an appropriate metric is the number of hosts infected by the
worm. We define I(D, t) to be the cumulative number of hosts infected by time t
under defense D. This metric is a random variables; we will say that Di is more
powerful than Dj if for all t > 0 and n > 0,

Pr{I(Di, t) > n} ≤ Pr{I(Dj, t) > n}.
When this relationship holds we say that the distribution (with respect to ran-
domness due to sampling) of I(Dj , t) is stochastically larger than I(Di, t)[9],
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denoted I(Dj , t) ≥st I(Di, t). Di is more powerful in the sense that it does a
better job at preventing susceptible hosts from becoming infected. This stochas-
tic ordering is strong in its implications. It is known that if X ≥st Y and f is
any increasing function, then E[f(X)] ≥ E[f(Y )]. This has bearing then for any
system metric that depends monotonically on infection counts, e.g., the prob-
ability of system failure would likely be monotone increasing in the number of
infected hosts.

An active defense may increase the overall scanning activity on the network,
and there is evidence that intense scanning can harm the network [2]. When net-
work health is the principle concern, then measures of scanning history, and/or
scanning intensity are appropriate. If λ(D, t) denotes the scanning rate due to
both worm and defense D, then we assess a defense in terms of its peak scanning
rates over some interval [0, t]:

max
0<s<t

{λ(D, s)}

We might also assess it through its aggregate scanning rates (the space-time
product) over some interval [0, t]:∫ t

0

λ(D, s) ds.

3 Ordering of Defenses

Intuition suggests that the four active defensives (five, if we include the empty
defense) we’ve outlined might be ordered in terms of power. We now show that
this is exactly the case. In the comparisons made, we use the Common Sample
Path assumption, that once a host is infected (or takes on the counter-worm), its
scanning behavior is completely determined by a random number stream that
is independent of any other. When we compare two defenses, we assume that a
host uses that same stream in both systems, which allows us to compare the two
systems on commonly constructed sample paths. The implication is that once
a host is infected (or starts to run a counter-worm), its sequence of inter-scan
delays are the same in both systems, and the pattern of hosts scanned are the
same in both systems. Thus, if the two systems cause a host to be infected at the
same instant, on the sample paths being compared that host will scan exactly
the hosts at exactly the same time, in both systems.

The results to follow are based on a construction we call the Sample Path
Graph (SPG). For every susceptible host hi let Ii be a sequence of pairs (ti, dsti)
identifying the time since the host started infection scanning, and a destination
dsti of a scan. Ii is ordered by increasing values of ti. We define Ci similarly,
describing the scanning pattern once a host starts running a counter-worm. We
construct a graph whose nodes represent hosts that are assumed to be infected
already at time 0 (and which have scanning sequences), nodes representing hosts
that eventually start counter-worm scans (with their own scanning sequences),
and susceptible hosts. The graph contains a directed edge for every potential
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scan described in the sets {Ii} and {Ci} whose target was susceptible at time
0. The edge is directed from the source of the scan to the target; an edge will
be called an infection edge or countering edge, depending on whether it comes
from an infection or counter-worm sequence, respectively. The node for host hi

will have values S(hi) recording the earliest time it was scanned by an infected
host, and C(hi) recording the earliest time it was scanned by a host running a
counter-worm. Some of the edges are labeled with the time of the scan—these
edges are particularly important in our analysis. The values of S(hi) and C(hi),
the edges labeled and the values of those labels all depend on the particular
defense. However, common to those defenses are the following rules:

– All hosts assumed to be already infected at time 0 label each of their edges
with the corresponding scan time;

– all hosts that are used to start the counter-worm label each of their edges
with T0 plus the corresponding scan time offset contained in the scan se-
quence.

The differences between different defense’s SPGs are characterized as follows:

Empty Defense (D0)

1. The node for host hi defines S(hi) to be the smallest label among all labeled
infection edges directed to it; S(hi) =∞ if no such edge exists.

2. A host hi labels the infection edge corresponding to the jth element of Ii

(say, (sj , dstj)) with value S(hi) + sj , j = 1, 2, · · ·.
The difference between the simple patch defense and the empty defense is

that susceptible hosts are protected from infection if they are touched by a
countering scan before being touched by an infection scan.

Simple Patch (D1)

1. Item (1) from the Empty Defense rules.
2. The node for host hi defines C(hi) to be the smallest label among all labeled

countering edges directed to it; C(hi) =∞ if no such edge exists.
3. If S(hi) < C(hi) the node labels the infection edge corresponding to the jth

element of Ii (say, (sj , dstj)) with value S(hi) + sj , j = 1, 2, · · ·.
4. If C(hi) < S(hi) the node does not label any of its edges.

The difference between a spreading patch defense and a simple patch one is
that a host that receives a countering scan before any infection scan becomes
host to counter-worm software, and generates its own countering scans.

Spreading Patch (D2)

1. Items (1) from the Empty Defense rules, (2), and (3) from the Simple Patch
rules.

2. If C(hi) < S(hi) the node labels the countering edge corresponding to the
jth element of Ci (say, (sj , dstj)) with value C(hi) + sj, j = 1, 2, · · ·.
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The difference between a nullifying defense and a spreading patch defense
is that when a countering scan reaches a host that is already sending infection
scans, the infection scans stop.

Nullifying Defense (D3)

1. Item (1) from the Empty Defense rules, item (2) from the Simple Patch
rules, and item (2) from the spreading patch rules.

2. If S(hi) < C(hi) the node labels the infection edge corresponding to the
jth element of Ci (say, (sj , dstj)) with value C(hi) + sj, for all j such that
S(hi) + sj ≤ C(hi).

And finally, the difference between a sniper defense and a nullifying defense
is that infection scans that encounter hosts running countering scans cause the
host sending the infection scan to cease. This may occur before the host is itself
scanned by a countering scan (which has the same nullifying effect).

Sniper Defense (D4)

1. Item (1) from Empty Defense rules, item (2) from the Simple Patch rules,
item (2) from the Spreading Patch rules.

2. If S(hi) < C(hi), let k be the smallest index for (sk, dstk) ∈ Ii such that
S(hi)+sk > C(dstk), and define Ki = S(hi)+sk. The node for hi labels the
infection edge corresponding to the jth element of Ci (say, (sj , dstj)) with
value C(hi) + sj , for all j such that S(hi) + sj ≤ min{C(hi), Ki}.
The construction above make the conditions under which a given infection

edge is labeled increasingly restrictive, as we move through sequence of defenses.
This implies that if we choose a host hi and defenses Da and Db with a < b,
then the set of labeled incoming infection edges it has in the SPG for Db is a
subset of the labeled incoming infection edges it has in the SPG for Da. This
fact enables us to prove the central results comparing different defenses.

Lemma 1. Consider two defenses Da and Db, a < b, under identical boundary
conditions. Let Ga and Gb be corresponding Sample Path Graphs constructed
under the Common Sample Path assumption, and let S(y)(h) and C(y)(h) denote
the S(h) and C(h) variables for host h under defense y ∈ {a, b}. Then for every
host h, S(a)(h) ≤ S(b)(h) and C(b)(h) ≤ C(a)(h).

Proof. Without loss of generality renumber the hosts by increasing value of
S(b)(h), we induct on this order. Consider the base case of h0. Both S(a)(h0)
and S(b)(h0) are defined by edges from hosts assumed to be infected at time 0,
and are thus identical. In both Ga and Gb host h0 gets the same set of labeled
countering edges from the initial set of hosts running the defense, and C(h0) in
both graphs is no larger than the smallest of these labels. However, in Gb there
may be more countering edges labeled, and hence the possibility of a shorter
path to h0 through those edges, whence C(b)(h0) ≤ C(a)(h0) and the induction
base is established. For the induction hypothesis we assume that the assertion
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is true for all hosts h0, h1, . . . , hn−1 for some n, and consider host hn. Let e
be the labeled infection edge coming into hn whose label defines S(b)(hn), and
consider its manifestation e′ in Ga. By the construction of SPG’s, an infection
edge may appear labeled in the SPG of one defense Du and not another Dv if
its target hy has a smaller value C(hy) in Gv than in Gu, or if Gv is nullifying
and scans a countering host. In all cases the only way a labeled edge appears in
Gu and not Gv is when u < v. Consequently e′ appears labeled in Ga. This in
turn implies that the node hm from which e′ is directed satisfies m < n, as it is
directed from the same node in both Ga and Gb. By the induction hypothesis
S(a)(hm) ≤ S(b)(hm), which implies that the label on e′ is no larger than the
label on e, and thus, that S(a)(hn) ≤ S(b)(hn). A similar argument shows that
the labeled countering edge g which defines C(a)(hn) (when this exists) has a
labeled counter-part g′ in C(b)(hn), whose label is no larger in Gb than it is in
Ga, and thus that C(b)(hn) ≤ C(a)(hn). This completes the induction. ��

From this result comes the main result.

Theorem 1. For defense Di and every time t, let I(Di, t) denote the number
of hosts infected by time t (including those that later become nullified). Then for
a < b, I(Da, t) ≥st I(Db, t) for every t ≥ 0.

Proof. Lemma 1 shows that for any sample path of scans and every time t, the
number of hosts h with S(a)(h) ≤ t is greater than or equal to the number of
hosts h with S(b)(h) ≤ t. For any sample path these counts define the random
variables I(Da, t) and I(Db, t). Coupling results in [9] establish the result. ��

These results show that the difference between defenses is structural, and
strong. The results are very general, free of distributional assumptions other
than independent of sampling from network state. However, they don’t give
much insight into how well these defenses perform.

There is one exception, in the special case where the counter-worm has the
same scanning characteristics as the worm. Then we may assume that whenever
a host is entered either by a worm, or a counter-worm, its pattern of scans (inter-
scan delays, sequence of targets scanned) is the same under any defense. From
the point of view of the same path analysis we’ve done, it means that whenever a
node is triggered to scan we may assume it does so with exactly the same pattern
regardless of if that is an infection or countering scan. This means that any host
that scans in an empty defense also does so in a spreading patch defense, only
possibly earlier (if the scan is a countering scan).

These observations establish the theorem.

Theorem 2. Suppose that the scanning structure of the counter-worm is iden-
tical to the worm. For every time t let λ(D0, t) and λ(D2, t) denote the instan-
taneous number of hosts scanning under the empty defense and spreading patch
defense, respectively. Then for every t, λ(D2, t) ≥st λ(D0, t).

This theorem is a strong statement about a condition when adding defense is
worse, from the point of view of the network. Increasing functions of λ(D, t) in-
clude the peak number of hosts scanning over an interval, the space-time product
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of the bandwidth devoted to scanning, the probability of network partition, and
so on. The stochastic ordering asserts that the expectation of each of these is
larger when we use a spreading patch defense than when we use no defense at
all.

4 Epidemic Models

We use a style of modeling based on well known models from the epidemic mod-
eling literature. In typical simple epidemic models we consider a fixed population
of N , where each individual is susceptible to infection, and each individual will,
at any given time, be in one of a small set of predefined states. For instance, in
the simple epidemic model [3] (aka the SI model and equivalent to the logistic
equation) an individual is either in state S (susceptible to infection) or I (in-
fected). We denote by s(t) and i(t) the number of individuals in state S and I
respectively at time t, and thus ∀t, s(t)+i(t) = N . For large enough populations,
the mean rate of state changes S → I can be modeled as:

ds(t)
dt

= −βs(t)i(t)

di(t)
dt

= βs(t)i(t)

where the constant β is the infection parameter, i.e. the pairwise rate of infection.
β reflects the aggregate scanning rate of an infected host, as well as the mean
probability of selecting a given address for an individual probe attempt. The
system boundary conditions are given by the number of initially susceptible
hosts s(0) and initially infected hosts i(0). This model rests on assumptions of
homogeneous mixing, which correspond well to a uniformly random scanning
worm spreading freely through a network, so in the following we will refer to
this the Random Scanning Worm Model.

Other scanning strategies are possible. For instance, worms such as Code
Red II, Nimda, Blaster, and Welchia utilized preferential (rather than uniform)
scanning techniques where addresses close in the address space to the scanning
host’s would be probed with higher probability. Other suggested possibilities
include a “Divide-and-Conquer” approach to probing the address space (see
“partitioned permutation scan” in [11]). Here each worm is assigned a disjoint
fraction of the address space to probe.

Other simple tricks for speeding up the propagation have been suggested,
such as the use of pre-compiled hit-lists or using inter-domain routing tables
to only scan routed space [14]. We can incorporate these into our framework;
hit-listed hosts can be made to be infected as a boundary condition, and use
of routing tables just increases β to reflect that the scanning is over a smaller
address space.

The early stage of infection is the most critical time for any counter-measures
to be effective. Since the worms behave similarly in the early stages we will, in
the following, focus on random scanning worms as this is the type of worm that
has been observed in the wild to date.
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In [7], Moore et al. note that when considering the effectiveness of defensive
measures, it is preferable to consider the quantiles of infection rather than the
mean number of infections due to the variability inherent in the early stages
of infection growth. However, we prefer to use these mean-value based models,
because they lend themselves to analysis in a way that stochastic simulations do
not. Moreover, we are mainly concerned with the relative performance of different
defenses as we compare them, and we believe that the relative performance can
be credibly determined in terms of the mean, even though the predicted mean
absolute performance should be viewed with caution.

The simple epidemic model we study is suitable only in contexts where the
worm scanning is unaffected by the network topology. This assumption is fine
for worms whose mass and scan rates aren’t constrained by bandwidth (as was
the case with Code Red, and others), but is not acceptable when network con-
straints hinder worm growth. In related work we are exploring how to incorporate
network constraints into efficient simulation of worm dynamics [8].

4.1 Spreading Patch Counter-Worm

Consider the spreading patch counter-worm model discussed earlier, and assume
that it uses the same vulnerability and propagation strategy as the original worm.
Under these assumptions the second worm will spread at (approximately) the
same rate as the original worm, seeking the same susceptible population of hosts.
A simple model is:

ds(t)
dt

= −βs(t)(ib(t) + ig(t))

dib(t)
dt

= βs(t)ib(t)

dig(t)
dt

= βs(t)ig(t)

where ib refers to infections by the malicious (bad) worm and ig refers to infec-
tions by the spreading-patch (good) worm. Given β and ib(0), system behavior
is governed by the time T0 at which spreading-patch worms are released, and
the number of worms I0 released then. We assume that the spreading-patch
worms are launched on “friendly” machines that are not part of the susceptible
or infected set.

Spreading-patch worm effectiveness as a function of response time and initial
population is shown in Figure 1. An effective response requires a combination of
low response time and a sufficiently large initial population. Launching a single
counter-worm has little effect, and the window of opportunity for launching even
a thousand spreading-patch worms disappears after a couple of hours.

At T0, ib(T0) hosts have succumbed to the original worm and there are s(T0)
remaining susceptibles. How many spreading-patch worms must be launched to
protect a given fraction fraction p of those remaining susceptibles? If we consider
the fraction of infection growth due to the spreading-patch worm

dig(t)/dt

dig(t)/dt + dib(t)/dt
=

ig(t)
ig(t) + ib(t)
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Fig. 1. Effectiveness of spreading-patch worm as a function of response time and initial
counter-worm population

we see that since the propagation rates are the same, the proportions of the
susceptible population consumed by each worm from T0 onwards simply corre-
spond to their proportion of the population at T0. Thus, ultimately the fraction
of hosts which were susceptible at T0, but eventually are patched is

p =
I0

I0 + ib(T0)
.

Solving for I0 we get

I0 =
(

p

1− p

)
· ib(T0) (1)

Thus, the fraction of all susceptibles s(0) that will be protected is

p̃ =
p · s(T0)

s(0)
=

p[s(0)− ib(T0)]
s(0)

= p

(
1− ib(T0)

s(0)

)
If the infection is caught early on, then ib(T0)� s(0), and the protected fraction
p̃ ≈ p. Thus, equation (1) can be used as a guideline for selecting I0 given only an
estimate of how many hosts have been infected at the time of response (ib(T0)),
assuming that the response occurs early. Such an estimate can reasonably be
obtained by analysis of observed scanning behavior.
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The spreading-patch worm model considered here assumes only that it scans
at the same rate as the original worm. It does not assume any information
about the malicious worm and its behavior. As worms to date have exploited
vulnerabilities that were previously known, it is not unreasonable to suppose
that a patching worm might be developed when the vulnerability is identified
(but before it is announced), against the possibility of needing to use it. Such
a worm would not be launched before needed, because it could be captured
and analyzed for the means to exploit the vulnerability. However, the fact that
the spreading-patch worm has higher impact on the network (Theorem 2) than
no defense at all encourages us to explore counter-worms that have stronger
capabilities in worm identification and suppression, with smaller impact on the
network.

4.2 Nullifying Defense

Next we develop a continuous model of the nullifying defense. Using notation
similar to that for the spreading patch defense, we develop state equations

ds(t)
dt

= −βs(t)(ib(t) + ig(t))

dib(t)
dt

= βs(t)ib(t)− βib(t)ig(t)

dig(t)
dt

= βs(t)ig(t)

Here we see a new component to (dib(t)/dt), the subtraction of hosts due to
being scanned by the counter-worm.

Under our assumptions, in the limit of increasing time t, the aggregate scan
rate under the spreading patch defense is proportional to the number of “out-
side” spreading-patch hosts I0 plus the initial susceptible population size s(0)—
eventually every susceptible host is running either the worm, or the counter-
worm. However, in the case of nullifying worms, the aggregate peak scan rate
may be smaller than the aggregate peak scan rate of the unfettered worm.

Theorem 3. Suppose that I0 initial nullifying worms are released at time T0. If
I0 ≤ ib(T0), then the aggregate peak scan rate using the nullifying worm is less
than the peak scan rate of the unfettered worm.

Proof. Let in(t) be the aggregate number of infected hosts that a nullifying
defense has identified and contained by time t, and let e(t) be the number of
formerly susceptible hosts that have been “enlisted” to run the nullifying worm.
At any time t the aggregate scan rate of a defense is proportional to ib(t)+ig(t) =
ib(t) + I0 + e(t). From the invariant s(0) = s(t) + ib(t) + in(t) + e(t) we replace
e(t) in the scan rate expression to see that the scan rate at t is proportional to
I0 + s(0)− s(t)− in(t). The maximum value of this term will always be less than
s(0) if I0 < s(t)+in(t) for all t. Examination of derivatives shows that s(t)+in(t)
is monotone decreasing, hence its lowest value is the asymptotic value of in(t),
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say, N = limt→∞ in(t). By assumption I0 ≤ ib(T0), and clearly ib(T0) < N . The
conclusion follows immediately. ��

It is interesting to compare this result—which says if one limits the initial
infection of the counter-worm you can bound the peak scan rate from above,
with the spreading-patch defense results which turn these inequalities around.
With the spreading-patch defense a minimum size of the release needs to be
I0 > ib(T0) to give it enough mass to overtake the original worm. But because
the nullifying worm fights by decreasing the number of scanning worms, it gets
by with a smaller initial counter-worm population.

Another capability a nullifying defense could have is that it stop all defensive
scanning, upon centralized command. This would help mitigate against over-
whelming the network with scans from the defenses (a characteristic reported of
the counter-worms seen in the wild). Denote the defensive worm stopping time
by ts. The modified state equations after time ts are

ds(t)
dt

= −βs(t)ib(t) (2)

dib(t)
dt

= βs(t)ib(t) (3)

dig(t)
dt

= 0 (4)

Figure 2 illustrates the evolution of system state where the nullifying defense is
propagating without stopping. Also shown, is the resulting peak total population
(directly related to peak bandwidth in our model) as a function of stopping
time ts. Taking the time at which the defensive worms are stopped as a control
parameter, we see that the minimized peak scan rate obtained by optimally
selecting the stopping time is no larger than the peak scan rate if the defenses
are never turned off. This capability can only improve the peak scan rate over
that of the earlier nullifying defense we considered.

For t < ts the scan rate is proportional to ib(t) + ig(t); the peak scan rate
achieved after ts is proportional to ib(ts) + s(ts), for the original worm will
eventually infect all hosts left unprotected once we stop the defensive scans.
Examination of derivatives shows that

d(ib(t) + ig(t))
dt

= β (ib(t)(s(t) − ig(t)) + s(t)ig(t))

which we observe is positive at least as long as s(t) ≥ ig(t). Likewise, derivatives
show that ib(t) + s(t) is a decreasing function :

d(ib(t) + s(t))
dt

= −βig(t)(ib(t) + s(t)).

If the nullifying defense scans are stopped at ts with s(ts) ≥ ig(ts) we are
assured that the peak scanning rate of the system is

max{ib(ts) + ig(ts), ib(ts) + s(ts)}.
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of when it is switched off

So long as the first argument is increasing and the second argument is decreasing,
the stopping time that minimizes the maximum occurs when the arguments are
equal, e.g., when ig(t) = s(t); since ib(t) + ig(t) is still monotone at this point,
ts minimizing the peak aggregate scanning rate satisfies ig(ts) = s(ts).

We are in a position now to quantify the performance of a defensive worm. We
can show that the minimal peak number of hosts scanning is at least (1/3)(s(0)+
I0), provided that I0 ≥ ib(T0), a result which we state formally.

Theorem 4. Consider a nullifying defense that is launched at time T0 with
I0 ≥ ib(T0) initial instances, and whose scans can be stopped on command. The
stopping time ts which minimizes peak scanning is the unique solution to ig(ts) =
s(ts). A lower bound on the peak number of hosts scanning is (1/3)(s(0) + I0).

Proof. We first note that under the assumption I0 = ig(T0) > ib(T0), that
ig(t) ≥ ib(t) for all t ≥ T0. This is a result of both the worm and the counter-
worm competing for exactly the same pool of susceptible hosts—at the same rate
(per host)—with the counter-worm starting with at least as many hosts as are
in the infection at the time the counter-worm is released. A consequence is that
the time ts when s(ts) = ig(ts) occurs before the time tb that s(tb) = ib(tb). This
fact turns out to be important as we ask for conditions under which ig(t) ≥ in(t),
where in(t) is the number of infected hosts that have been nullified. We know
that ig(T0) > in(T0); analysis of the derivative of ig(t) − in(t) shows that this
difference grows so long as s(t) ≥ ib(t)—a condition which can only occur after
the stopping time ts. Finally, we note the invariant
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ib(t) + ig(t) + in(t) + s(t) = s(0) + I0.

At the stopping time, s(ts) = ig(ts), and ig(ts) > in(ts), whence

ib(ts) + 3ig(ts) > s(0) + I0.

It follows that ib(ts) + ig(ts) > (1/3)(s(0) + I0). ��
We see that under the theorem’s assumptions, the capabilities nullifying de-

fensives have over spreading-patch defenses (suppress an infected host’s scans,
stop the “good worm” scanning) serve to give it greater power, but the peak num-
ber of hosts scanning (both worm and counter-worm) is still at least one third
of the initial susceptible population. It should be noted that this result depends
signficantly on an assumption that the counter-worm’s scan rate is identical to
the worm’s. We are exploring the consequences of relaxing this assumption, as
well as pushing on looking for ways of countering worms with increasing power,
while reducing the impact on the network.

5 Conclusions

This paper studies active defenses against Internet worms. We use discrete and
continuous mathematical models to study a hierarchy of worm fighting capabil-
ities. We are able to prove a number of results about these models, including

– strong stochastic ordering of infection counts in a hierarchy of five defense
types;

– that a simple counter-worm defense has a stochastically larger aggregate
scanning intensity than does the unfettered worm;

– that by starting a defense with enough outside hosts scanning to implant
counter-worms, any desired fraction of the remaining susceptible hosts can
be protected from a worm;

– that by starting a nullifying defense with few enough outside hosts, the peak
scanning intensity is less than the unfettered worm;

– even when peak scanning time is minimized under the nullifying defense, it
is still the case that the peak number of hosts scanning is at least 1/3 of the
total number of susceptibles;

There is much work yet to be done. This paper does not address the very
significant problem of quickly and automatically detecting when a worm attack
has been launched—we have looked only at the relative effectiveness of measures
put into place after the detection. Our experiments of effectiveness of defense as
a function of response time (Figure 1) show that rapid detection is absolutely
critical.
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Abstract. This paper describes a novel approach for preventative protection 
from both known and previously unknown malicious executable codes. It does 
not rely on screening the code for signatures of known viruses, but instead it 
detects attempts of the executable code in question to self-replicate during run 
time. Self-replication is the common feather of most malicious codes, allowing 
them to maximize their impact. This approach is an extension of the earlier 
developed method for detecting previously unknown viruses in script based 
computer codes. The paper presents a software tool implementing this 
technique for behavior-based run-time detection and suspension of self-
replicating functionality in executable codes for Microsoft Windows operating 
systems. 

1   Introduction 

Due to its high interconnectivity, global dimensions and very large number of entry 
points, the Internet is increasingly vulnerable to information attacks of escalating 
sophistication. Any biological system, being gigantic in terms of complexity, 
interconnectivity and number of entry points, is also vulnerable to sabotage by foreign 
microorganisms, which are, in many ways, similar to information attacks. The 
proliferation of biological systems in spite of these attacks can be explained by their 
very effective defense mechanisms capable of the detection, identification, and 
destruction of most foreign entities that could have an adverse effect on the system. 
The ability of immune mechanisms to reliably differentiate between “self” and “non-
self” at the protein level inspired the authors to utilize the concepts of genetic 
composition and genetically-programmed behavior as the basis for the development 
of a novel approach to the detection of malicious software [1].  

Most information attacks are carried out via Internet transmission of files that 
contain the code of a computer virus or worm. Upon receipt, the target computer 
executes the malicious code resulting in the reproduction of the virus or worm and the 
delivery of its potentially destructive payload. Self-replication, which is uncommon in 
legitimate programs, is vital to the spread of computer viruses and worms allowing 
them to create computer epidemics thus maximizing the effectiveness of the attack. 
As with any function, self-replication is programmed; the sequence of operations 
resulting in the self-replication is present in the computer code of the virus. The 
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implementation of the function of self-replication is not unique; there is more than 
one sequence of operations that can perform this task. Moreover, it is expected that 
these sequences are dispersed throughout the entire body of the code and cannot be 
detected as an explicit pattern. While self-replication can be achieved in a number of 
different ways, this number is definitely finite. Consequently, developers of new 
malicious codes are destined to utilize the same self-replication techniques again and 
again. 

Previously we developed the computer virus detection system based on these 
principles [2], [3]. This system is able to detect the gene of self-replication (GSR) in 
most script viruses written in Visual Basic, Java and other high-level script languages. 
However, there was still a large family of viruses that could not be successfully 
detected by this technique, as it was unable to deal with regular and, especially, 
encrypted compiled executable code. While the same principle could still be 
instrumental, its different implementation had to be developed for extracting self-
replication sequences from such viruses. The technology presented herein is 
applicable to the most common and difficult, in terms of detection, computer viruses 
and worms which are represented by an already compiled, often encrypted, executable 
code; the detection is conducted at run-time during normal code execution under 
regular conditions by monitoring the behavior of every process with regards to the 
operating system’s system calls, their input and output arguments and the result of 
their execution. Unlike existing antivirus software, this methodology facilitates 
preventative protection from both known and previously unknown attacks.  

The authors do realize that a very sophisticated attacker can further modify the 
self-replication mechanism and are prepared to face the next step in the ever-
escalating “arms race”. 

2   Background 

Modern computers are designed for a wide variety of purposes, frequently to be 
accommodated by a single machine. Allowing for such unification and scalability 
requires an increasingly complex computer software and hardware infrastructure. 
Currently, this infrastructure is facilitated by a computer operating system, which 
abstracts details of the hardware from application software. Applications (programs) 
interface with the operating system through the Kernel Application Programming 
Interface, or system calls. Therefore, system calls do play a major role in the 
interaction between the software and the operating system characterizing the behavior 
of both malicious and legitimate computer programs. 

Unlike legitimate programs, malicious software performs operations that adversely 
affect various hardware/software system components. There are a vast number of 
operations that can be considered malicious and generally speaking, could be detected 
within the sequence of system calls. However, the sequence of system calls produced 
by an application can be huge and the malicious operation can be dispersed 
throughout the sequence, making run-time detection a non-trivial task. Self-
replication is a function common to the most insidious malicious programs, including 
all viruses and worms that cause computer epidemics maximizing the impact of an 
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information attack. Thus, the search for malicious programs can be narrowed to the 
search for self-replication activity in the sequences of system calls.  

The concept of detecting the GSR is generic in its nature; therefore it can be 
applied to any computer system without necessarily binding it to a specific operating 
system. The remainder of this paper deals specifically with the Microsoft Windows® 
operating system, but the basic principles can be applied to any operating system on 
any computer hardware platform. 

When dealing with system calls in Windows® kernel, it is important to realize that 
a system call by itself is a rather complicated entity. Apart from the call to a specific 
interface there are also many important parameters passed, such as the origin of the 
system call (process and thread identifiers), control flags, input arguments, data 
structures, output parameters and the result of call execution. All of these parameters 
must be taken into consideration for the detection of self-replication activity. 

3   Definition of the Gene of Self-replication 

The GSR is viewed as a specific sequence of commands passed to the computer 
operating system by certain program code that causes this code to replicate itself 
through the system or multiple systems. Replication can be accomplished in several 
ways depending on a particular computer system as well as the software the system is 
running. For example, computer viruses designed for the Microsoft DOS® operating 
system utilized direct access to hardware for this purpose. With the widespread 
introduction of microprocessors that allowed for different privilege level accesses, 
and operating systems supporting and enforcing these access levels facilitated new 
methods of self-replication. Computer viruses began employing different software 
APIs, from hijacking a simple email client API to interfacing very complex OS. 
Nevertheless, the most sophisticated and versatile viruses are still implemented in 
assembly language (ASM) and assembled into executable files. Since computer 
viruses are expected to self-replicate and this task cannot be accomplished without 
interfacing the operating system, monitoring and analyzing system calls to certain OS 
APIs provides the means for the detection of this common feature of malicious 
software.  

3.1   GSR Structure 

Virtually every process running in the system produces system calls; however they 
are not mixed and can easily be differentiated for every process and thread. In all 
cases, system calls, generated at run time, represent a direct time line sequence of 
events, which can be analyzed during the execution. For any given process, this 
sequence can be large or relatively small depending on what system resources it is 
trying to access. The GSR is contained within the sequence produced by a malicious 
process and it could be dispersed throughout that sequence. 

Since none of the system calls alone can be considered malicious, only the 
particular sub-sequences of calls can form the GSR. As per [3], the GSR is described 
using the concept of building blocks, where each block performs a part of the chosen 
self-replication procedure. This concept is illustrated in Fig. 1. Most of the building 
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blocks involved in malicious self-replication activity can individually be performed 
by any piece software for a variety of legitimate reasons. Only when integrated into 
larger structures and based on their inter-functional relationships, these building 
blocks are indicative of attempts to self-replicate. 

The GSR can be composed of such blocks in various ways. Therefore its structure 
can be viewed as a regular sentence being built up by concatenating phrases, where 
phrases are built up by concatenating words, and words are built up by concatenating 
characters.  

One of the major reasons for applying such a syntactic approach to describing the 
GSR is to facilitate the recognition of sub-patterns. This implies the recognition of 
smaller building blocks first, establishing their relevance and contribution to the 
replication, and then considering the next sub-pattern. This process is consistent with 
text analysis, which includes recognizing characters first, then concatenating them 
into words, running a spell checker on an entire word to check for mistakes, then 
continue concatenating words into phrases and sentences checking for correct 
grammar and punctuation. The syntactic description of the GSR provides a capability 
for describing and detecting large sets of complex patterns by using small subsets of 
simple pattern primitives. It is also possible to apply such a description any number of 
times to express the basic structures of a number of gene mutations in a very compact 
way.  

Following the concept of syntactic description the GSR structure could be 
represented using the grammar definition notations [4]: 

{ }SPVVG TN ,,,=  (1) 

where, 
 G  - gene of self-replication 

 NV  - non-terminal variable 

 TV  - terminal variable 

 P  - finite set of rules 
 S  - starting point of the gene 
Assuming, that the GSR is represented by the pyramidal structure (Fig.1), the non-

terminal variable NV  in the expression above can be expressed as: 

=

ll_System_CaWrite_File

,alle_System_CCreate_Fil,lSystem_CalOpen_File_,lSystem_CalDirectory_

,lockFile_Copy_,kearch_BlocFile_,tionlf_replicaGene_of_se

VN

BS
 

(2) 

The terminal variable TV  represents the GSR sequence: 

{ }(...)(...),(...),(...), eZwWriteFilleZwCreateFiZwOpenFileectoryFileZwQueryDirVT =
 

(3) 
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Fig. 1. GSP pyramidal structure 

The sum of NV  and TV  forms the complete vocabulary TN VVGV ∪=)( , and 

the intersection of NV  and TV  is indeed an empty set, Ο=∩ TN VV . 

The set of rules P  is expressed as βα → , where α  and β  interconnections in 

V so that α  involves at least one simplest block in NV . 

Finally, NVS ∈  represents the starting point in NV , which corresponds to the 

tionlf_replicaGene_of_se  in the structure above. 

3.2   Details 

In spite of the apparent simplicity of the above structure, in order to accurately 
describe the GSR the relations between different blocks and system calls could be 
very complex. Our research shows that in some cases, the margin between malicious 
activity and normal behavior is quite narrow and the differentiation requires fine-
tuning of inter-functional relations.  

Normally, a single system call has a unique CID that identifies it to the kernel, a 
number of input arguments, a number of output arguments to be generated upon 
completion of the system call execution, and the indicator of the result of the 
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execution. Also, every system call carries IDs of the process (PID) and the thread 
(TID) from where the call has been originated. The structure of the system call is 
depicted below: 

PID TID CID  Input Arguments  Output Arguments Result 

Input arguments, as well as output arguments may include any data structures, 
allowed by the system, such as numerical values, flags, object handles, and data 
strings. Some of these arguments indicate direct relations among different system 
calls that could be utilized to bind system calls together to define the GSR. The 
following is an example of binding two system calls together by their arguments to 
form a single building block of the GSR: 

 

Fig. 2. GSR Building Block Internal Structure 

In this case, “Data Write Block” is derived from two basic system calls 
ZwCreateFile and ZwWriteFile. The unit is responsible for writing specific data into a 
newly created file. System calls inside the block are linked together by several key 
parameters. For this particular block we consider the following three parameters to 
play the key role in identifying the correct pair of block’s internals: 

• Object Name / Path 
• Object Access Flags 
• Object Handle 

The file system operates on files in a number of different ways, but with only a few 
system calls. Therefore, it needs to define strict regulations for every key system call, 
specifying what exactly that system call is expected to do with the file. A number of 
flags are supported by almost every system call; most of these flags are designed to 
specify Access Rights to be applied by the system call onto the target object, the file 
in this particular case. For example, in order to create a file for writing, the “Generic 
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Write” flag has to be set to “HIGH”. There are also several other important flags to be 
set, such as File Attributes Flag “Normal” – specifies an attribute for a newly created 
file to Normal, Share Access “Write” – specifies the limitations on sharing the file, 
File Create Disposition flag defines what to do with the file in case it already exists, 
etc. 

Another important link parameter is the Object Handle. Files, as well as many 
other resources, are considered to be an Object type by the operating system. 
Therefore, every time a process creates a new object, it receives a unique access 
handle, which facilitates fast access to this object within the process and by other 
processes as well. The usage of this handle is obvious, since it is created by a system 
call and it links to an object, any time another system call uses this handle, it is trying 
to gain access to the object, and therefore, the given system calls are related. In the 
case of Data Write Block, ZwCreateFile creates the handle upon completion of the 
call execution. Later, this handle (Handle [File]) is used by another call, ZwWriteFile, 
in order to write data into a file, represented by that handle. 

Finally, when two system calls are properly linked together, the inputs of the first 
system call become the inputs of the entire block, and likewise the block inherits the 
outputs of the last system call. Then, the structure forms one solid block of the 
pyramid with its own inputs and outputs, and is ready to be included as a unit into a 
larger structure. 

While defining connections between different blocks or system calls, it is 
important to realize, that some of the larger blocks, created as a result of this 
combination, are likely to serve legitimate purposes of any regular program. This is 
expected, since computer viruses tend to employ the same kind of techniques for 
accessing operating system infrastructure. However, regular computer programs 
would never call these blocks in a particular order with particular input parameters. At 
the same time, some blocks are very typical for computer viruses. These 
considerations provide the basis for the GSR definition.  

3.3   Detection Mechanism 

Since the GSR structure is defined in terms of sub-patterns similar to the structure of a 
sentence with its phrases, words and characters, the automata theory for text 
recognition is applicable for GSR detection.  

A finite-state machine A  represents a quintuple { }FqQA ,,,, 0δΣ=   

where, 
 Σ  - finite set of simple input blocks 
 Q  - finite set of states 

 δ  - mapping of Q×Σ into 1+nQ  

 0q  - the initial state, such that Qq ∈0   

 F  - set of final states, such that QF ⊆  

According to [4], it is possible to define a finite-state automata 

{ }{ }FSTVVA NT ,,,, δ∪=  with )()( GLAT = , if { }SPVVG TN ,,,= , 
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defined above, is a finite-state GSR expression. Since P  always contains relation rule 
for S when detecting a GSR, the set of final states F contains S , such that 

{ }TSF ,= . Therefore, the finite-state machine can be constructed for GSR 

detection purposes, so that all replication combination that are accepted by the 
automata are, in fact, in the state space of a phrase-structure language defined as 

)(GL . This language is to be generated by the GSR grammar in the following way: 

{ }TVxxGL ∈= |)( , such that xS
G

⎯→⎯ , (4) 

Where, x  is a replication building block, and xS
G

⎯→⎯  implies that x  is 

directly derived by another building block S , such that both x  and S  follow the 

rule P  by yielding 21αωω=S  and 21βωω=x , where βα →  by the 

definition of P . 
A complex computer operating system such as Microsoft Windows XP receives 

hundreds of calls every second from many different processes. Most of the function 
calls, produced by an application in user mode deal with secure objects and hardware 
resources such as File System, Processes and Threads, Graphical System Services, 
System Registry, etc., are transferred into the Kernel mode of the operating system for 
further execution in secure environment. During this process, function calls are 
processed into system calls for unification, compatibility, security and other reasons. 
At the Kernel level, system calls are processed by System Service Dispatcher (SSD) 
and routed to a designated service. The internal structure of system call dispatching is 
even more complex and is not a subject of this paper. 

The Operating System in question provides us with almost no support for 
monitoring its Kernel level for security reasons; therefore such a software monitor has 
to be created. While it is not a trivial task, as it requires very low-level system design 
and implementation, the very basic idea for the monitor is shown in figure 3. 

When Kernel receives a function call from user mode, it has to decide which 
Kernel interface to call to process this function. The API Processing Unit also known 
as System Service Dispatcher (KiSystemService) is responsible for making this 
decision by looking up an appropriate system call handler in its System Service Table 
(SST), which stores handlers to every system call supported by the Kernel, and 
invoking it. However, if the handler to a particular system call in SST is replaced with 
a fake one pointing to other memory location, System Service Dispatcher will simply 
execute a different function at that location. This extra function can be designed to 
gather information about the system call, its parameters and the origin. When all 
needed information is collected, the function calls the original system call and the 
entire system proceeds as usual. 

All system calls, once invoked at the Kernel level, are expected to produce a result, 
whether it was successful or not. This result is represented by the output arguments of 
the system call, as well as the return value that confirms successful execution, or 
indicates errors. All system calls, intercepted by the monitor, appear in two parts: 
system call with input arguments and system call with output arguments. 
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Fig. 3. Functionality of the System Calls Monitor 

Table 1. Typical system call layout 
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Our research shows, that sometimes the information a system call returns as a 
result of its execution is even more important than incoming arguments for the 
purpose of virus detection. Table 1 shows a typical system call layout as it goes 
through our monitor. 

Having the information, observed by the monitor, it is possible to conclude, that 
Thread #1 that belongs to Process #1023 invoked a system call named NtCreateFile 
for the purpose of opening a file named “virus.exe”. Upon completion of call 
execution, the file was successfully opened and a unique handle,56, was assigned for 
further access to that file. 

In order to detect if such a call belongs to any parts of the virus’ self replication, 
we have to consider most of its input and output arguments. While obviously, any 
system call by itself with all possible combinations of input/output arguments cannot 
be considered as a threat, we believe that certain APIs called with certain arguments 
when combined do present a clear pattern of self replication. 

During the GSR detection process, every system call intercepted by our monitor 
comes right into the Replication Detector, where it goes thought a complete range of 
different detection and filtration mechanisms. Following the concept of decoupling of 
Gene definition, presented in the previous part of this paper, the detection process is 
also highly decoupled to ensure compatibility and to reduce false detections. Just like 
the GSR is formed from many different building blocks, the detection mechanism 
observes and makes decisions regarding every block separately, until it finally reaches 
the top of the GPR pyramid structure and declares the alarm state. Below is a brief 
diagram of detection algorithm for a single block: 

 

Fig. 4. Detection Algorithm for abnormal behavior 

As soon as a system call is detected, the History Tracer communicates with the 
database, where the GSP Structure is defined, to determine whether or not this system 
call can be combined with any other lower level blocks to form a larger structure. 
When such combination is possible, the Combiner takes two chosen lower level 
blocks and forms a single upper level block so that its inputs are identical to the inputs 
of the Lower Block taken from the history, and the outputs are inherited from the 
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newly detected Lower Block. When new Upper Block is finally formed, the history is 
updated and the algorithm repeats itself, but with regards to this newly created block. 
At every repetition, the detection is taking place at a higher level, as though climbing 
up the pyramidal structure. 

4   Experiments 

The concept of GSR definition explained earlier requires building a pyramidal 
structure with basic system calls at the bottom, combinations of calls represented by 
Blocks in the middle, and the GSR itself at the top. While usually replication is not a 
very complicated process, it may involve a number of steps, and among them the 
system calls dominate greatly. Therefore, the complexity of GSR definition depends 
on several facts: 

− The number of unique system calls involved. 
− The number of inter-functional relations among system calls. 
− The complexity of inter-functional relations. 

Table 2. Replication schemes for major types of computer viruses 

Replication Type Details Replication Scheme 
Overwriting Virus overwrites an 

existing executable by 
replacing its content 
with the body of the 
virus 

1. Read “Virus.exe” 
2. Open “Host.exe” 
3. Write “Virus.exe” 

into “Host.exe” 
4. Close “Host.exe” 

Companion Virus renames an 
existing executable and 
replaces the original 
with itself 

1. Read “Host.exe” 
name 

2. Rename 
“Host.exe” into 
“Host.ex” 

3. Rename 
“Virus.exe” into 
“Host.exe” 

Parasitic Virus attaches itself 
to an existing file by 
injecting its code into 
the body of the 
executable and replacing 
code entry points 

1. Open “Virus.exe” 
2. Read “Virus.exe” 

Code 
3. Open “Host.exe” 
4. Inject Code into 

“Host.exe” 
5. Patch “Host.exe” 

Entry point 

Since the margin between malicious and normal behavior can be small, it is important 
to keep the complexity of the GSR at the high level whenever possible in order to 
avoid misdetections. On the other hand, some flexibility when connecting blocks of 
the GSR is needed as well; otherwise the approach becomes less generic. 
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Computer viruses, implemented as executables have enough flexibility when 
interfacing with the operating system to replicate in several different ways. In our 
experiments we consider three basic types of virus replication: 

− Overwriting existing files (Overwriting viruses). 
− Creating new look-alike files (Companion viruses). 
− Attaching to existing files (Parasitic viruses). 

These three types of replication are sorted by simplicity of implementation, with 
Overwriting viruses being the simplest. Table 2 presents details for every type, as well 
as their simplified replication schemes. 

All viruses, falling under these categories, require low-level access to system 
resources, and therefore are detectable. However, categories have to be identified first 
and described in terms of the GSR. A way to establish the GSR is to acquire samples of 
a real live virus, extract self-replication behavior and process the leads. Viral behavior 
acquisition was done in an isolated controlled environment running Windows XP 
operating system, under surveillance of our system calls monitoring system. Apart from 
maintaining a sufficient system security level, one of the acquisition problems we have 
encountered was the elimination of noise from other concurrently running processes. 
The most suitable solution found was to introduce a per-process monitoring and 
detection scheme, where every signal detected by the monitor gets traced back to its 
origin, the process ID. Therefore, every signal is associated with a unique process so 
that signals coming from different sources do not mix. 

As an example virus with parasitic behavior, we consider a classic internet worm 
“I-Worm.Xanax”. This is a small worm, capable of replicating onto Windows system 
executable files. When executed, the worm searches for .EXE files in the Windows 
directory and replicates onto them while changing the entry point of the file. The virus 
follows the replication algorithm accordingly, and makes a total of 639 calls to the 
operating system. As it passes through the monitor, we observe some replication 
related activity among many others, such as self-access by consequently opening the 
source directory “Virlab” on local disk “C”: 

NtOpenFile 100020h, {24, 0, 42h, 0, 0, 
"\??\c:\Virlab\"}, 3, 33 ... 12, 0h, 1) result = 0 

1 

The execution of this call completed successfully, introducing a new directory 
handle. Later, this handle is used when accessing the contents of this directory. 
Indeed, after throwing some garbage into the system, the virus invokes another 
suspicious command by trying to open itself for reading: 

NtCreateFile 80100080h, {24, 12, 42h, 0, 1243404, 
"xanax.exe"}, 0h, 128, 3, 1, 96, 0, 0 ... 68, 0h, 
1) result = 0 

2 

Once again, upon successful execution, a new handle, #68, is created, which points 
itself. According to our definition of the structure for the GSR, we may bind these two 
calls and form a larger structure representing a File Access Block. These calls are 
then bound by several different important parameters such as the directory handle and 
input flags shown in grey above. When bound, the new structure inherits input 
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parameters from its first component, as well as output parameters from its second 
component. 

In the same manner, after locating a target host file, the virus is expected to open it 
and append the viral body to the host so that the control over code execution gets 
passed over to the viral code. In our experimental run of the virus, it was able to 
locate the “Windows” directory, a very common target for viruses due to a very high 
probability of infecting the most important and frequently run system files and 
utilities. While searching for a host to infect, the virus invokes another pair of system 
calls to locate an executable. This pair forms another replication block called Host 
Search Block: 

Table 3. Virus searching for executable file in Windows folder 

System Call Input Arguments Output 
Args 

 

NtOpenFile 0x100001 {24, 0, 0x40, 0, 0, 
"\??\C:\WINDOWS\""}, 
3, 16417 

12, 
{0x0,1} 

3 

NtQueryDirectoryFile 
12 

0,  0,  0,  1243364, 
616, 3, 1, "<.exe", 0

{0x0,110
} 

4 

The next step in the replication is to read itself and append itself to the host file. 
Since the virus knows perfectly well its own location (output handle # 68 of File 
Access Block), it easily executes yet another pair of system calls to map itself into a 
memory location 980000h: 

Table 4. Virus maps its body into memory 

 

The memory mapping routine pair allows for defining another replication building 
block named Memory Mapping Block. Since this block requires a file handle as an 
input parameter, which in turn is provided by the File Access Block constructed 
earlier, these two blocks are bound into a new higher-level structure named File-in-
Memory Block. As usual, the block inherits inputs and outputs of the two parenting 
structures. 

Finally, when the virus is in memory and the victim file is identified, another set of 
system calls is required for completing a successful replication, the set that is 
responsible for actually writing the viral code into the host body. However, since 
overwriting the host with the virus code would trigger an alarm for to the user, clearly 
implying that something is going wrong with the system, it is much more elegant to 

File Extension 
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append viral body to the host and change code entry pointers in such a way that the 
viral code gets executed first, then passing control back to the original host, allowing 
for regular file execution. Therefore, the virus in question needs to open the host, 
locate the correct section for viral code injection and finally append its code by 
executing an NtWriteFile system call: 

Table 5. Virus injects its code into the host 

 

This set of calls, while being the last sequence in replication, also form the final 
block for GSR Pyramid, called the Code Injection Block. It inherits its input 
parameters from its first system call NtCreateFile, while the outputs of NtWriteFile 
become its output arguments. These four blocks form the final structure — The Gene 
of Self Replication: 

 

Fig. 5. Final replication behavior structure of a virus 

The graph below shows the replication timeline along with the system calls related 
to the replication for Xanax worm. There are two visible replication attempts, one of 
which has been successful, reaching the top of the pyramid – the replication point. 

File Access 
Block 

 Host Search 
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Memory Mapping 
Block 

Code Injection 
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Fig. 6. Sample Virus Replication Data (648 points, 2 attempts) 

There are certainly other ways to follow exactly the same algorithm and execute a 
successful replication, such as using virtual memory for data swapping instead of the 
direct memory access, etc. Also, there are still two more types of replication (see 
Table 2) to be covered. There could be many attempts to obfuscate virus code for the 
purpose of misleading the detector (i.e. changing object handles on-the-fly before), 
however these attempts are easily traceable by the detector since they are also 
implemented at a low level with the use of system calls. Finally, the block structure of 
the GSR allows for detection of many different replication sequences of the same 
Gene by simply rearranging building blocks in the GSR definition.  

5   Parts of Gene of Self Replication in Legitimate Code 

While most computer viruses and worms capable of self-replication are believed to be 
detectable by their replication activity, there is always a considerable number of non-
viral, fully legitimate pieces of software that have to pass through the monitor 
undetected and be able to continue their legitimate actions. After all, the system calls 
used to identify the GSR are all created to serve these “good” programs. Our major 
assumption in this research is that this legitimate software never tries to replicate itself 
through any means of communication, either through local disk propagation or remote 
network communication. This means that the GSR has to be designed in such a way 
that it only incorporates replication blocks from the beginning to the end, as 
legitimate code is never supposed to follow replication completely. However, it is 
expected, that legitimate software may contain some parts of the GSR, and this can 
and should be detected in case that the software starts expressing suspicious behavior.  

Testing the detector on legitimate processes was a part of the experiment. In this 
attempt we were trying to show how close to detection a regular non-infected process 
can get. Windows native service process svchost is a good common example of a 
regular system process running constantly in the background. This process is actually 



 Prevention of Information Attacks by Run-Time Detection 69 

a generic host process name representing different services currently running, and 
therefore can do virtually any operation within the system including access to files, 
networks, internet, etc. Upon invocation, svchost interacts with the system in order to 
load a file into memory, the algorithm and implementation of such an action is very 
similar to the virus described above, however there are some differences: 

NtCreateFile 80100080h, {24, 0, 40h, 0, 14678832, 
"\??\C:\WINDOWS\Prefetch\CMD.EXE-087B4001.pf""}, 0h, 
0, 0h, 1, 96, 0, 0, ... 2080, 0h, 1) result = 0 

2 

Here the file is opened with the same system call and even the same access mask 
(80100080h), however the file object does not propagate its handle to any children 
processes (flag 40h), nor is it opened with “Read” and “Write” share access flags 
(0h). But the main difference in these two system calls is that svchost, being a 
legitimate process, does not open itself, instead it is working with other files within 
the system. 

There is a definite similarity between two processes when it comes to working with 
memory objects, which is a normal procedure, and most processes are expected to 
have it done in the same manner: 

Table 6. Memory operation in a legitimate program 

 

Therefore, there is a probability for the Memory Mapping Block above to be 
detected even in non-malicious programs, but this one block, as well as many other 
blocks in GSR structure such as Code Injection Block, by itself in no way represents 
the entire GSR Pyramid.  

Finally, the graph below represents the timeline for the legitimate process svchost 
as it goes through approximately 240 instructions, many of which in one way or 
another relate to some parts of the GSR structure. However, process actions never 
reach the replication level. 

While comparing these two graphs representing two different processes, the 
difference in their behavior is obvious. It is expected from a legitimate process to 
generate a behavior similar to that of a virus when operating on files and directories, 
as they have to use the same API. However the malicious process clearly goes all the 
way to the end of the replication procedure on its second attempt, while the legitimate 
process, expressing normal behavior, never goes beyond Level 2 no matter how many 
“attempts” it makes. 
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Fig. 7. Sample legitimate code activity graph 240 points, (3 attempts) 

5.1   Replication over the Local Network and the Internet 

Ever since computers started communicating with each other using local networks, 
virus writers have exploited this feature. Indeed, networking opens endless 
possibilities for a virus to replicate itself to as many computer systems as it possibly 
can within the network instead of just infecting a limited number of files on a host 
machine. Such a remote replication is possible with the use of specific network 
protocols administrated by the operating system.  

Theoretically speaking, replication over the network is almost identical to local 
replication with the only difference being the necessity for a computer virus to 
enumerate available network resources before it can access target files on a remote 
computer. Therefore, a complete algorithm of virus replication for a parasitic virus, 
which attaches itself to an existing file by injecting its code into the body of the 
executable and replacing code entry points, would look as follows: 

1. Open “Virus.exe” 
2. Read “Virus.exe” Code 
3. Enumerate network resources 
4. Open remote “Host.exe” 
5. Inject Code into “Host.exe” 
6. Patch “Host.exe” Entry point 

Hence, it is only required to add one block into the Gene’s syntax describing 
Network resources enumeration in order for the detector to recognize the behavior. 
However, enumeration can be accomplished in several different ways such as: 

• Sockets 
• Remote Procedure Calls 
• Named pipes 
• NetBIOS 
• Other networking APIs 
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A very good example of network communication via Named Pipes can be observed 
in the behavior of a family of parasitic viruses named EfishNC1 [5], the “C” version 
of this virus uses named pipes when trying to communicate to other computers on the 
network. While the actual source code for resource enumeration via named pipes is 
only a couple of lines, the operating system has to take care of most of the 
communication. Thus, the algorithm for named pipes from the OS’ point of view 
would be as follows: 

1. Open a pipe as a file object 
2. Set appropriate information affecting the pipe 
3. Send a request for resource enumeration to the pipe 
4. Receive enumerated shares of a remote computer 
5. Proceed with regular replication 

All the events listed above are accomplished by consequently invoking regular file 
management system calls with specific parameters as illustrated in table 7. 

Communication through the means of Named Pipe “PIPE\srvsvc” presented above 
requires several valid handles to be produced during sequence execution. First, a file 
object has to be created with NtCreateFile pointing to a remote machine (BU-
SY46Q9D3MCQ2), this file object is assigned with a handle (228). As soon as the 
handle is returned, the file object is set to represent a pipe that is later involved in 
communication with the remote machine to obtain its available resources. 
NtFsControlFile sends a packet containing the enumeration request to remote 
computer (BU-SY46Q9D3MCQ2) returning a list of all available resources including 
standard Windows administrative resources such as “IPC$” and “Admin$”, as well as 
a single file share directory named “fake”. For the purpose of the experiment, this 
directory contains a fake copy of the “Windows” system folder allowing viruses to 
safely replicate onto critical operating system components – the most hunted targets. 

From the point of view of networking through named pipes, Internet 
communications work almost identically with a single difference in remote machine 
naming convention. Specifically, when opening a named pipe to access a remote 
machine over the Internet, its IP address is used as the UNC instead of the computer’s 
actual name. For example, the following system call would try to open a named pipe 
connection on a PENTNET remote computer. 

Replication over the Internet is usually more complicated than the local network 
attack, partially due to the fact that remote machines with direct Internet access are 
less vulnerable. Longer response times and a much broader range of computers to 
scan can make such virus activity obvious for a skilled user. Computer viruses have to 
conduct a variety of tests on every single computer they attack in order to detect, 
recognize and exploit vulnerability so that replication can be possible. However, such 
activities are hard to predict and they should not be accounted for when defining this  
 

                                                           
1  W32.EfishNC is a memory-resident infector of all Windows Portable Executable 

applications. It infects files in all folders on all local and mapped network drives. It also 
infects files in folders on network shares and IP addresses that are shared with write access. It 
uses entry-point obscuring (EPO) and an encryption method that is both very simple to 
implement and very hard to decrypt without the key. [Symantec Security Response] 
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Table 7. Network resources enumeration via a Named Pipe 

 
 

part of the GSR. A virus, looking for an IP on the network is by itself is a suspicious 
activity that may or may not lead to a complete successful replication.  

 
System Call Input Arguments Output 

Args 
NtCreateFile 
0xc0100080 

24, 0, 40h, 0, 4060988, 
"\??\UNC\134.11.4.132\PIPE\srvsvc", 
0h, 0, 3, 1, 4194368, 0, 0 

228,0h, 
1 

The sequence of events described above represents a perfect example of a well 
bound structure where every system call produces a result that is vital for the 
subsequent execution and such dependencies are very traceable. Therefore, such a 
sequence can be syntactically described as part of replication and can form another 
component of the GSR. Such a component is called Pipe Enumeration Block and is 
connected to other blocks of the Gene right before the File Access Block.  
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Fig. 8. Final replication behavior structure of a virus with networking capabilities 

6   Results 

The experiments have shown that most blocks of the GSR, being described in a 
generic form, do express the behavior of many well-known as well as yet 
undetermined viruses. The detection mechanism, implemented as a finite-state 
machine, allows for successful tracking and detection of such behavior. Table 8 below 
shows detection system response to several viruses as well as some legitimate 
processes expressing similar “viral” behavior from the replication point of view. Only 
the most vital blocks of self-replication are shown. 

Table 8. Detection system response to various malicious and legitimate processes 

 Host 
Search 

File 
Access 

Networkin
g 

Memory Injection/ 
infection 

Replication 
(total) 

W32.Alicia 100 % 100 % 100 % 32.4 % 100 % 100 % 
W32.Bogus 100 % 100 % 5.3 % 3.7 % 100 % 100 % 
W32.Crash 100 % 100 % 0 % 100 % 100 % 100 % 
W32.Neo 100 % 100 % 7.0 % 100 % 100 % 100 % 
W32.Linda 100 % 100 % 4.3 % 100 % 100 % 100 % 
W32.Stream 100 % 100 % 32.5 % 100 % 100 % 100 % 
Svchost.exe 26.3 % 100 % 79.4 % 100 % 36.0 % 78.4 % 
Explorer.exe 14.5 % 92.1 % 100 % 84.5 % 47.4 % 86.2 % 
Acrobat.exe 75.0 % 89.0 % 53.5 % 100 % 87.1 % 89.8 % 

Since the approach is generic in its nature, many legitimate applications may 
trigger some of the Gene’s building blocks. It can be seen from the table that some of 
the blocks, being more generic, are detected at a rate very close or even equal to 
100 % for non-malicious applications tested. A process “svchost”, for example, 
indeed expressed behavior identical to a virus when working with system memory 
objects. However, the host search routine has only been presented by partial detection 
directory listing, therefore earning only 26 % of the entire host search behavior. 

File Access 
Block 

Pipe Enumeration 
Block 

Host Search 
Block 

Memory Mapping 
Block 

Code Injection 
Block 

Replication
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Similarly, not all computer viruses have to incorporate every possible mean of self-
replication in a single body. Companion virus W32.Bogus, for example, did not show 
any signs of replication over the network or the Internet, neither it actually deals with 
system memory object. However, the replication for this particular virus is proven by 
other very strong arguments, such as host search and code injection.  

The authors realize that no detection method is 100 % perfect and it is expected 
that some viruses may express different behavior that are not yet described in terms of 
the GSR. However, all viruses have to follow the most generic rules of replication. In 
the case of a false positive detection of a block in the replication pyramid, provided 
that other blocks are detected correctly, the protection system may conclude that the 
replication rate for the given process is achieved to a certain degree, while it is still 
lower than 100 %. In this case, the threshold can be set to suspend a suspicious 
process from any further action and alarm the user. However, such a threshold should 
not be set below 90 %, as it can be seen from the table, a high rate of false positives 
will be generated under such conditions. 

7   Conclusion 

In this paper we proposed an advanced approach to software behavior recognition 
with specific application to the detection of malicious behavior in computer viruses. 
The reason for choosing the mechanism of self-replication as the detection criteria is 
that non-malicious codes have no reason to disseminate themselves, while self-
replication is crucial for deploying widespread information attacks. One of the 
primary strengths of the proposed approach is its ability to detect previously unknown 
viruses with a very low false-positive rate. In addition, it is independent of the style of 
the programmer, programming language, and compiler (assembler) used. Malicious 
behavior detection is done at a very low level, in the operating system, where the most 
important activities can be monitored. This prevents the detection system from getting 
overflowed with useless calls that can be accomplished at a higher, more vulnerable 
level, while still allowing for the monitoring all activities of processes accessing vital 
operating system facilities. The detection is implemented as a runtime monitor – a 
detector system allowing for immediate detection and termination of any number 
suspicious of processes currently running on the system. 

Of course, no method of detection is perfect. Although this paper presents an 
attempt to detect and account for all existing methods of self-replication, there may be 
some new techniques in virus writing that will thwart this effort. The authors are 
aware of the feasibility of multi-processing self-replication that could be implemented 
by a very sophisticated attacker and intend to address this threat in future research. 
However, most information attacks require the use of less sophisticated programming 
techniques to ensure successful execution on a wide range of computer systems, 
assuring the success of the proposed technology. 
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Abstract. It has been suggested that the problem of determining the
state of a network could be solved by computing entropy functions based
on the dynamic connections that are made among the nodes of that net-
work. In this paper we will attempt to calibrate, in a quantitative way,
the computation of those entropy functions on simulated data that we
believe should resemble real data. Our purpose is to understand how
one might use the entropy functions to signal that the state of a net-
work is undergoing a significant change, perhaps due to an attack on
the network or an attack emanating from the network. Our results are,
we believe, either inconclusive or negative. Specifically, we believe that
our simulations suggest either that these entropy functions are not suf-
ficiently indicative of anomalous behavior in a network as to be usable
for this purpose or that conversely in order for them to be used to detect
anomalous behavior, the underlying “normal” behavior of the network
would have to be more stable than we might expect it to be.

1 Introduction

It has been suggested [1,3] that the problem of determining the state of a net-
work could be solved by computing entropy functions based on the dynamic
connections that are made among the nodes of that network. In this paper we
will attempt to calibrate, in a quantitative way, the computation of those en-
tropy functions on simulated data that we believe should resemble real data.
Our purpose is to understand how one might use the entropy functions to signal
that the state of a network is undergoing a significant change, perhaps due to
an attack on the network or an attack emanating from the network.

We are attempting to model the behavior of a network, which we assume
comprises at least hundreds if not thousands or tens of thousands of nodes. A
large university campus, for example, has on the order of 10, 000 nodes connected
to its network. From the traffic on the network, we can construct a connectivity
matrix C that represents the dynamic connections of the network as defined by
the traffic in the time interval during which data has been gathered.

We note that the physical network topology is not of interest here. Physical
connections are not relevant to the state of the network unless they are actually
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used. What is of interest is the logical set of network connections, that is the
set of point-to-point connections of which use has been made. We thus let the
connections of the network be defined by the data and not by a predetermined
description of the underlying hardware.

We also note two characteristics of the matrix C that we will deal with later,
but that we mention only in passing in this introductory discussion. The first is
the fact that the dynamic connections of the network, as defined by its traffic,
are time-varying, but we cannot hope (for reasons of computational efficiency, if
for no other reason) to view them as connections that vary continuously. We will
of necessity deal with the network data in discrete, perhaps overlapping, time
intervals in order to obtain a sequence of snapshots of the network.

Second, the matrix C can be defined in many ways, depending on one’s con-
cept of “network traffic.” Perhaps the simplest definition is that it is simply the
adjacency matrix of nodes of the network, representing an undirected graph (and
thus a symmetric matrix) in which nodes are connected if they have exchanged
a message (in either direction) during the time interval during which data has
been collected, and not connected otherwise. More complicated matrices can be
constructed by weighting the adjacency matrix to reflect the number of messages
sent, the number of bytes sent, and so forth. Later in this document, when we
discuss the issues of entropy, we will normalize the entries so that the sum of all
entries is 1.

Finally, we must deal with the diagonal entries of C. In keeping with the
proposal made by Gudkov, Johnson, Madamanchi, and Sidoran [3], we place in
the diagonal entries of the matrix the negative of the row (or column, since the
matrix is assumed symmetric) density off the diagonal. This is done by Gudkov
et al. so as to obtain a matrix that represents a Markov process and thus to be
able to argue that a deeper analysis based on the theory of Markov processes
is relevant. In what follows here we in fact never use the diagonal entries of the
matrix, so the actual values assigned to them are not relevant.

The matrix C will change over time as the dynamic connections change. If
we were to view the network as a graph, and we had a sequence of matrices,
then we could (in theory) view the graphical images of the graphs over time
and detect changes in the network that would represent anomalous behavior
and/or intrusions. The proposal of Gudkov et al. is that one can apply entropy
functions to these matrices, and that the changes in the entropy functions will
reflect changes in the matrix (and by extension, the network) in a useful way.

Caveats About the Real World

There are a number of assumptions about the real world that may or may not
be true and which would affect the ability of an entropy metric as mentioned
here to detect anomalous situations in a network. On the one hand, verifying
that these assumptions were true would be important if one were to determine
that this version of an entropy approach were viable for detecting anomalies
in a network. On the other hand, if our analysis suggests that the approach is
not viable even if the assumptions were true, then the matter of verifying the
assumptions becomes moot.
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One assumption is that anomalous situations might result in clusters of con-
nections among nodes. This was the initial assumption of Gudkov et al., but
there is reason to believe that a cluster is not what one would expect from an
anomaly. A worm, for instance, that was scanning IP addresses for vulnerable
computers, would be indicated not by a cluster in the matrix but by a high den-
sity of nonzeros in the row and/or column for that node. A collection of nodes
infected with a worm would be indicated by a set of denser “lines” in a set of
rows and columns, but not a cluster. On the other hand, the entropy change
from a cluster will be greater than that from a small list of lines, so if changes
caused by clusters cannot be detected reliably, then changes caused by sets of
lines will be even harder to detect.

The argument of the previous paragraph can also be made regarding the
question of what kinds of attacks might be detectable by this approach. An attack
includes some set of machines involved in higher-than-normal communication
with other machines. The extreme end of higher-than-normal communication is
not just a cluster but a solid block of nonzero entries for the nodes involved in
the attack either as attacking or attacked machines.

Further concerns about the utility of this approach come from questions
about whether it would be feasible to collect the everything-to-everything con-
nectivity data in a real network. It would be difficult–indeed probably
impossible–to gather data from every node in a network. Further, the return
of that data to a central node for processing would in itself look very much like
an anomalous event. Also, normal traffic is almost certainly not just the random
sending of messages among nodes; there will be daily and weekly fluctuations,
bursts of events, broadcasts to all users, and such. With a very short time win-
dow one would be hard pressed to distinguish an administrative communication
to all machines on a net from an infected machine searching all machines to find
those that might be vulnerable.

Again, we do not attempt to address these questions. If under ideal situations
there is insufficient ability to distinguish anomalies from normal behavior with
the proposed entropy metric, then there is little reason to worry about whether
anomalies could be detected under less-than-ideal conditions.

Finally, this paper describes an experiment based on simulated data. We
are in the process of gathering real data for processing. In the event that this
approach shows promise, then it would be necessary to verify simulation results
against real data. However, in an experimental mode it is necessary to begin
with real data so that the input to the processing can be predictable and the
presence and severity of an anomaly can be measured.

2 Entropy Functions

Following the method by which Gudkov et al.[3] address the question of entropy
in the network, we first normalize the connectivity matrix C so that

∑
i,j Cij = 1.

For convenience, we will abuse notation and also refer to this as C in this section.
Although our matrix is symmetric, reflecting an undirected graph, we will

intuitively view the values Cij in what follows as representing connections from
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node (row) i to the node (column) j. The sum Pi =
∑n

j=1 Cij is thus the
probability of a connection from node i to the other nodes in the network, and
we can define a row-wise Shannon entropy

H(row) = −
n∑

j=1

Pi log Pi. (1)

We note that we could just as well consider a column-wise entropy H(column)
and that H(row) = H(column) since the matrix is assumed to be symmetric.

The Shannon mutual information, or negative Shannon entropy, contained
in the matrix C is

I(C) = H(row) + H(column)−H(column|row) =
n∑

j=1

Cij log
Cij

PiPj
. (2)

We note that I(C) is independent of the labelling of the nodes of the network.
A more general Rényi entropy of kind q [6] can be defined as follows.

Hq(row) =
1

1− q
log

n∑
j=1

P q
j . (3)

The Rényi information of the first kind (q = 1) is identical with Shannon in-
formation [2,7]. One can in fact view Rényi information as a generalization of
Shannon information. The Rényi formulas above follow as the only formulation
of entropy/information that is consistent with axioms set forth by Kolmogorov
and Nagumo [4,5].

Since Rényi entropy is a generalization of Shannon entropy, we can consider
the entropy of equation (3) and the associated

Hq(column|row) =
1

1− q
log

⎛⎝∑
i,j

Cq
ij

⎞⎠ . (4)

From these we can compute the Rényi mutual information Iq(C) for a connec-
tivity matrix in a manner analogous to that for Shannon information.

One suggestion made by Gudkov et al. is that instead of computing the
entropy functions alone, we could compute the difference between the Rényi
entropies of the second and first kinds as a way of measuring the state of a
network.

3 Calibration

The proposal has been made to use entropy functions to measure the state of
a network. The work of Gudkov et al. has shown that a qualitative change in
the entropy function does arise from a change in the connectivity matrix derived
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from traffic data. To use the entropy functions in a viable system for detect-
ing anomalous behavior, one must calibrate these functions to determine their
predictive capability. In an operational setting, one could imagine a constant
recomputation of entropies and a comparison of the values computed against
a baseline of “normal” behavior. The goal would be to know that abnormal
behavior would change the values computed in a definable, measurable, pre-
dictable, way so that such changes could be used to trigger the alarm bells and
the necessary responses to what would be presumed to be an attack or other
anomaly.

All software was developed and run on a Red Hat Linux system and the gcc
compiler. This is relevant only in that the random numbers used were generated
by the built-in rand() function. We acknowledge that this sequence of pseudo-
random numbers may not satisfy high-grade tests for randomness. Some of our
tests were done again with a better random number generator, and the change
in the results was too small to be considered relevant to our basic conclusion at
the end of this paper.

3.1 Assumptions

In order for the entropy functions of the previous section to be applicable, it is
necessary that the underlying input data be compatible with the computation
of these entropies. Specifically, we assume for the purposes of calibrating these
functions that we have a matrix of n rows and columns, representing n nodes
on the network, and with n ≈ 10000 as a ballpark estimate. We would expect
n < 5000 to be too small to be of interest and n > 50000 to be perhaps too
large. The entropy measures are global measures of network behavior; absent
an incremental approach or a method for rapidly determining a subset of the
connectivity matrix on which to focus, we would expect an O(n2) or worse
computation for n > 50000 to be prohibitive for real time. We assume also
that there is a background density of connections between nodes, and we take
that density to be in the range of 5% to perhaps 15%. Finally, the underlying
assumption in the use of these entropies is that, when properly viewed, the
matrix will have a nonrandom structure. In Gudkov et al. and in this work
we look at clusters that could be seen (with an appropriate permutation of the
node subscripts) as denser blocks along the diagonal. Anomalies that scanned, for
example, all the nodes in a subnet local to the infected machine would result in
rows and/or columns of the matrix that were much denser than the background.

We admit that the assumptions of the previous paragraph are in fact just
assumptions. In another part of the larger project of which this work is a part
we are studying real data from networks to determine whether the above as-
sumptions are justified and how the simulated data would have to change in
order to be more realistic. But these assumptions must be expressed in order to
understand why the parameters of our experimental data have been chosen as
they have been. We postulate, however, for the purpose of initial study, that we
could calibrate these entropy functions by studying the following independent
variables.
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1. The overall size of the network. This is the number of rows (also of columns)
in the matrix C. We will study sizes ranging from approximately 100 up
through approximately 10000.

2. The background density. This is the probability that one node will be con-
nected to another at random. We will assume until shown to be in error that
these probabilities will fall in the range 0.05 to about 0.15.

3. The number of clusters in the network.
4. The sizes of the clusters.
5. The densities of the clusters.

It is the latter three variables that require justification. We assume that in a
large network, such as a university, that departments, colleges, and other units
will appear in the connectivity matrix as clusters, because the nodes in these
units will have reasons to be communicating with each other more frequently
than would be observed for the background random activity. If one were to
have complete information about the network traffic (this would require an NP-
complete computation to be done), then one could, for any chosen threshold that
would define a cluster, rearrange the matrix C into a block-diagonal form. In the
absence at present of any real data contradicting the assumption, we will assume
that the number of clusters of a given size will have a Zipf-like distribution and
will vary inversely with the size of the clusters, and we will generate simulated
data accordingly. For our initial experiments we have chosen cluster densities in
the range of 0.50 to 0.90. We have chosen initially to study two types of cluster
structure. The first is a single cluster of varying size that could in fact be the
entire network. This follows the mode of Gudkov et al. in looking at difference of
entropies for a single cluster as it grows from a small size eventually to become
the entire network. The second study is motivated by an assumption about how
C might change for a network experiencing an anomaly. We begin with a series
of clusters of decreasing size, computing the entropies as we go, to establish the
parameters for a “normal” state. We then introduce a moderately large cluster
(on the order of 10% of the entire network) that we might postulate to arise
from a newly-infected computer that has begun an attack.

3.2 The Software Artifact

A brief description of the software is in order. Our program takes as input a
set of parameters that includes the matrix size, the background density, and the
number, size, and density of the clusters to be simulated. Calls to rand() are
made to fill in the background of a symmetric matrix of the appropriate density,
and the background entropy is computed. Following this, the simulated clusters
are added one at a time and the entropy recomputed. An overall outer loop
controls the number of such tests to be made. Any of the entropy calculations
themselves are simply effected by a double loop through the rows and columns of
the matrix (which is for programming convenience represented in dense matrix
form). The code was written for simplicity and flexibility, not for performance,
and since even for the larger matrices the running times were at worst in minutes,
we made no attempt to improve the efficiency of the code if that would have
added complexity and/or decreased the flexibility.
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3.3 Variability Due to Sampling

One first question to be addressed is whether the entropy functions are stable
from one randomly-generated matrix to another, a fundamental question of the
signal-to-noise ratio of the functions being studied. To this end, we have run two
experiments.

– In the first experiment, we assume a background density of 5% for random
connections, we assume overall network sizes of 1000 to 10000 nodes in in-
crements of 1000 nodes, and we assume a cluster size of 1000 nodes with a
cluster density of 80%.

– In the second experiment, we assume a network size fixed at 10000 nodes,
a single cluster of 1000 to 5000 nodes in increments of 1000 nodes, and the
same background and cluster densities as in the first experiment.

In both cases we do ten iterations and compute the Shannon entropy (equation
(1)), the Rényi entropy (equation (3)), the mutual Shannon entropy for q = 2
(equation (2)), the mutual Rényi entropy for q = 2 (equation (4)), and the
difference between the latter two mutual entropies.

We did not conduct a thorough statistical analysis, because this did not
seem necessary. If we naively compute the difference between the maximum and
minimum values and divide by the average value with each parameter setting,
we obtain a measure of the relative error from using different random samples
but with all other variables held constant.

The result of both experiments seems to be that the differences arising from
sampling are very small. There were a few instances in which this relative error
was as large as 2.0 × 10−4, but for the most part the relative errors were even
smaller than this, often less than 10−6. As long as the predictive use of entropy
as an indicator of anomaly is based on observed changes significantly larger than
1 in 10000, say, we would not expect sampling variations to have a significant
effect.

3.4 The Entropy Functions Themselves

We turn next to the entropy functions themselves.

Single-Cluster Matrices: In our first simulation we computed entropies for
all matrices with

– network size 100 to 1000 in increments of 20, with constant background
density 0.05

– a single cluster of size 20 to 1000 in increments of 5
– cluster densities from 0.50 to 0.80 in increments of 0.10

We present a plot that provides a heuristic view of the functions. Figure 1 is of
the standard Shannon entropy for cluster densities 0.80. The plot is quite similar
for different cluster densities and for the Rényi entropy for various densities. As
one would expect, the entropy is high for networks in which either few or most
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Fig. 1. Shannon entropy, cluster density 0.80

nodes are not in a cluster, and the entropy is smaller for networks in which
roughly half the nodes are in a cluster. What is to be noted, however, and is also
to be expected, is that the variation between high and low decreases, for a fixed
pair of densities, as the network size increases. This bodes ill for the scalability
of this approach to detecting network anomalies.

In Figure 2 we present the difference between Shannon and Rényi entropies
of the second kind for cluster density 0.80. We present the view from a slightly
different angle and with a slightly different view so as to expose the shape of the
surface.

Multiple-Cluster Matrices the initial experiment: For our second exper-
iment, we have constructed a single matrix of 10000 nodes with a background
density of 0.05. To this we have then added five clusters of 500 nodes each (that
is, 5% of the total matrix size for each cluster), four clusters of 300 nodes (3%),
three clusters of 200 nodes (2%), and seven clusters of 100 nodes (1%), all with
a density of 0.80. This represents a total of 50% of the matrix contained in clus-
ters, and this we take to be the matrix in “normal” state. To this we then add
one final cluster of 500 nodes to simulate a new hot spot in the network.

The plot of the entropy differences is shown in Figure 3. An initial tentative
conclusion from this experiment is that these entropy measures may not be
sufficiently sensitive to be used to predict behavior. Although we do observe a
drop in the mutual entropy when the hot spot is introduced, the change is not
obviously so great as to be convincing that such a change could be detected in
an operational situation.
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Fig. 2. Entropy difference, cluster density 0.80

Fig. 3. Entropy difference

A more general test: For our final experiment, we used a network of 10, 000
nodes with a background density of 0.05. We then added clusters, with densities
all at 0.80, whose node counts summed to 5, 000, or half the total network. To
this mix we then add one cluster of 1000 nodes, or 10% of the entire network.
The sequences of clusters added were of the percentages of the total network
indicated in Table 1. For example, the first experiment used a single cluster that
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Table 1. Clusters used in the large experiment

e 50 10
f 45 5 10
g 40 5 5 10
h 35 5 5 5 10
i 30 5 5 5 5 10
j 30 10 5 5 10
k 25 5 5 5 5 5 10
l 25 10 5 5 5 10

m 25 10 10 5 10
n 20 5 5 5 5 5 5 10
o 20 10 5 5 5 5 10
p 20 10 10 5 5 10
q 20 10 10 10 10

Fig. 4. Difference of entropies, experiments e through i, o through q

was 50% of the entire network, to which a subsequent cluster of size equal to
10% of the network was then added. In the last experiment, we began with a
single cluster that was 20% of the network and then added three clusters each
of size equal to 10% of the network before adding a final cluster of size 10%.

We apologize for less-than-optimal plotting capability in this version of the
paper, but present the results below. Figures 4 and 5 contain the differences of
mutual entropy of Shannon and Rényi, and is thus a generalization of Figure
3. Although the sequences are somewhat hard to distinguish, the lines repre-
senting entropy values are in essentially reverse order, top to bottom, as the
cluster sequences are presented in Table 1. The upper grouping in Figure 4 is
of experiments i through e, top to bottom, and the lower grouping is of experi-



86 D.A. Buell

Fig. 5. Difference of entropies, experiments j through n

ments q through o, top to bottom. In Figure 5 the sequence top to bottom is of
experiments n through j.

Our analysis of this very preliminary data suggest that it may well be difficult
to distinguish the presence of a new cluster, even one so large at 10% of the entire
network, on the basis of entropy values. This conclusion is based on the fact that,
although there is a decided bend in the graphs when the last cluster is added,
the ranges of values that we observe with the last cluster fall well within the
ranges we would expect with a different sequence of normal clusters. In order to
use the “kink” of the last cluster as a predictor of anomalous behavior, it would
probably be necessary for the network in steady state to have an extremely fixed
structure. We suspect that computer networks might well be more dynamic than
would be necessary to use these small changes in entropy as predictors.

4 Conclusions and Future Work

We believe we can draw three conclusions from the experiments presented here.

– We believe that the entropy functions suggested in Gudkov et al. are robust
under statistical variations in random number generation.

– We observe noticeable qualitative changes in the entropy functions due to
the addition of clusters in the connectivity matrix on the order of 5% to 50%
of the entire matrix.

– We are unsure as to the predictive capability of these entropy functions for
detection of anomalies. Although a change in the entropy functions can be
observed when a cluster of size 10% of the matrix is added, that change
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is well within the range of what would be “normal” changes depending on
the prior addition of clusters of similar sizes. We remark that to be effective
in detecting anomalies, a system would have to respond to changes in time
windows certainly not much larger than five minutes, if even that large.
Normal changes might be observed from diurnal work habits, lunch breaks,
morning broadcast of messages, and the like, and it is unclear whether or
not such changes would mask, in something like a five-minute window, the
effect of an anomaly.

To resolve the question left open in the third bullet above, we are refining
our simulation software. We are generating background and anomaly data based
on statistical characteristics actually observed in real traffic so that we might
better understand the range of changes in the background that would mask the
effects of an anomaly.
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Abstract. The variety and richness of what users browse on the Inter-
net has made the communications of web-browsing hosts an attractive
target for surveillance. We show that passive external surveillance of web-
browsing hosts in private networks is possible despite the anonymizing
effects of NATs and HTTP proxies at the gateway. These devices ef-
fectively anonymize the origin of communication streams, and remove
many identifying features, making it difficult to group web traffic into
mutually disjoint same-host single user sets called sessions. Sessions of-
fer a complete picture of each user’s web browsing experience. Without
them, passive external surveillance is of little use. This paper offers a con-
tent analysis technique called Link Chaining that aids the sessionization
process by recovering large pieces of sessions called session fragments.
The technique is based on the knowledge that the majority of down-
loaded web resources are clicked-to from other web pages. By following
hyperlinks in the bodies of HTTP messages in passively collected trace
data, web traffic can be be coalesced into session fragments and used
by human analysts to isolate individual users’ sessions. The technique
gives the human analyst a significant advantage over manual methods.
The implementation presented here has been tested on accumulated local
data and demonstrates the feasibility of the scheme.

1 Introduction

Given a raw trace of web traffic collected from the outside of a private network,
an adversary performing surveillance can be expected to take three steps:

1. Reconstruct TCP/IP connections from raw packets
2. Organize the connections into user sessions

(mutually disjoint same-host sets)
3. Browse the web content of each session to gather intelligence

Without the effects of gateway devices, the second step is trivial. The ad-
versary logging packets from the outside can group them by the original host’s
IP address and produce user sessions. With (network address translation (NAT)
and HTTP proxies however, the original IP address and other identifying infor-
mation is absent, making it very difficult for to group traffic into user sessions.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 88–103, 2005.
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Without any sophisticated techniques, an adversary performing surveillance
on the outside of any of these devices would be able to reconstruct individual
TCP/IP connections, but would be unable to group those connections into user
sessions. The adversary would be forced to sessionize them manually. This would
involve evaluating the web content of every single connection and making a
best guess at which ones belong together. The problem is akin to accurately
assembling the pieces of many jigsaw puzzles jumbled together in one box.

The Link Chaining Attack (LCA) of this research aids the adversary by au-
tomatically organizing TCP connections into groups we call session fragments.
Fragments are formed by following HTML hyperlinks across multiple TCP con-
nections. These fragments are much larger than individual connections, and allow
the adversary to assemble sessions more quickly.

1.1 Related Work

The are three types of devices that pose increasing levels of difficulty to the
problem of grouping traffic into user sessions (mutually disjoint same-host sets).

1. NAT
2. Plain HTTP Proxy
3. Anonymizing HTTP Proxy

Although none are designed specifically for surveillance, existing techniques
[4] [5] can be used to sessionize traffic collected from the outside of NATs and
plain HTTP proxies, but not anonymizing HTTP proxies. The LCA was designed
to operate under the strict conditions of anonymizing HTTP proxy. There is no
known existing technique for doing this. The following three sections will explain
why.

1.2 NAT

With NAT in place, a large number of private addresses are mapped to a small
number of public addresses (often just one), so all traffic looks like it is coming
from a single host. When all communication is with the same IP, there is no
obvious way to differentiate the streams of traffic generated by individual hosts.

Existing attacks like Bellovin’s IPid technique [4] can be re-purposed to group
NATed web traffic into user sessions. These attacks exploit the fact that most
NAT devices are configured to re-write only the IP address of packets. Other
fields are left untouched, passing through NAT unchanged from their originating
host. Bellovin traces the unchanged IPid field to reveal which packets come from
the same host.

1.3 Plain HTTP Proxy

Web proxies are middlemen that fulfill transactions on the client’s behalf. With-
out a web proxy, HTTP clients talk directly to HTTP servers. With a web proxy,
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two separate TCP connections are established: one between the client and HTTP
proxy, and one between the proxy and server. The use of this intermediary means
that, unlike NAT, the TCP/IP packet headers contain no identifying features to
differentiate streams emanating from different hosts. This renders attacks like
Bellovin’s IPid technique useless.

Original host information can still be found however, in the HTTP headers
of outgoing requests. Plainly configured HTTP proxies pass these headers to the
web server unchanged. If browsers in a network are not all configured identically,
these headers can be used [5] to resolve at least some of the HTTP traffic to
same-host sets. Of course, this assumes that the headers are present, and have
not been scrubbed by an anonymizing proxy.

1.4 Anonymizing HTTP Proxy

The HTTP Anonymizing Proxy performs the same functions as a plain proxy,
but scrubs all non-essential headers from outgoing requests. Without any headers
to uniquely identify distinct hosts, keying on HTTP headers is not at all effective.

The Link Chaining Attack can be an effective technique under the condi-
tions of an anonymizing web proxy because it operates on the HTTP message
body. Although HTTP headers can be changed by intermediate devices, the
web content itself cannot be changed in any meaningful way without affecting
the browsing experience. The Link Chaining Attack takes advantage of this by
reconstructing individual web pages from the traffic stream and following the
links they contain forward in time to chain TCP connections into user session
fragments.

1.5 Research Goals

The aim of this work is to develop a technique that aids the analyst’s manual
sessionization by grouping TCP connections into fragments that are as large and
accurate as possible. The technique follows the hyperlinks in HTTP messages
to identify the TCP connections that belong together. The theory is described
in section 2 and the experiment is outlined in section 3. Before presenting the
results in section 5 we propose some metrics to evaluate the quality of fragments
isolated by our technique. In the analysis of section 6 we validate the work by
establishing a lower bound on the effective analyst speedup.

2 Theory

The Link Chaining technique coalesces independent TCP connections into same-
host groups by following hyperlinks in web pages. By matching the URLs con-
tained in the body of an HTTP response of one connection to the URLs in the
HTTP requests of all other connections, and judiciously removing impossible or
improbable links, it is possible to assemble fragments of user sessions.

The TCP connection is the basic building block in this process. Figure 1
depicts the HTTP requests and responses of two independent TCP connections.
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Fig. 1. Chaining Two Independent TCP Connections

The figure illustrates how the independent connections TCP 1 and TCP 2 can
be chained by matching URLs. The hyperlink B in the first HTTP response of
the first connection is matched with the URL B in the first HTTP request of
the second connection.

The four phases of the Link Chaining technique are: Naive Chaining, Im-
possible Link Removal, Unlikely Link Removal, and Session Fragment Isolation.
The first phase produces a tangled mass of edges and nodes representing all pos-
sible links between all connections. The two subsequent phases chip away at this
mass, selectively removing impossible and unlikely links. By traversing the edges
of the isolated graphs that remain, connection nodes are aggregated into groups.
These groups of connections form session fragments. The process is summarized
in Figure 2.

Fig. 2. Four Phases of the Link Chaining Attack

The raw inputs to the LCA are reconstructed TCP streams, HTTP messages,
and the HTML hyperlinks they contain. Although these inputs are extracted
from logged packets using known methods, the difficulty of this process should
not be discounted. Before links can be extracted from web pages, the pages
must be accurately reconstructed from individual packets. In many cases, the
pages must also be decoded, uncompressed, parsed, and normalized. Relative
links must then be resolved to their absolute form, stored with contextual meta
data like timestamps and connection origin, and indexed appropriately for use
in the LCA. For link extraction to be comprehensive and accurate, the software
must also accomodate imperfect implementations of web protocols. These spec-
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ifications essentially require the development of TCP/IP assembly and HTTP
parsing facilities comparable to those of a full-fledged web browser.

2.1 Naive Chaining

The first step of the Link Chaining technique is to naively match all response
URLs with all request URLs across all connections. A ”URL match” is defined
as a literal match between a URL in any response of one connection (e.g. in a
web page) and a URL in the first line of any request in another connection (e.g.
in a GET request). The complete set of URL matches can be represented as a
list of adjacencies (ordered pairs) forming one or more directed graphs, where
each node is a TCP connection.

Naive chaining identifies every single adjacency. This includes adjacencies
representing link traversals that never actually occurred. By including all adja-
cencies, naive chaining produces a set of comprehensive starting graphs for the
Link Chaining Attack. Many edges must be removed from these graphs before
individual user session fragments can be isolated.

2.2 Removing Impossible Adjacencies

In the second phase of Link Chaining, the impossible edges in the graphs are
removed. An edge is considered impossible if the link traversal it represents could
never happen. The TCP and HTTP protocol mechanisms impose structural and
temporal constraints on the traversal of links. Certain connections cannot be
chained because it would imply an impossible link traversal. Two impossibilities
are defined based on these constraints:

1. Connections Chained Backward in Time
2. URLs Chained Backward in Time

Each is discussed in turn.

Connections Chained Backward in Time. When a page containing URL
pointers to other resources is downloaded, it is followed by a flurry of requests.
Some of these are due to the browser automatically requesting resources associ-
ated with the page, others are due to a user’s clicking of a hyperlink. These are
implicit and explicit requests respectively. In terms of HTTP protocol specifica-
tion, no distinction is made between implicit and explicit requests.

If the requested resources are on the same server, and the web server and
browser are so configured, HTTP requests may be issued on the same, already
open TCP connection used to download the initial page. Otherwise, a new con-
nection is opened to issue the request. HTTP requests can also be sent on older
connections to the same server that are still open. This flexible connection reuse
policy is made possible by HTTP/1.1 [2], and it affords us only one temporal
constraint on the chaining of connections:

Constraint 1: For any two TCP connections A and B, if B is closed
before A is opened, A cannot be chained to B.
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URLs Chained Backward in Time. The second important temporal con-
straint is due to the fact that a resource request cannot be made if the URL
pointer to that resource has not yet appeared in a response. For implicit re-
quests, this simply means the browser cannot request a URL that has not yet
been downloaded. For explicit requests, it means that users cannot click on URL
hyperlinks that have not yet appeared on screen. This constraint is summed up
as follows:

Constraint 2: A link traversal is impossible if the request URL appears
before the response URL. A URL Match representing such a traversal is
invalid. Two connections cannot be chained if every URL Match between
them is invalid.

Since the packets of connections are interleaved on the wire, the content of
connections is interleaved in time. To determine the validity of a URL Match,
the timestamp of the request URL must be compared with the timestamp of the
response URL. In a timing diagram, HTTP events in a connection might look
like Figure 3.

Fig. 3. Chaining Two Independent TCP Connections

Assuming a URL in the response of connection 1 matches the URL in the
request of connection 2 in the figure, we must decide whether it is temporally
possible that the request in connection 2 was initiated from 1. If not, the connec-
tions cannot be chained. To do this, URLs must be tagged with the time their
containing packet appeared in the traffic stream.

2.3 Marking Likely Adjacencies

The preceding step identifies adjacencies that are definitively impossible, and
can therefore be removed from the connection graphs. The remaining adjacencies
cannot be removed this easily. Since they do not violate any of the constraints,
every remaining adjacency is a potential candidate for inclusion.

To accurately isolate user session fragments, the most likely of the remaining
adjacencies must be identified. A time oriented heuristic was developed to do
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this. The heuristic is based on the time between the appearance of a URL, and
the request for the resource it points to. This time is called think time, and it is
defined differently for browsers and users.

User Think Time (Δe): Length of time between a page download and a
hyperlink click (explicit request). User think time includes the browser’s
parsing and rendering time.

Browser Think Time (Δi): Length of time between a page download
and an ancillary, automatic request (implicit request). Browser think
time includes browser parsing time.

Think time corresponds exactly to the length of time between matching URLs
in distinct connections. It can be represented by a label on each edge in a TCP
connection graph. An example of this is shown in Figure 4.

Fig. 4. Think Times for Two Links between Two Connections

The figure shows two potential URL matches linking connections 1 and 2.
The first URL match implies an implicit request (an ancillary request made
automatically by a browser fetching embedded content), while the second implies
an explicit request (a request resulting from a human user click). Think times
are calculated for every URL match, including matches implying link-traversals
that never occurred. The marking of likely adjacencies is based on the length of
these think times.

The time oriented heuristic is a simple set of think time limits outside which
link traversals are deemed unlikely and removed. Link traversals (represented by
URL matches) are removed according to the following rules:

Implicit URL Match (Browser Request): if think time tt > Δi, remove.
Explicit URL Match (User Request): if think time tt > Δe, remove.

Borrowing from the traditional sessionization techniques of web analytics [5], the
values of Δi and Δe are 20 seconds and four minutes respectively.

The heuristic is only applied to those connection nodes having an indegree
greater than one. That is, nodes with multiple incoming edges that imply the
node was linked-to from more than one other connection. An example is shown
in Figure 5.
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Fig. 5. Removing Unlikely Adjacencies from a Multi-Indegree Node using the Time
Oriented Heuristic

Multi-indegree nodes (MINs) are an ideal target for edge removal because
they are over-represented in the adjacency graphs. Although naive chaining pro-
duces lots of them, MINs only happen for real when requests initiated from mul-
tiple connections are being issued on a single, already open, connection. This is
a connection reuse scenario that web browsers do not experience often. MONs
(multi-outdegree nodes), on the other hand, happen all the time. They represent
the situation where multiple connections are being initiated from the same con-
nection, like when a flurry of implicit requests are made for objects embedded
in a page.

Because it focuses only on MINs, the time oriented heuristic is consistently
optimistic. It leaves most out-links intact. The only out-links it removes are those
associated with MINs.

2.4 Fragment Isolation

The Link Chaining process begins as a tangled graph of naively chained con-
nections. This graph is then processed to remove the impossible and unlikely
adjacencies. The remaining graphs of connected nodes form the fragments that
the analyst will use to assemble user sessions. The fragments are isolated by
simply tracing the edges of each graph and aggregating the connection nodes.

3 Experimental Setup

Network traffic was collected passively from the inside of a live campus network
with a high volume (2 GB/hour) of web traffic and later written to a database.
The logging point was situated at the gateway before any NAT or proxy so that
individual host IP addresses were visible. A real attack would tap external to
this gateway, but IP address visibility was necessary here to validate the results.
All traffic features that would not normally appear in the presence of NAT or
proxy were selectively ignored for each experiment. The tap and network under
test are illustrated in Figure 6.

Traffic collection was performed using Snort 2.0. Snort is an open source net-
work intrusion detection system, capable of performing real-time packet sniffing,
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Fig. 6. Network Under Test

analysis, and logging on IP networks [6]. In this experiment, it was used ex-
clusively for its packet sniffing and packet logging capabilities. The tool was
configured to break out packets into their constituent fields and write them to
a MySQL [8] database.

Figure 7 shows the three tools used to prepare the data. The first tool labels
all packets by TCP connection and removes broken or empty connections. The
second reconstructs the contents of every TCP connection while preserving the
relationship of those contents with their underlying packet features. The final
tool parses all relevant HTTP features and statistics from each TCP stream.
The results from each of these steps are written back to the database.

Fig. 7. Three Data Preparation Steps

These tools process the raw packets to produce multiple views of the data
across all relevant protocols. They provide a convenient, granular, and relational
breakdown of every traffic feature of interest. All tools were written in C++
and made extensive use of MySQL++ [8], an object oriented API used to access
the database. The API allows queries and query results to be handled as STL
Containers. Shell scripts were used to drive the compiled tools. Perl was employed
for some ancillary tools.
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The TCP reassembler reconstructs TCP streams accurately despite packet
retransmissions or out-of-order delivery. The reassembler operates on a database
of packets (as opposed to a raw log) and preserves the mapping between a
stream’s content and its constituent packets.

The HTTP Parser extracts information from the HTTP transactions in re-
assembled TCP stream files. It parses individual HTTP headers as well as the
web resources contained in the bodies of HTTP responses. For example, the
parser can rebuild sounds, images, and documents from the HTTP stream. It
can also inflate or unzip HTML web pages that have been compressed by web
servers. This is necessary for extracting the valuable hyperlinks that allow the
Link Chaining Attack to chain TCP connections together into user sessions. The
parser very much emulates the parsing functionality of a web browser.

Data preparation constituted a significant effort before the Link Chaining
Attack could be applied.

3.1 Experimental Inputs and Procedure

The experiment was performed for five sets of Port 80 traffic data. Each set was
collected in the same hour on different week days. In raw TCPdump [9] format,
the data sets were roughly 550Mb each. They each contained about 30 minutes
of traffic generated by approximately 500 active hosts. Each set contained about
750,000 packets, 25,000 TCP connections, and 100,000 HTTP messages.

3.2 Two Versions of Fragment Isolation

Fragment isolation was performed in two ways for each data set. In the first,
fragments were isolated from all possible adjacencies. In the second, fragments
were isolated only from those adjacencies marked as likely by the heuristic. The
two tests were labelled A and B respectively.

Fragment Isolation Tests
A - All possible adjacencies
B - Adjacencies marked as likely by the heuristic

Both tests are versions of the Link Chaining Attack. Test A should be con-
sidered a naive implementation. It was conducted to establish a baseline for the
performance of the heuristic in test B.

4 Link Chaining Evaluation Metrics

For session fragments to be useful to a human analyst, they must be as large and
accurate as possible. The evaluation of the Link Chaining Attack is based on a
series of metrics that measure how the test fragments compare to actual whole
user sessions. Actual user sessions are complete sets of same-host connections,
organized by IP address. The IP address of every TCP connection is recorded in
the experiment so that actual user sessions can be isolated and easily compared
with fragments.
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The measures for fragment quality are based on the degree to which actual
sessions are reconstructed by fragments. These measures consider the number of
TCP connection elements in the intersection of a fragment and an actual session.
They are described in the following sections.

4.1 Coverage

Coverage is the degree of overlap between the connection elements in fragments
and actual sessions. Coverage measures the size of the fragment in relation to the
size of the actual session. For a given fragment f and actual session s, coverage
C is given by:

Coverage C =
|f ∩ s|
|s| (1)

4.2 Accuracy

The fraction of fragment elements that have been correctly assigned. It is calcu-
lated as follows:

Accuracy A =
|f ∩ s|
|f | (2)

Ideally, the Link Chaining attack would reproduce entire user sessions. That
is, it would produce fragments of unit coverage and accuracy. This is highly
unlikely. Instead, the goal is to consistently isolate non-trivial session fragments
of high accuracy. Regardless of their size, non-trivial fragments decrease the
session assembly time for an analyst as long as they are accurate.

4.3 Matching Fragments to Actual Sessions

There are always more session fragments than actual user sessions. Before ap-
plying any metrics, each fragment must be matched to the user session of which
it is a part. The best matching user session is the one that shares the largest
number of connection elements with the fragment. For a given fragment f , and
the set of all user sessions S, the matching session m, is given by:

Matching Session m =
{
mεS

∣∣∣|f ∩m| = max
{|s ∩ f |

∣∣∣sεS}} (3)

4.4 Ambiguous Fragments

Some fragments will match multiple sessions. Such fragments are inaccurately
chained and contain equal numbers of connections from two or more sessions.
For example, the following fragment f matches sessions s1 and s2 equally:

f =
{
1, 2, 3, 4

}
s1 =

{
1, 2, 5, 9, 13

}
s2 =

{
0, 3, 4, 12, 26, 52

}
To evaluate these fragments effectively, they must be assigned to, and compared
with, a single whole session. There is no way to do this meaningfully. Such an
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assignment would be essentially arbitrary. Fragments that are too ambiguous to
evaluate in the context of this experiment would be similarly confusing to the
analyst in practice. Measuring the quality of such fragments is pointless; they
are all bad. For this reason, the metrics are not applied to ambiguous fragments.
Instead, the fragments are counted separately, and presented as an index of
ambiguity, indicating one aspect of the performance of the LCA overall.

Ambiguity =
AmbiguousFragments

AllFragments
(4)

4.5 Trivial Fragments

By definition, fragments made up of one connection element always match one
session and have unit accuracy. Their effect is to increase the aggregate accuracy
in a meaningless way. For example, if half of all fragments are trivial, the aggre-
gate accuracy is guaranteed to be at least 0.5. This is an unnaturally inflated
score that does not represent the accuracy of non-trivial fragments. To correct
this, accuracy is not measured for trivial fragments, and aggregate results are
presented with a triviality score.

Triviality =
TrivialFragments

AllFragments
(5)

5 Results

5.1 Trivial and Ambiguous Fragments

Trivial fragments accounted for 5.25% to 9.33% of all fragments in Test A and
12.81% to 16.81% in Test B. The larger number of trivial fragments in Test B is
to be expected, as the naive method of Test A chains connections into fragments
much more readily than the discerning heuristic of Test B. It is important to
mention that some fragments were small because the sessions themselves were
small. Specifically, 3.48% to 7.21% of actual user sessions were trivial.

Ambiguous fragments accounted for 2.25% to 4.41% of all fragments in Test
A and 1.14% to 4.02% in Test B. There was no statistically significant difference
in ambiguity between the two methods.

5.2 Coverage

The distributions of coverage scores for Tests A and B are shown in Figure 8
and 9. The coverage of the fragments isolated by the heuristic appear to be
exponentially distributed, with about 75% of them having session coverage less
than 25%. The naively isolated fragments are distributed much differently, with
generalized peaks at coverages less than and greater than 50%.

5.3 Accuracy

The distribution of fragment accuracy for Tests A and B is shown in Figures 10
and 11. The figures show clearly that the heuristic isolates fragments that are
much more accurate than those of the naive method.
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Fig. 8. Distribution of Session Coverage
of Fragments (Test A)

Fig. 9. Distribution of Session Coverage
of Fragments (Test B)

Fig. 10. Distribution of Accuracy
Scores, Naive Chaining (Test A)

Fig. 11. Distribution of Accuracy
Scores, Heuristic (Test B)

6 Analysis

The previous section showed that the Link Chaining Attack was able to group
TCP connections into non-trivial fragments with moderate success. The inde-
gree heuristic proved to be far more accurate than naive chaining, although the
fragment sizes it produced were much smaller. The averages for each metric are
summarized in Table 1 below.

Table 1. Summary of Link Chaining Performance Averages

Test Fragment Size Coverage Accuracy Triviality Ambiguity

A. Naive 58.67 31.48 24.15 6.96 3.28
B. Heuristic 10.62 12.63 88.41 14.3 3.32
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This research has been predicated on the notion that it is desirable for human
analysts to group the contents of passively logged TCP connections into user
sessions for the purpose of surveillance. The above results are now used to show
how Link Chaining aids this process.

6.1 Modeling Sessionization Time

Without Link Chaining, or a similar technique, the largest unit of network traf-
fic that can be rebuilt from the stream automatically and reliably is the TCP
connection. After TCP connections are rebuilt, it is assumed the analyst would
sessionize them by analysing hyperlinks, content, semantics etc. Since no real
data on human sessionization time is available, the time ts, to sessionize n con-
nections is modeled as follows:

Sessionization Time Model 1 ts = tc
n(n− 1)

2
(6)

Where the time to compare one connection or fragment to another, tc, is con-
stant, and is multiplied by the maximum number of comparisons required (i.e.
the comparison of all possible connection pairs or

(
n
2

)
). This is a conservative

model.
Modeling sessionization time without empirical data is admittedly clumsy.

The following relationship is used to model the best case sessionization time
achievable by an analyst, t�s , which is linear with respect to the number of con-
nections. It is impossible to argue that a human (or even a computer) can do
better than compare all connections in one pass simultaneously, so the model is
used as an ultra-optimistic benchmark.

Sessionization Time Model 2 t�s = n · tc (7)

6.2 Time Savings

The average size of fragments isolated by the heuristic in the Link Chaining
Attack was 10.62 connections. Based on this average, the number of pieces, n,
that an analyst would have to sessionize is reduced to n

10.62 . Figures 12 and 13
illustrate the effect of such a reduction on sessionization time using both models
M1 and M2.

The first model shows that based on the average fragment size of the experi-
ments, a human analyst working with fragments (as opposed to individual TCP
connections) would experience a speedup of greater than 100 when based on a
conservative model of analyst efficiency. When based on an optimistic model for
analyst efficiency, the LCA represents a ten-fold speedup. Since the optimistic
model represents the best possible case for a human analyst’s unaided perfor-
mance, it is expected that the actual speedup would be significantly better than
the indicated ten-fold speedup.

The amount of content visible in each fragment has a definite impact on
sessionization speed. Individual TCP connections offer only a small window onto
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Fig. 12. Sessionization Time Functions,
Original and With LCA, Model 1

Fig. 13. Sessionization Time Functions,
Original and With LCA, Model 2

a user’s browsing sessions, while fragments made up of multiple connections offer
a much larger window. This larger window provides the analyst with much more
semantic context, allowing him to infer user sessions more easily than he could
with individual TCP connections.

For example, some of the fragments in this experiment were rendered in a
web browser. These fragments revealed stock research pages, online education
seminars, and shopping pages. In a few cases, whole webmail sessions were con-
tained in one fragment and could be rendered in their entirety, including email
attachments.

7 Conclusion

By reducing the high cost of sessionizing connections manually, the Link Chain-
ing Attack makes passive external surveillance of private networks a real possi-
bility. The results suggest a minimum ten-fold speed improvement for a human
analyst with acceptable accuracy. This number may be closer to 100 when using
a reasonable model of human sessionization speed.

The fact that the indegree heuristic performed more accurately than the
naive method of fragment isolation demonstrates that web traffic contains an
exploitable relationship that is more descriptive than that marked by hyperlinks
alone. Web browsing is governed by a discernible pattern of user and browser
think times that can be used — together with tracing hyperlinks — to group
connections.

The Link Chaining Attack capitalizes on navigation and time oriented heuris-
tics to sessionize fragments of user sessions. Proposed improvements include the
tuning of user and browser think time thresholds, the identification of new im-
possibilities for link removal, and the discovery of impossible event sequences
spanning multiple connections. A method for assessing the likelihood of a link
based on a recursive calculation of the likelihood of its adjacent links is also
being considered.
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It is believed that evolved versions of the technique will take advantage of
these small improvements to enable the uncomplicated passive external surveil-
lance of private networks — despite the anonymizing effects of NATs and HTTP
proxies.
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Abstract. This paper examines the use of NAT with IPsec as a transparent se-
curity mechanism. It discusses the security needs and solutions that define how 
to combine IPsec and NAT. Because of the inherent limitations of current pro-
posed solutions, this paper proposes an end-to-end security architecture using 
IPsec in the NAT/DHCP environment with a formal validation to the proposed 
architecture using an automatic protocol analyser called Hermes. This paper is 
builds upon works previously published.  

1   Introduction 

NAT (Network Address Translation) [30] is widely used in security architectures. It 
was originally developed as an interim solution to combat IPv4 [27] address depletion 
by allowing globally registered IP addresses to be re-used or shared by several hosts 
[24]. NAT provides transparent routing mechanism to end hosts trying to communi-
cate from disparate address realms, by modifying IP and transport headers en-route. 
By providing this mechanism, NAT has become of vital importance in the implemen-
tation of network security. 

The use of NAT has been the savior as well as the doom-maker for IP network de-
ployment. At the same time that it solved address space issues and enabled the de-
ployment of private IP networks, favoring address reuse, it has introduced major is-
sues, breaking some of Internet's protocols and applications. IPsec (IP Security) [18] 
might be considered one of the main protocols that NAT has broken, even if there are 
currently solutions in order to "make" IPsec work when NAT devices are in place, the 
truth is, IPsec deployment is seriously hindered. However, IP security end-to-end 
from any host to any other host in the Internet is yet far from a reality. 

In this paper, we propose a solution for assuring the end-to-end security using IP-
sec in the NAT/DHCP [8] environment. This solution is built upon [6, 7] and [32], 
works previously published. 

The remainder of this paper is structured as follows: Section 2 describes known in-
compatibilities between NAT and IPsec, section 3 explores some existing solutions 
that define how to combine IPsec and NAT, and exposes their limits. Section 4 illus-
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trates our proposed solution for assuring the end-to-end security using IPsec in the 
NAT/DHCP environment and validates it using an automatic protocol analyser called 
Hermes. Section 5 presents some security consideration related to our solution. Sec-
tion 6 concludes this paper and gives directions for future work. 

2   IPSEC/NAT Incompatibilities 

This section describes known incompatibilities between NAT and IPsec. The use of 
IPsec, or any other security protocol with "NAT" which uses IP addresses as part of a 
SA (Security Association), for communications that span multiple routing realms is 
problematic. NATs clearly limit the scope where IPsec could be applicable (or vice 
versa, IPsec could limit the scope where NATs could be applicable). IPsec techniques 
which are intended to preserve the endpoint addresses of an IP packet will not work 
with NAT enroute for most applications in practice [29]. Techniques such as AH 
(Authentication Header) [19] and ESP in tunnel mode (Encapsulation Security Pay-
load) [20] protect the contents of the IP headers (including the source and destination 
addresses) from modification. Yet, NAT's fundamental role is to alter the addresses in 
the IP header of a packet. IPsec supports two "modes". Transport mode provides end-
to-end security between hosts, while tunnel mode protects encapsulated IP packets 
between security gateways. 

In IPsec transport mode, both AH and ESP have an integrity check covering the 
entire payload. When the payload is TCP [26] or UDP [25], the TCP/UDP checksum 
is covered by the integrity check. When a NAT device modifies an address the check-
sum is no longer valid with respect to the new address. Normally, NAT also updates 
the checksum, but this is ineffective when AH and ESP are used. Consequently, re-
ceivers will discard a packet either because it fails the IPsec integrity check (if the 
NAT device updates the checksum), or because the checksum is invalid (if the NAT 
device leaves the checksum unmodified). 

Note that IPsec tunnel mode ESP is permissible so long as the embedded packet 
contents are unaffected by the outer IP header translation. If the transport endpoint is 
under our control, we might be able to turn off checksum verification. In other words, 
ESP can pass through NAT in tunnel mode, or in transport mode with TCP check-
sums disabled or ignored by the receiver. IPsec tunnel mode AH doesn't suite NAT 
because whole packet is authenticated (including header) hence leaving no space for 
NAT to modify the IP header. Thus, co-existence of NAT and IPsec (using AH) in 
either of the operational modes is not feasible due to functional architecture of AH. If 
we stick to ESP in tunnel mode or turn off checksums, there's still another obstacle: 
the IKE (Internet Key Exchange) [14].  

IPsec-based VPNs (Virtual Private Networks) use IKE to automate security asso-
ciation setup and authenticate endpoints. The most basic and common method of 
authentication in use today is preshared key. Unfortunately, this method depends upon 
the source IP address of the packet. If NAT is inserted between endpoints, the outer 
source IP address will be translated into the address of the NAT router, and no longer 
identify the originating security gateway. To avoid this problem, it is possible to use 
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another IKE "main mode" and "quick mode" identifier (for example, user ID or fully 
qualified domain name). 

It may be of interest to note that IKE is a UDP based session layer protocol and is 
not protected by network based IPsec security. Only a portion of the individual pay-
loads within IKE are protected. As a result, IKE sessions are permissible across NAT, 
so long as IKE payload does not contain addresses and/or transport IDs specific to 
one realm and not the other. Given that IKE is used to setup dynamic IPsec associa-
tions, the majority of current solutions propose a ways of making IPsec work through 
a NAT function.  

In the next section we explore some of those solutions that define how to combine 
IPsec and NAT, and expose their limits. 

3   Existing Solutions 

End-to-end network layer security via IPsec cannot operate with an intervening NAT 
device. One simple solution is to have a single device for performing NAT and IPsec 
tunnelling. [28] is a useful resource that describes a security model with tunnel-mode 
IPsec for NAT domains.  

There are a variety of solutions being proposed for the NAT-IPsec compatibility 
problem [1]. A number of them recommended as intermediate solutions pending the 
wide-spread adoption of IPv6. Those solutions [1] are: 

3.1   IPsec Tunnel Mode 

In a limited set of circumstances, it is possible for an IPsec tunnel mode implementa-
tion, such as that described in [8], to traverse NA(P)T successfully [28]. However, the 
requirements for successful traversal are sufficiently limited so that more general 
solution must meet the following requirements [1]: 

1. IPsec ESP.  IPsec ESP tunnels do not cover the outer IP header within the message 
integrity check, and so will not suffer Authentication Data invalidation due to ad-
dress translation. IPsec tunnels also need not be concerned about checksum invali-
dation. 

2. No address validation. Most current IPsec tunnel mode implementations do not 
perform source address validation so that incompatibilities between IKE identifiers 
and source addresses will not be detected.   

3. "Any to Any" SPD (Security Policy Database) entries.  IPsec tunnel mode clients 
can negotiate "any to any" SPDs, which are not invalidated by address translation.  
This effectively precludes use of SPDs for the filtering of allowed tunnel traffic. 

4. Single client operation. With only a single client behind a NAT, there is no risk of 
overlapping SPDs. Since the NAT will not need to arbitrate between competing 
clients, there is also no risk of re-key mis-translation, or improper incoming SPI or 
cookie de-multiplexing. 

5. Active sessions. Most VPN sessions typically maintain ongoing traffic flow during 
their lifetime so that UDP port mappings are less likely be removed due to inactiv-
ity. 
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3.2   RSIP 

Described in [3] and [4], includes mechanisms for IPsec traversal, as described in 
[23]. By enabling host-NA(P)T communication, RSIP addresses issues of IPsec SPI 
de-multiplexing, as well as SPD overlap. By enabling hosts behind a NAT to share 
the external IP address of the NA(P)T (the RSIP gateway), this approach is compati-
ble with protocols including embedded IP addresses. By tunnelling IKE and IPsec 
packets, RSIP avoids changes to the IKE and IPsec protocols, although major changes 
are required to host IKE and IPsec implementations to retrofit them for RSIP-
compatibility. It is thus compatible with all existing protocols (AH/ESP) and modes 
(transport and tunnel). In order to handle de-multiplexing of IKE re-keys, RSIP re-
quires floating of the IKE source port, as well as re-keying to the floated port. As a 
result, interoperability with existing IPsec implementations is not assured. RSIP does 
not satisfy the deployment requirements for an IPsec-NAT compatibility solution 
because an RSIP-enabled host requires a corresponding RSIP-enabled gateway in 
order to establish an IPsec SA with another host. Since RSIP requires changes only to 
clients and routers and not to servers, it is less difficult to deploy than IPv6 [1]. 

3.3   6to4 

6to4, as described in [5] can form the basis for an IPsec-NAT traversal solution.  In 
this approach, the NAT provides IPv6 hosts with an IPv6 prefix derived from the 
NAT external IPv4 address, and encapsulates IPv6 packets in IPv4 for transmission to 
other 6to4 hosts or 6to4 relays. This enables an IPv6 host using IPsec to communicate 
freely to other hosts within the IPv6 or 6to4 clouds. While 6to4 is an elegant and 
robust solution where a single NA(P)T separates a client and VPN gateway, it is not 
universally applicable. Since 6to4 requires the assignment of a routable IPv4 address 
to the NA(P)T in order to allow formation of an IPv6 prefix, it is not usable where 
multiple NA(P)Ts exist between the client and VPN gateway. For example, NA(P)T 
with a private address on its external interface cannot be used by clients behind it to 
obtain an IPv6 prefix via 6to4. While 6to4 requires little additional support from hosts 
that already support IPv6, it does require changes to NATs, which need to be up-
graded to support 6to4. As a result, 6to4 may not be suitable for deployment in the 
short term [1]. 

3.4   NAT-Traversal in the IKE 

[21] describes how to detect one or more Network Address Translation devices 
(NATs) between IPsec hosts, and how to negotiate the use of UDP encapsulation of 
IPsec packets [16] through NAT boxes in IKE.  

For NAT Traversal to work properly, two things must occur. First, the communi-
cating VPN devices must support the same method of UDP encapsulation. Second, all 
NAT devices along the communication path must be identified.  

According to [21], IPsec devices will exchange a specific, known value to deter-
mine whether or not they both support NAT Traversal. If the two VPN devices agree 
on NAT Traversal, they next determine whether or not NAT or NAPT occurs any-
where on the communications path between them.  



108 J. Demerjian et al. 

 

NAT devices are determined by sending NAT-D (NAT Discovery) packets. Both 
end points send hashes of the source and destination IP addresses and ports they are 
aware of. If these hashes do not match, indicating that the IP address and ports are not 
the same, then the VPN devices know a NAT device exists somewhere in between.  

All NAT Traversal communications occur over UDP port 500. This works great 
because port 500 is already open for IKE communications in IPsec VPNs, so new 
holes do not need to be opened in the corporate firewall.  

NAT Traversal is the long-awaited solution to one of the major issues with IPsec 
VPNs, but it does not solve everyone's problems. 

NAT-T (NAT Traversal) has the following limitations: 

1. NAT-T imposes approximately 200 bytes of overhead during IKE negotiation and 
about 20 bytes of additional overhead for each packet. Depending on the amount of 
available bandwidth and processing power, the difference in throughput may in 
some instances be measurable.  
Because AH transforms actually authenticate packet header as well as packet pay-
loads, and because NAT Traversal provides a mechanism by which packet headers 
can be modified in transit, AH and NAT-T do not function together; NAT-T oper-
ates only on ESP-transformed packets.  
Because of this authentication deficiency, the trust level between hosts using NAT-
T is greatly reduced; NAT-T should not be used when the greatest level of host-
based authentication is required. 

2. NAT-T works only when the IKE initiator is the system behind the NAT box. An 
IKE responder cannot be behind a NAT box unless the box has been programmed 
to forward IKE packets to the appropriate individual system behind the box [31]. 

3. The NAT box does not use special processing rules. A NAT box with special IPsec 
processing rules might interfere with the implementation of NAT-T [31]. 

Next, we shall present our solution for assuring the end-to-end security using IPsec 
in the NAT/DHCP environment. 

4   Proposed Solution 

Because of the inherent limitations of current solutions proposed for the NAT-IPsec 
compatibility problem, it proves to be necessary to find solution answering effectively 
this legitimate security preoccupation. 

Given that IKE can be used to setup dynamic IPsec associations, we propose a new 
way of making IPsec work through a NAT function. This solution is built upon [6, 32] 
and [8], works previously published. 

Before developing our proposition, the following section starts with an overview of 
E-DHCP (Extended-Dynamic Host Configuration Protocol) solution then the IKE 
protocol issue at NAT environment. 

4.1   Overview of E-DHCP 

The DHCP (Dynamic Host Configuration Protocol) [8] provides a framework for 
passing configuration information to hosts on a TCP/IP network.  
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DHCP itself does support neither an access control for a proper user nor the 
mechanism with which clients and servers authenticate each other. 

In [6] we have proposed an extension to DHCP protocol called E-DHCP (Ex-
tended-Dynamic Host Configuration Protocol) in order to allow a strict control on the 
equipments and users through a strong authentication process. [6] defines a new 
DHCP option (fig.1) based on the use of certificates.  

The definition of new DHCP options [11] is possible because the options field en-
visages the implementation of new options [10]. 

This option provides simultaneously the authentication of entities (DHCP client 
and server) and DHCP messages. The technique used by this option is based on the 
use of public key cryptography [17], X.509 identity certificates [15] and AC (Attrib-
ute Certificates) [12]. On the other hand, E-DHCP allows an improved access control 
to the DHCP system by using AC. 

Code Length Flag URIIdentityCertificate URIAttributeCertificate

AuthenticationInformation

Bits :
0 1 2….  7 8 9 …....15 16 .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .. .

 

Fig. 1. Authentication option structure 

In E-DHCP proposal (fig. 2), DHCP server is leaned on an AA (Attribute Author-
ity) server [12] that creates a client Attribute Certificate (client AC), which ensures 
the link between the client identity certificate and the allocated IP address. Therefore, 
the use of AC confirms client's ownership of the allocated IP address. 

 
 
 
 
 

E-DHCP Server Attribute AuthorityDHCP Server  

Fig. 2. E-DHCP Server 

In a typical E-DHCP scenario (fig.3), the client broadcasts a DHCPDiscover mes-
sage on its local physical subnet. This message includes the proposed authentication 
option. 

The client specifies its identity certificate URI (Uniform Resource Identifiers) [2] 
in DHCPDiscover message, then in response, the server specifies its identity certifi-
cate URI in DHCPOffer message. 

In all the transactions, on one side the sender (client/server) encapsulates the value 
of the encrypted signature of DHCP message, and on the other side, the corresponding 
receiver (server/client) checks signature's authenticity.  
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Fig. 3. E-DHCP Scenario 

Information included in X.509 identity certificates will be used by the client and 
the server in signature validation for the rest of the transaction. When the server re-
ceives the DHCPRequest message, it will create the client's AC and save it in a data-
base. The server specifies the AC URI in the DHCPACK message. This URI is used 
by the client to extract its AC from the database.  

4.2   IKE Protocol issue at NAT Environment 

4.2.1   IKE Protocol Overview 
The Internet Key Exchange Protocol version 1 allows two entities (i.e. network hosts 
or gateways) to derive session keys for secure communication via a series of mes-
sages. These exchanges provide authentication and/or encryption for some messages, 
and various degrees of protection against flooding, replay, and spoofing attacks. 

Currently, the IETF is developing a new version of the IKE protocol that is coming 
up in more simplified and efficient way than the existing IKE protocol. 

The Internet Key Exchange Protocol version 2 presents a greatly simplified IKE 
protocol. IKE v2 is an attempt to simplify the standard, remove the un-needed re-
quirements, and incorporate new standard IPsec functionalities currently contained 
within other documents. Unlike IKE v1, which is documented within three separate 
documents, IKE v2 is completely described within a single document. 

The important difference between IKE v1 and IKE v2 is the reduced number of 
round trips required to implement identity protection, the number of possible Phase 1 
exchanges is reduced from eight to one. IKE v1 aggressive mode is no longer sup-

E-DHCP Server E-DHCP Server Client



 A Secure Way to Combine IPsec, NAT & DHCP 111 

 

ported. In addition, the establishment of SA (Security Association) for other security 
protocols (IPsec) can be piggybacked on the Phase 1 IKE exchange. 

From authentication’s schemes point of difference, digital signature is the only 
supported mechanism for certificate based authentication. Shared secret authentica-
tion is still supported. 

Thus, IKE v1 and v2 relies on the same mechanisms that power most network se-
curity systems: public and private key cryptography, and keyed hash functions. They 
also allow the use of AC (Attribute Certificate) within a Public Key and a Privilege 
Management Infrastructures (PKI/PMI).  

Even that version 2 of IKE does not interoperate with version 1, but it has enough 
of the header format in common that both versions can unambiguously run over the 
same UDP port. 

4.2.2   IKE v1 Negotiation Issue at NAT and E-DHCP Environment 
Generic IPsec process starts with the IKE negotiation which establishes SA and key 
agreement (fig.4). The main mode of IKE continues with the negotiation of NONCE 
values in the IKE nonce payloads and the DH (Diffie-Hellman) public parameters in 
the KE payloads. Now both initiator and responder create the master secret and its 
derived keys.  

At this point, all payloads (without the HDR payload) will be encrypted with the 
derived key protecting ID authentication against ID spoofing attack. The two entities 
can exchange identity information using a digital signature algorithm to authenticate 
themselves.  

The digital signature is not applied to the IKE message. Instead it is applied to a 
hash on all information available to both entities. All this information is carried in an 
identity payload, authentication payload and a certificate payload.  

The second phase of IKE establishes the SA agreement for IPsec treatment for the 
IP payloads. Using the SA and key information agreed through the IKE negotiation, 
IPsec ESP or AH modes are applied to support confidentiality or integrity of the IP 
datagrams.  

In the NAT environments, however, applying IPsec transport mode causes a prob-
lem due to the datagram conversion at the NAT server on route to the destination 
node. The problem happens at the first phase of the IKE negotiation and at the mode 
of IPsec AH operation. In fact, at the fifth and sixth steps of the main mode operations 
of IKE (fig.4), both nodes exchange the ID information and hash values (HASH_I and 
HASH_R) verifying some information including the ID values. The IP addresses are 
usually used as the ID values in this procedure. 

The IP translation at the NAT server causes the ID authentication to fail, because 
the IP node at the destination is ignorant of the IP translation at the NAT server, and 
the verification of the hash value (HASH_I) based on the translated IP address fails. 
Thus, the whole IKE negotiation procedure fails. 

To inform the responder of the IP address masked behind the IP translation, we 
propose to correlate the masked IP address and the IP translated address through an 
AC generated by the E-DHCP server. AC was integrated in the ISAKMP (Internet 
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Fig. 4. IKE v1 main mode 

Security Association and Key Management Protocol) [22] and the IKE v1 standards 
and now in the IKE v2 proposition allowing access control and service delegation. In 
addition, the flexibility of this type of certificate is what motivate us to use it with 
current IPsec implementation and in particular with NAT. We have developed 
X.509/XML AC with its PMI (Privilege Management Infrastructure) in E-DHCP 
proposition. In the last IKE v1 exchange, the node behind the NAT Server can send 
its AC in the authentication phases. The X.509/XML AC is signed through the E-
DHCP server and contains both: 

1. The Identity (IP address) of the "client or node" which was allocated by the E-
DHCP Server. 

2. The Identity (IP address) of the NAT Server. This will allow end entity to verify 
that the NAT Server which he negotiates is the pretending NAT that hides the 
original IP address of the client. 

Upon receiving this certificate from the responder (an end entity node or even a 
NAT server), this entity verifies the authentication message and the AC by verifying 
the digital signature of the PKI/PMI certificate authority. Once verified, the responder 
can verify all IPsec Packets by replacing the NAT address by the masked IP address 
send in the AC. The following lines present an example of the XML AC. 
 
<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE AttributeCertificate SYSTEM "Applica-
tion1.dtd"> 
<AttributeCertificate Version="1"> 
  <Issuer>....</ Issuer > 
  <ApplicationName>Application1 
   </ApplicationName > 
  <NetworkConnexion> 
   <NetworkName>VPNdialer</NetworkName> 
   <NetworkConnexionType>Unlimited 
    </NetworkConnexionType > 
   <NATaddress>137.194.192.2-137.194.192.50 

HDR,  SA

HDR, SA

HDR,K NCE

HDR*,   IDii,   [CERT,]  [ATTCERT,] AUTH 

ResponderInitiator 

HDR,  KE, ONCE

HDR*,   IDir, [CERT,]  [ATTCERT,] AUTH 
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    </NATaddress > 
   <Bandwidth>2 Mbits/s</Bandwidth> 
  </NetworkConnexion> 
 <PersonnalInfo> 
  <Holder>… DN + SN ….</ Holder > 
  <PrivateIPaddress>137.194.192.2 
   </PrivateIPaddress > 
  <DNS>serveraix.ftcom.com</DNS> … 
</PersonnalInfo> 
 <Validity> 
  <From>2004.12.12.12.12</From> 
  <To>2005.12.12.12.12</To> 
 </Validity> 
  <SerialNumber>1012313281</ SerialNumber > 
</ AttributeCertificate> 

4.2.3   IKE v2 Negotiation Issue at NAT and E-DHCP Environment 
The IKEv2 is very similar to IKEv1 in performing mutual authentication and estab-
lishing security associations. IKEv2 first replaces the eight possible phase 1 ex-
changes with a single exchange that provides identity protection and is based on either 
public signature or shared secret keys. In addition, IKEv2 is the only proposal that 
was conceived to be simply extensible. In a simple manner, IKEv2 proposes adapting 
a simple hash function over all payloads, no matter which authentication methods is 
used [13]. As shown in (fig.5), and Like IKEv1, IKEv2 allow authentication throw 
AC that can be used to negotiation all NAT parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. IKE v2 negotiation 

In the first exchange, the two entities negotiate a list of proposed cryptographic al-
gorithm in the SA payload, their DH public values (KE) and random nonces (Ni, Nr). 
At this point, the two endpoints begin generating the master secret SKEYSEED and 
the derived keys SK_e, SK_a and SK_d. Now, all messages in the second round trip 
(except the HDR payload) will be encrypted using the encryption key. The initiator 
can now send his identity with the ID (Identity) payload, and a hash of the first round 
trip messages using the Authentication (AUTH) payload. The initiator can now send 
his X509 identity certificate containing his public key that proves his real identity and 
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his X.509/XML AC that proves his real IP address masked with the NAT server. The 
initiator can also send a certificate request and the identity of the responder that can 
host multiple services. The second exchange contains also the SA2 that can serve for 
the child-SA negotiation and the TS (Traffic Selector) payloads. In the last message 
the responder will assert his identity in the IDr (IDentity Responder) payload, his 
CERT (Certificate) payload that contain his public key, hash the 3 messages in AUTH 
payload to assure an integrity protection and complete the negotiation of a child SA. 
TSi and TSr are used to assure the description of traffic to be sent. 

4.3   IKE Validation with Hermes 

In this section, we propose a formal validation of our proposed protocol using a model 
checking tool, called Hermes [33] [36]. Hermes computes an invariant of the intruder 
knowledge to check whether the defined secrets within a protocol may be revealed. 
The result is obtained without any restriction on the number of parallel sessions, the 
number of participants and the size of exchanged messages. The research around 
Hermes has also been supported by the EVA RNTL project [35] that aims at provid-
ing a toolbox for verifying cryptographic protocols using a protocol specification 
language called LEAVA [36]. 

Presenting EVA abstract model is out of the scope of this paper [33]; we only pro-
vide here a high level specification of our protocol in LEVA language. This specifica-
tion is then automatically translated to an intermediate representation used as an entry 
point to Hermes which compiles and verifies our proposition. 

We illustrate our scenarios as a negotiation between two principals A, B that repre-
sent respectively the IPSec initiator and responder. Our goal is to open an IKE v1 
phase 1 negotiation with identity protection based on X.509 identity and attribute 
certificates. 

                
IKEv1_Identity_Protection_Signature 
alg : asym_algo   
everybody knows alg 
  A, B,CA,EDHCP: principal 
  basetype key 
  keypair^alg SK, PK (principal) 
  SAi,SAr,Ca,Cb,Na,Nb,certreq: number 
  //Ks(number, number, number) : number 
  p, g, Xa, Xb: number  // valeur publique DH éphémère 
  Ks: key  // clé dérivée des valeurs DH et des autres 
paramètres. 
  alias certB = { CA, B, PK(B) }_SK(CA)^alg 
  alias certA = { CA, A, PK(A) }_SK(CA)^alg 
  alias Attcert = { A, EDHCP }_SK(EDHCP)^alg 
// Inital Knowledge  
everybody knows alg 
 A knows A, SK(A), PK(A), PK(CA), certA, Ks, 
EDHCP,PK(EDHCP),Attcert 
  B knows B, CA, SK(B), PK(B), PK(CA),certB, 
Ks,EDHCP,PK(EDHCP) 
//Message Knowledge 
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   { 
    1. A -> B : Ca,SAi 
    2. B -> A : Cb,SAr 
    3. A -> B : Ca, Cb, p,g,Xa, Na, certreq 
    4. B -> A : Ca, Cb,p,g,Xb, Nb, certreq 
    5. A -> B : Ca,Cb, {{A,certA,Attcert, 
Na,Nb,p,g,Xa,Xb, certreq}_(SK(A))^alg}_Ks 
    6. B -> A : Ca,Cb, {{B,certB,Nb,Na,p,g,Xa,Xb, cer-
treq}_(SK(B))^alg}_Ks 
   } 
//Sessions and properties  
   s. session* {Ca,Cb,Na,Nb,p,g,Xa,Xb,Ks} A=A, B=B 
   assume secret (SK(B)@s.B), 
          secret (SK(A)@s.A), 
          secret(Ks@s.A), 
          secret(Ks@s.B) 
 
We can divide the first phase of IKE v1 protocol into five parts. In the first part, 

Principals (A, B, EDHCP for Attribute Authority and CA for Certificate Authority) 
and variables (called numbers, algo and, key) are explicitly declared. It contains the 
definition of all necessary Diffie Hellman parameters like n, g and the public DH 
values Xa,Xb, are for the principals A, and B respectively. The two principals A and 
B will be authenticated using their two constructors PK and SK that represent respec-
tively the public and private key of each principal. 

The X.509 certificates of A and B concatenate the identity and the public key of 
each principal under a signature. The signature is done using the private key SK(CA) 
of a trusted certificate Authority (CA). The attribute certificate of the principal A is 
signed with the private key of the E-DHCP attribute certificate. 

The second part (commented by initial knowledge) specifies the initial knowledge 
of each principal. It indicates also that some variables could be defined as public val-
ues under the ‘everybody knows’ syntax.  

In the third part (describing the messages to be exchanged) comes a sequence of 
message that is exchanged between the two principals. A message in the sequence is 
expressed in the form A -> B: M, meaning that entity A sends the message M to entity 
B. Typically cryptographic algorithms with special representation are required to 
construct the messages that are exchanged.  For example, {M}_SK(H) means that the 
message M is signed with the private Key of H but {M}_K means that the message M 
is encrypted with the secret key K.  

The extended IKE protocol is represented with six steps providing a protection 
against replay attacks, message authentication, secure session negotiation and dual 
entity authentication. In the first four messages, the two entities A and B exchange 
cookies (Ca, Cb), nonces (Na and Nb), security associations (SAa and SAb) and their 
ephemeral public DH values n, g, Xa and Xb) that represents the group module of 
DH. The two entities send also the message certreq forcing the use of certificates in 
authentication. In the last exchange the two entities will authenticate each other with a 
signature on all exchanged data. A should also send his attribute certificate explained 
previously that contains all its attributes. All data except the cookie messages will be 
encrypted using an encryption Key (Ks) derived from the DH and Nonces.  
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The fourth part (assumptions and claims) considers an unbounded number of ses-
sions in parallel, and the final part provides the secrecy hypothesis that is exploited in 
the Hermes’s reasoning [33]. It defines keys unknown to the intruder which can be 
used to safely encrypt messages. secret (K@s.H) means that the key K in session s 
should be treated as a secret from H’s point of view.  

Table 1. Result of IKE  phase 1 with digital signature 

Secrets: SK(h);Ks; (h represent a Principal) 

GoodPatterns: {xs}_PK(h); 
{xs}_Ks 

BadPatterns: 
 Vide 

Using the Online Hermes’s tool [34], our specification was correctly compiled and 
verified regarding secrecy properties.  As output, Hermes provides the sequence of 
rules leading to each new secret or bad pattern.  

The previous table summarizes the result obtained on the first phase of IKE proto-
col with digital signature. In table 1, “GoodPatterns” means that, all message en-
crypted with one of the three secrets (Ka, shr and SK) can be securely exchanged 
[33]. No attack was identified with “BadPatterns”. Moreover, Hermes provides 
online, a graphical tree proof that can be exploited for understanding attacks and pro-
tocol certification. 

5   Security Consideration 

This paper describes how to solve IPsec security issue at NAT/DHCP environment. 
Since this proposition does not change or discard any of the IPsec security itself, the 
security of this paper is exactly the same as that of the IPsec functionality.  

However, the use of this proposition will be limited to the presence of a PKI infra-
structure. This is due to the fact that this proposition is based on the use of attribute 
certificate in correlation with X.509 certificate in IKE authentication schemes. 

6   Conclusion and Future Work 

NAT removes the end-to-end significance of an IP address. Therefore, end-to-end 
network layer security via IPsec cannot operate with an intervening NAT device. This 
is significant problem with NAT, particularly considering the increase in demand for 
IPsec and VPN-based solutions. 

This paper has presented the incompatibilities between NAT/IPsec, exposed some 
existing solutions that define how to combine NAT/IPsec and illustrated the limits of 
those solutions. We have proposed a safely new way of making IPsec work through a 
NAT function. Our proposed solution assures end-to-end security using IPsec in the 
NAT/DHCP environment. We point out that this solution is built upon [6] and [8], 
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works previously published. This proposition has several advantages compared to 
alternative solutions: 

1. The integration of AC (Attribute Certificate) in IKE protocols for access control 
will allow all IPsec entities to bypass NAT servers without any change in the cur-
rent IPsec functionalities. These ACs are always protected against identity spoof-
ing attacks under a secured tunnel. 

2. Use the IKE standards UDP ports (500 or 4500 for IKE v2). Doing so, avoids pok-
ing new holes in firewall rules and packet filters.  

3. Transparently to IPv4 or IPv6 networks. 
A future direction of this research is to validate this proposition through the devel-

opment and the establishment of real scale tests. 
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Abstract. Formal methods have proved useful in the analysis of secu-
rity protocols. The paper proposes a generic model for the analysis of
the security protocols (GSPM for short) that supports message passing
semantics and constructs for modelling the behavior of agents. GSPM is
simple, but it is expressive enough to express security protocols and prop-
erties in a precise and faithful manner. Using GSPM it is shown how se-
curity properties such as confidentiality, authentication, non-repudiation,
fairness, and anonymity can be described. Finally an example of formal
verification is illustrated.

1 Introduction

Security protocols are playing an increasingly important role and have become
an essential ingredient of communication infrastructures. They are designed to
provide properties such as confidentiality, authentication, non-repudiation, fair-
ness, and anonymity for users who wish to exchange messages through a medium
over which they have little control. However the design of a security protocol is a
difficult and error-prone task. Many popular and widely used security protocols
have been shown to have flaws. For this reason, the use of formal methods for
the verification of security protocols has received increasing attention.

Since the security protocols themselves often contain a great deal of com-
binatorial complexity, it is extremely difficult to model them and verify their
properties. Over the past few years various modelling languages, for instance
logics and process algebras, have been proposed for the systematic and tool-
supported analysis of the security protocols. Formal methods have proved useful
in the analysis of the security protocols. A popular approach is to model a proto-
col as a system of concurrent processes, described using an appropriate language
like CSP [9]. In [10] Lowe found a new attack to Needham-Schroeder public-
key protocol [13] by encoding and analysing it in CSP. Following this initial
work, numerous other calculi have been studied for the purpose of modelling
and analyzing security protocols. For example, VSPA [8] is a value passing vari-
ant of CCS [11] extended to incorporate two security levels; The spi calculus [2]
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extends the pi calculus [12] with cryptographic primitives [3]; The applied pi
calculus [1] extends the pi calculus with a general notion of terms; LY SA [4]
is a variant of the spi calculus with pattern matching. An obvious strength of
process calculus approach is their inherent mechanism for handling concurrency
and communication.

Since there is no general formal framework for the analysis of security pro-
tocols, we intend to devise the GSPM to state various security properties, as
expressed explicitly in a formal specification, and model the protocols in a pre-
cise and faithful manner. GSPM stems from concepts well established in the field
of process calculi (such as CSP, pi calculus and ambient [5] etc.). We discard the
notion of channel and don’t explicitly model the intruder, yet our simple model
is powerful.

The next section presents GSPM. Section 3 defines formally some security
properties such as confidentiality, authentication, non-repudiation, fairness, and
anonymity based on our model. Section 4 illustrates an example. Section 5 dis-
cusses our future work and concludes.

2 GSPM

In this section we present the main aspects of our model. The motivation for the
model is to be more explicit about the activities of the participants in a protocol
and those of possible attackers, and to express various security properties in a
formal specification.

2.1 The Abstract System Model of Security Protocols

In this subsection we outline how the abstract system model of the security
protocols are constructed in GSPM. Our approach provides a GSPM description
of the Dolev-Yao assumption [7]: the communication medium is entirely under
the control of the enemy, who can block, re-address, duplicate, and fake messages.
In [16], the roles of the passive medium and of the active intruder are described
using different processes. In our framework we see the combination of the intruder
and the medium as a single entity (we call it active environment). Let Idi stand
for the ith participant of a security protocol. The resulting system model of the
protocol is shown in the Figure 1.

Active Environment

�
�

Id1

�
�

Id2 � � � � � �

�
�

Idn

Fig. 1. The abstract system model of security protocols
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The rest of this subsection will give a deeper insight into the abstract system
model.

Message space. The message space we used for the analysis of security pro-
tocols is as follows:

k ::= Public key | Private key | Symmetric key Keys
a ::= k | Nonces | Plaintext Atomic messages
M ::= a | M.M | {M}k | Hash(M) Messages

Plaintexts, nonces and keys are atomic messages. The other messages are com-
posite. Like in [16] we have rules defining how messages may be generated from
existing ones. We write M � M to mean that the message M may be derived
from the finite set of messages M. The following rules define the generated
relation �:

M ∈ M =⇒M � M (1)
M � M1 ∧M � M2 =⇒M � M1.M2 (2)

M � M1.M2 =⇒M � M1 ∧M � M2 (3)
M� M ∧M � k =⇒M � {M}k (4)

M � {M}Publickey ∧M � privatekey =⇒M � M (5)
M � {M}Symmetrickey ∧M � Symmetrickey =⇒M � M (6)

M � M =⇒M � Hash(M) (7)

Let el(M) be the set of the elements of the message base M. We can obtain
the el(M) by iteration as follows:

Do while M is not empty, we get a message M from M
(1) When M is atomic message, we put M into el(M);
(2) When M = M1.M2, we put M1 and M2 into M;
(3) When M = {M1}k, if k−1 �∈ M and k−1 �∈ el(M) (k−1 is the k’s correspond-
ing key) then we put M into el(M) else we put M1 into M.

Enddo.

Theorem 1. Let M is a message base, and M is a message, then M � M is
decidable.

Proof. It can be proved by induction on the structure of message.
(1) If M is atomic message or hash message, then M � M only when M ∈

el(M);
(2) If M = M1.M2, then M � M only when el(M) � M1 and el(M) � M2.
(3) If M = {M1}k, then M � M only when M ∈ el(M) or M � k and

el(M) � M1.

Protocol participants . For each protocol participant there are a set of pro-
cesses and a message base IM . Each process of a participant corresponds to
an instance of the participant involved in a particular execution of the proto-
col. All the processes work asynchronously and concurrently. The concurrency
is simulated by non-deterministic interleaving of process running.
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Active environment . The active environment also is an intruder. It reads all
message outputs of protocol participants, and can output any message which it
generates to any protocol participant that allows for honest message passing,
redirecting messages, replaying messages, and inventing new messages. The in-
truder can also be a legitimate protocol participant. In our model we are only
interested in the active environment’s message capability, and describe the mes-
sages the active environment posses as EM . We let EM0 stand for the active
environment’s initial messages.

2.2 The Syntax of GSPM

In order define GSPM we need the syntactic sets defined below:

– N : an infinite set of names, ranged over by n, m, k, Id, Id1 · · · , x, x1, · · ·. A
name is plaintext, participant’s name, nonce, key, or atomic name variable
etc.; A key k is either public key (PubN), or a private key (PrvN ), or a
shared/secret key (SecKey).

– Variables over messages ϕ, ψ, ψ′, ψ1, · · ·.
– {.}k represents symmetric encryption, {.}+k represents asymmetric encryp-

tion, {.}−k represents asymmetric decryption.

M ::= N | ϕ | (M1, M2) | {M}k | {M}+k | H(M) Message expr.
Patt ::= M | ?x | ?ϕ | (Patt1, Patt2) | {Patt}k | {Patt}−k Pattern expr.

The grammar for processes is similar to that of the pi calculus, except that
here messages may contain terms (rather than only names) and that the notion
of channel is absent:

P, Q, R ::= process
0 null process
in(patt(x̃ϕ̃)).P message input
out(newx̃M).P message output
P |Q parallel composition

In the above definition x̃ for example abbreviates some possibly empty list
x1, · · · , xl. An informal explanation of the GSPM is similar to the one in [6].
The null process 0 does nothing; in(patt(x̃ϕ̃)).P awaits an input that matches
the pattern for some binding of the pattern variables x̃ϕ̃ and resumes as P under
this binding. Here patt(x̃ϕ̃) represents that there may be some variables x̃ϕ̃ in
the pattern. out(newx̃M).P chooses fresh, distinct names ñ = n1, · · · , nl and
binds them to the variables x̃ = x1, · · · , xl. Then the message M [ñ/x̃] is output
to the network and the process resumes as P [ñ/x̃]. The communication is asyn-
chronous in the sense that the action of output does not await input. The new
construct is like that of Pitts and Stark [15] and abstracts out an important
property of a value chosen randomly from some large set.

Furthermore we extend processes with the location to agent:

A, B, C ::= Agents
Id[P, IM ] Agent Id performs P with IM
A‖B parallel composition
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We take fv(M), fv(patt(x̃ϕ̃)), fv(IM) to be the set of variables appeared
free in M , patt(x̃ϕ̃), IM . The free variables of process terms are defined as
follows:

fv(out(newx̃M).P ) = (fv(P ) ∪ fv(M))\{x̃}
fv(in(patt(x̃ϕ̃)).P ) = (fv(P ) ∪ fv(patt(x̃ϕ̃)))\{x̃, ϕ̃}

fv(P |Q) = fv(P ) ∪ fv(Q)
fv(Id[P, IM ]) = fv(P ) ∪ fv(IM)

fv(A|B) = fv(A) ∪ fv(B)

2.3 A Transition Semantics

The semantics of the GSPM is given in terms of a transition relation −→.
Similar to the approach in [3], we model the state of the protocol system as
a pair 〈s, System〉, where s records the current environment’s message base
EM (Because the environment has ‘seen’ the sequence of messages traveling on
the network up to the moment), and System is the protocol agent composed
of some agents. An action is a term of the form Id[in(M)](input action) or
Id[out(M)](output action), which means a participant Id inputs or outputs a
message M . The set of actions A is ranged over by α, β, · · ·, while the set A∗

of strings of actions is ranged over by s, s′, · · · . String concatenation operator is
written as ‘·’. We denote by act(s) and msg(s) the set of actions and messages,
respectively, appearing in s. A string s is closed if fv(s) is nil. In what follows,
we write s � M for EM � M (EM = msg(s) ∪ EM0).

We now define paths, sequences of actions that may result from the inter-
action between an agent and its environment. In paths, each message received
by a agent can be synthesized from the knowledge the environment has previ-
ously acquired. A path is a closed string s ∈ (A)∗ such that for each s1, s2 and
Id[in(M)], if s = s1 · Id[in(M)] · s2, then s1 �M .

A configuration, written as 〈s, system〉, is a pair consisting of a path s and
a system. Configurations are ranged over by C, C′, · · ·, and C0 stands for the
initial configuration. The transition relation on configuration is defined by the
following rules:

(input)
EM � patt(ñM̃)

〈s, Id[in(patt(x̃ϕ̃)).P, IM ]〉 in(patt(ñM̃))−→
〈s · Id[in(patt(ñM̃))], Id[P [ñ/x̃, M̃/ϕ̃], IM ∪ patt(ñM̃)]〉

(output)
IM � M [ñ/x̃] ( ñ are fresh in s )

〈s, Id[out(newx̃M).P, IM ]〉 out(M [ñ/x̃])−→
〈s · Id[out(M [ñ/x̃])], Id[P [ñ/x̃], IM ∪ ñ]〉

(internal par)
〈s, Id[P, IM ]〉 α−→ 〈s′, Id[P ′, IM ′]〉

〈s, Id[P |Q, IM ]〉 α−→ 〈s′, Id[P ′|Q, IM ′]〉
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(external par)
〈s, A〉 α−→ 〈s′, A′〉

〈s, A‖B〉 α−→ 〈s′, A′‖B〉
The symmetric rules have all been omitted.

3 Properties of Security Protocols

Properties of security protocols, such as confidentiality and authenticity, are
the very objects which security protocols want to guarantee. GSPM provides a
suitable language in which they can be formally addressed and it is easy to verify
whether a security protocol has them as it is supposed to.

3.1 Confidentiality

Confidentiality means that a secret will not leak to those who are not designed
to know it while the protocol is running. Since we use message base to describe a
participant’s knowledge, it is natural for us to useM �m to express the meaning
that a participant with message baseM “knows” m. Usually the secret is shared
between proper participants of the protocol, so a violation of confidentiality can
be seen as the leakage of a secret to the active environment, which leads to the
following definition:

Definition 1. Let C0 be the initial configuration, if for all paths s generated
from C0, s �� m, then the system satisfies the confidentiality of m.

3.2 Authenticity and Integrity

What authenticity guarantees is that a message supposed to be from a certain
participant is indeed originated by that participant. According to correspondence
assertion, participant A has sent a relevant message desired by participant B
before B receives it, we say that B authenticates A. In order to define it more
precisely, we need some auxiliary definitions:

Definition 2. Let α and β be two actions and s a path. We say that α occurs
prior to β in s if we have α ∈ act(s1) whenever s = s1 · β · s2, and denote it by
s |= α←↩ β.

Definition 3. Let C0 be the initial configuration, if all paths s generated from
C0, we have α←↩ β, then we say that the configuration C0 satisfies s |= α ←↩ β,
and denote it by C0 |= α←↩ β.

Now we can express authenticity as follows: (note that out(B auth. A by m)
is an auxiliary action for B to make authenticity more explicit)

Definition 4. If C0 |= A[out(F (m))] ←↩ B[out(B auth. A by m)] (here F (m)
is a composite message generated by A who is the only one to know m), then B
authenticates A.
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Integrity also can be easily expressed by the notion of α ←↩ β. Since it
usually requires that data cannot be corrupted or at least that any corruption
will always be detected. In other words, the input message should match the
output message.

Definition 5. Integrity means that for all M , C0 |= [out(M)]←↩ [in(M)].

There is no participant ID before the action for we don’t care about who is
the actor.

3.3 Non-repudiation and Fairness

Non-repudiation and fairness mainly concern electronic commerce protocol,
which provides services among participants that don’t trust each other [17].
In [16] Schneider discusses the non-repudiation in his CSP model.

Firstly, we give the definitions of two evidences used in analysis: NRO and
NRR. Non-Repudiation of Origin (NRO) is an evidence intended to protect
the receiver from the deliberate denial of the other participant of having sent
a message; Non-Repudiation of Receipt (NRR) is another evidence intended to
protect the sender from the deliberate denial of the other participant of having
received a message.

Definition 6. Let C0 be the initial configuration, if for all paths s generated
from C0, (msg(s)∪EM0∪IMR) � NRO (i.e. the receiver IdR possesses NRO),
then the protocol is said to have the sender non-repudiation property; (msg(s)∪
EM0 ∪ IMO) � NRR (i.e. the sender IdO possesses NRR), then the protocol is
said to have the receiver non-repudiation property.

Fairness can be seen as the combination of two non-repudiation properties,
for at no point in a protocol’s run one participant will have any advantage over
another. In other words, none of the participants can get his or her evidence
while the other cannot.

Definition 7. Let C0 be the initial configuration, if for all paths s generated
from C0, (msg(s) ∪EM0 ∪ IMR) � NRO ∧ (msg(s) ∪EM0 ∪ IMO) � NRR or
((msg(s) ∪ EM0 ∪ IMR) �� NRO) ∧ ((msg(s) ∪ EM0 ∪ IMO) �� NRR) always
holds, the protocol is fair.

3.4 Anonymity

Anonymity is another property that mainly concerns electronic commerce pro-
tocol and it seems to have been hardly explored from a formal point of view.
Intuitively a system is anonymous over some set of events E means that even
though an observer can deduce that an event from E has occurred but he or she
should not be able to identify which.

Definition 8. Let C0 be the initial configuration, if for all paths s generated
from C0, (msg(s) ∪ EM0 ∪ IMA) �� m, we say that the protocol has anonymity
over message m for participant A.
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4 An Example

We consider the Needham-Schroeder public-key protocol. This protocol aims
to establish mutual authentication between an initiator A and a responder B,
and share with the secret nonces. Every participant Id has a private key PrvId

and a corresponding public key PubId. We will write {m}k for the message m
encrypted with the key k. Any participant can encrypt a message m using A’s
public key PubA to produce {m}PubA ; only A can decrypt this message. The
protocol also uses nonces: random numbers generated with the purpose of being
used in a single run of the protocol. We denote nonces by NAX and NBY : the
subscripts are intended to denote that the nonces were generated by A and B are
sent to X and Y , respectively. The complete protocol involves seven steps. Here
we consider a simplified version with only three steps. This version is related to
the assumption that each agent initially has the other’s public key. The simplified
protocol can be described as:

1. A −→ B: {NAB, A}PubB

2. B −→ A: {NAB, NBA}PubA

3. A −→ B: {NBA}PubB

The three protocol participants are named A, B, I. Here I is a malicious insider:
in other words, the hostile environment has registered itself as a legitimate par-
ticipant having name I, private key PrvI and public key PubI . We add an action
‘out({X auth. Y by m})’ that the participant X performs when he believes to
have successfully authenticated the participant Y by message m. The formal
description of the protocol is as follows:

A
def= A[ΠX∈{I,B}(out(newNAX{NAX , A}PubX ).in({NAX , ?Nx}PubA)

.out({A auth. X by NAX}).out({Nx}PubX ), {PubA, PubB, PubI , P rvA}]
B

def= B[ΠY ∈{I,A}(in({?Ny, Y }PubB ).out(newNBY ({Ny, NBY }PubY ))
.in({NBY }PubB ).out({B auth. Y by NBY }), {PubA, PubB, PubI , P rvB}]

System
def= A‖B

In order to make the description more readable some obvious meta-notation is
used. In particular we have abbreviated ‘P1| · · · |Pn’ to ‘Πi∈1,···,nPi’.

This version of the protocol is subject to a subtle form attack [10]. In this
protocol, the initiator A and the responder B authenticates each other by ex-
changing nonce, and only A and B know the exchanging nonces. Formally the
authentication goal is that

C0 |= B[out({NAB, NBA}PubA)]←↩ A[out({A auth. B by NAB})]
and

C0 |= A[out({NBY }PubB )]←↩ B[out({B auth. A byNBY })]
hold. But this is not that case for the latter. The attack is that, A tries to
establish a session with the intruder I, while I impersonates A to establish
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a false session with B. The attack involves two interleaved executions of the
protocol, one in which the intruder I acts as the responder and one in which it
acts as the initiator.

Theorem 2. The NSPK protocol does not satisfy the authentication and Con-
fidentiality properties. There exists a path s don’t such that

A[out({NBA}PubB )] ←↩ B[out({B auth. A by NBA})]

thus
C0 |= A[out({NBY }PubB )]←↩ B[out({B auth. A byNBY })]

don’t hold. i.e. B can not authenticate A by the correspondence assertion; and
s � NBA, i.e. the protocol does not satisfy the confidentiality property.

Proof. We know EM0 = {PubA, PubB, PubI , P rvI}. C0 generates the path s =
α1 · · ·α8, where :

α1 = A[out({NAI , A}PubI )]
α2 = B[in({NAI , A}PubB )]
α3 = B[out({NAI , NBA}PubA)]
α4 = A[in({NAI , NBA}PubA)]
α5 = A[out({A auth. I by NAI})]
α6 = A[out({NBA}PubI )]
α7 = B[in({NBA}PubB )]
α8 = B[out({B auth. A by NBA})]

It is clearly that the path s do not satisfy A[out({NBA}PubB )]←↩ B[out({B
auth. A by NBA})], and (msg(s) ∪ EM0) � NBA. Thus the protocol does not
satisfy the authentication and Confidentiality properties.

5 Conclusion and Further Work

In this paper we present a generic model (GSPM) for security protocols that
allows one to reason about formal definitions of a variety of security properties.
In GSPM one does not explicitly model intruders. We have formulated security
properties such as confidentiality, authentication, non-repudiation, fairness, and
anonymity in GSPM. We have taken the Needham-Schroeder public-key proto-
col as a case study to demonstrate the expressive power of GSPM. We plan to
construct an automatic tool to help analyzing the security protocol using GSPM.
However we have to consider the following questions:

1. The active environment possesses infinite messages. Since the protocol
participant must receive the matched messages, we are ready to take into account
the symbolic method.
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2. There are infinite sessions between the participants. Because the LTS se-
mantics of our model is based on structural induction, we’ll adopt the approach
similar to Paulson’s inductive method [14].

As for future work, we plan to define formally other security properties based
on our model, and analyze the protocols such as Kerberos, SET etc.
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Abstract. The continuous general linear group in n dimensions can be 
decomposed into two Lie groups: (1) an n(n-1) dimensional ‘Markov type’ Lie 
group that is defined by preserving the sum of the components of a vector, and 
(2) the n dimensional Abelian Lie group, A(n), of scaling transformations of the 
coordinates. With the restriction of the first Lie algebra parameters to non-
negative values, one obtains exactly all Markov transformations in n 
dimensions that are continuously connected to the identity. In this work we 
show that every network, as defined by its C matrix, is in one to one 
correspondence to one element of the Markov monoid of the same 
dimensionality. It follows that any network matrix, C, is the generator of a 
continuous Markov transformation that can be interpreted as producing an 
irreversible flow among the nodes of the corresponding network. 

1   Introduction 

There is a broad spectrum of mathematical problems that involve the general theory 
of networks and the associated classification, optimization, and potentially even their 
dynamical evolution. By a network we mean a set of n nodes (points), some pairs of 
which are connected with a representative non-negative weight or strength of 
connection. Such a network can be represented by a connection (or connectivity, or 
adjancy) matrix Cij whose off-diagonal elements give the non-negative ‘strength’ of 
the connection between nodes i and j in the network. Often that ‘strength’ or ‘weight’ 
is as simple as a ‘1’ for a connection and a ‘0’ otherwise. A network can be 
‘undirected’ or ‘directed’ depending upon whether Cij is symmetric or not thus 
indicating respectively a symmetric or asymmetrical connection between i and j. 
There may or may not exist a well defined ‘metric distance’ between the nodes or, 
equivalently, positions for the points in a metric space of some dimensionality, such 
as airports for airline networks, or substations for power or utility distribution 
networks. It is well known that the classification of different network topologies 
cannot be accomplished with just the eigenvalue spectra of the connectivity matrix as 
there are topologically different networks with as few as five nodes that have the 
same eigenvalue spectra. One root of the network problem is that although the 
network is exactly defined by the C matrix, there are n! different C matrices that 
correspond to the same topology because different C matrices result from different 
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nodal numbering orders. Most network problems become computationally intractable 
for more than a few hundred nodes.  

We are interested in seeking useful metrics (functions of the C matrix) for the 
description of the topology of large networks such as sub-nets of the internet which 
might have from a hundred to a million nodes, and thus perhaps a trillion connection 
matrix values. To be useful, the metrics must be (a) rapidly computable, (b) 
intuitively meaningful, (c) should holistically summarize the underlying topology 
with a few variables, and (d) ideally would offer meaningful expansions that would 
provide increasing levels of topological detail. Mathematically, they should be (e) 
invariant under the permutation group on node numbering. We are specifically 
interested in the information flows of which originating node sends email or data to 
which destination node; and we are not initially interested in the underlying physical 
connectivity nor the path which the information traverses. Internet transmissions are 
extremely dynamic and thus to achieve some form of continuity, we envision 
constructing the C matrix with the summation of information transfers, over some 
time window δ, surrounding a time t for C(t, δ) thus representing the time evolution of 
the connection matrix. Given the number of connections, this problem resembles the 
representation of a physical gas in terms of thermo dynamical variables (such as 
temperature, volume, pressure, heat, and entropy). Generally, in such internet 
environments there is no meaningful location or position metric and distance is not 
usefully defined. As such pressure and volume, do not have a clear meaning without a 
distance function. Nor is it clear that what equilibrium is being approached, if any, 
and thus heat and temperature do not offer clear meanings. However, we suggest that 
the concept of both Shannon and generalized Renyi entropies [1, 2] can be well 
defined and summarize the order and disorder in the underlying topological structure.  

Initially, how to define entropy on the connection matrix is not clear since both 
Shannon and Renyi entropies are defined as the log of the sum of the powers of the 
components of a vector, xi, representing probabilities: S = c log2 (b(Σxi

a) ) where Σ xi = 
1 and where a, b, and c are constants. As such these entropies represent the disorder in 
the underlying probability distribution. The disorder is a maximum with an even 
probability distribution and is a minimum when all the probability is in one cell with 
others having a value of zero. But the connection matrix columns or rows cannot be 
used as probability distributions since the diagonal of C is totally arbitrary. Even if we 
make some arbitrary choice of the diagonal values of C and normalize the columns, it 
is not clear what underlying topological ‘disorder’ we are measuring.  In this work, 
we utilize our past work on the decomposition of the general linear group in order to 
answer both of these objections and to gain insight into how one might define these 
entropy metrics in useful ways that satisfy the requirements a-e above.  

2   Background on Markov Lie Groups and Monoids 

We had previously shown [3] that the transformations in the general linear group in n 
dimensions, that are continuously connected to the identity, can be decomposed into 
two Lie groups: (1) an n(n-1) dimensional ‘Markov type’ Lie group that is defined by 
preserving the sum of the components of a vector, and (2) the n dimensional Abelian 
Lie group, A(n), of scaling transformations of the coordinates. To construct the 
Markov type Lie group, consider the k,l matrix element of a matrix Lij as a basis for n 
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x n matrices, with off-diagonal elements, as Lij

kl = δi

k δ
j

l - δ
j

k δ
j

l with i =/= j. Thus the ij 
basis matrix has a ‘1’ in position ij with a ‘-1’ in position jj on the diagonal. These 
n(n-1) matrices form a basis for the Lie algebra of all transformations that preserve 
the sum of the components of vector. With this particular choice of basis, we then 
showed that by restricting the parameter space to non-negative values, λij >=0, one 
obtains exactly all Markov transformations in n dimensions that were continuously 
connected to the identity as M = exp (s λij Lij) where we summarize over repeated 
indices and where s is a real parameter separated from λij to parameterize the 
continuous evolution of the transformation. In other words λij Lij consists of non-
negative coefficients in a linear combination of Lij matrices. This non-negativity 
restriction on the parameter space removed the group inverses and resulted in a 
continuous Markov monoid, a group without an inverse, in n dimensions, MM(n). 
The basis elements for the MM algebra are a complete basis for n x n matrices that are 
defined by their off-diagonal terms. The n dimensional Abelian scaling Lie algebra 
can be defined by Lii

kl = δi

k δi

l thus consisting of a ‘1’ on the i,i diagonal position. 
When exponentiated, A(s) = exp (s λii Lii), this simply multiplies that coordinate by es 
giving a scaling transformation. In what follows, we will show that all networks 
exactly correspond (one to one) to a combination of this Abelian transformation group 
and the Markov monoid transformations. 

3   Connecting Markov Monoids to Network Metrics 

The essence of this paper is the simple observation that (1) since the non-negative off 
diagonal elements of an n x n matrix exactly define a network (via C) and its topology 
with that node numbering, and (2) since a Markov monoid basis is complete in 
spanning all off-diagonal n ½ n matrices, then it follows that such networks are in one 
to one correspondence with the elements of the Markov monoids. Thus each 
connection matrix is the infinitesimal generator of a continuous Markov 
transformation and conversely. This observation connects networks and their 
topology with the Lie groups and algebras and Markov transformations in a well 
defined way. Since the Markov generators must have the diagonal elements set to the 
negative of the t sum of the other elements in that column, this requirement fixes the 
otherwise arbitrary diagonal of the connection matrix to that value also (sometimes 
referred to as the Lagrangian). 

It now follows that this diagonal setting of C generates a Markov transformation 
by M= eλC . One recalls that the action of a Markov matrix on a vector of probabilities 
(an n-dimensional set of non-negative real values whose sum is unity), will map that 
vector again into such a vector (non-negative values with unit sum). The next 
observation is that by taking λ as infinitesimal, than one can write M = I + λC by 
ignoring order l2 and higher order infinitesimals. Here one sees that the bandwidth of 
the connection matrix between two nodes, now give that M matrix element as the 
relative transition rate between those two components of the vector. Thus it follows 
that given a probability distribution xi distributed over the n nodes of a network, then 
M gives the Markov transition (flow) rates of each probability from one node to 
another. Thus it follows that the connection matrix gives the infinitesimal transition 
rates between nodes with the bandwidth reflecting that exact topology. 
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Specifically, if the hypothetical probability vector is xi =(1,0,0,0…0) then the first 
column of the M matrix will give the concentration of probability at the ith node after 
that infinitesimal time period. Thus the first column of M is the probability 
distribution after an infinitesimal time of that part of the probability that began on 
node 1 and likewise for all other nodes thus giving a probability interpretation to each 
of the columns of M. Thus each column of M can be treated as a probability 
distribution associated with the topology connected to that associated node and 
supporting an associated entropy function that reflects the inherent disorder (or order) 
after a flow λ. Thus the columns of M support a meaningful definition of Renyi 
entropies which in turn reflect the Markov transformation to disorder of the topology 
near the node for that column. Thus this Renyi entropy on this column can be said to 
summarize the disorder of the topology of the connections to that node. It follows that 
the spectra of all nodes reflects in some sense the disorder of the entire network. 
When sorted in descending order, it represents a spectral curve independent of nodal 
ordering and thus independent of the permutations on nodal numbering. That spectral 
curve can be summarized by the total value for the entropy of all columns (since 
entropy is additive and the column values are totally independent). The structure of 
the spectra can also be summarized by the entropy of the entropies in the spectra thus 
giving a second variable summarizing the entire topology. 

If the connection matrix is symmetric then the graph (network) is said to be 
undirected, but if there is some asymmetry, then the graph is at least partially directed 
where the flow from i to j is less or greater than the converse flow. If the connection 
matrix is not symmetrized then one can capture this asymmetry by resetting the 
diagonal values of C to be equal to the negative of all other row values in that row. 
Then upon expansion of M = I + λC, the rows are automatically normalized 
probabilities that in turn support entropy functions for each row. These row entropy 
values form a spectrum which could be sorted by the same nodal values (in order) that 
is used to order the column values. This will result in a different spectral curve that is 
not necessarily in non-decreasing order for the row entropies. One also can compute 
the total row entropy and the entropy if these row entropies as we have done from 
columns. If two columns have the same entropy then one can sometimes partially 
remove this degeneracy by the values of the associated row entropies. 

Thus we suggest that the column and row spectral entropy curves, and the column 
and row total entropy and entropy of entropy values, distil essential disorder and order 
from the network topology – from n2 values down to 2n (spectral) values, and finally 
to 4 values for the entire network – constitute a set of entropy metrics for the network, 
all of which are independent of the nodal ordering (numbering) in the network and 
thus indicative of the underlying topology. This analysis is expansive in two ways: (1) 
These two spectra and four values can be computed to higher order in λ thus 
including higher orders of the C matrix approximation for M and thereby 
incorporating connections of connections into the metric values. It is with higher 
powers of C via larger values of λ   that we unfold more complex aspects of the 
network topology. (2) One can also compute these metric values for each of the Renyi 
entropy values. Work by V. Gudkov [4] has found that the order of the Renyi entropy 
is equivalent to the Hausdorf dimensionality equation. This opens the possibility that 
higher order entropy reveals connections of a ‘higher dimensionality’ in the network 
structure [4, 5]. 
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4   Expansion of Second Order Renyi Entropy as a Taylor Series 

Let us assume that C is symmetric (an undirected graph) thus C = CT. If one considers 
the expansion of a vector of probabilities from state λ=0, |x(0)>, to another vector at a 
later state λ, |x(λ)> by the continuous Markov transformation M = eλC then |x(λ)> = 
eλC |x(0)> and thus the entropy is given by: 

S = log2(nΣxi

2 ) = log2(n<x(λ)|x(λ)>)= log2(n<x(0)|( eλC )T (eλC )|x(0)>)  

or rearranging and defining R we get: 

R(λ)  = 2S/n  = <x(0)| e2λC |x(0)>)  since C = CT  

and then expanding the exponential we get:  

R(λ) =  <x(0)| ( I + 2λC + (2λC)/2! + …  ) |x(0)>  

Thus this power of the second order Renyi entropy consists of two times the 
diagonal values of the powers of the connection matrix, plus the unit matrix as shown. 
From this one can see that as λ becomes larger and larger, one must take more and 
more of the topology connections into consideration. This in fact gives a hierarchical 
expansion of this entropy that gradually ‘explores and includes’ higher and higher 
order connectivity. If the row and column entropies are computed to include these 
higher orders, then they will begin to take into account more complex aspects of the 
networks interconnectedness. When there is asymmetry a similar equation can be 
obtained. 

5   General Diagonal Values and Eigenvalues 

The previous results can be generalized to include totally general diagonal values for 
C, by utilizing the diagonal transformations available in the n-parameter Abelian 
scaling group. This group simply multiplies any node value by a scaling factor via M= 
eλC. There is a natural interpretation to the actions of this group in terms of network 
probability flows as introducing a source or sink of probability at the node which is 
acted upon. That action removes the conservation of probability that was maintained 
by the Markov monoid, but since such flow was simply used to encapsulate the 
topological structure of the network, we can accept this lack of conservation. Thus 
one can add to any diagonal of C, any positive or negative value representing the 
scaling value of that coordinate and one will still have a valid network as all off 
diagonal values of C are unchanged and the M matrix will still give the indicated 
flows. This allows one to see the previous arbitrary allocations of ‘1’ or ‘0’ of the C 
diagonals in a new light, especially for the eigenvalue computations. 

When C is diagonalized, with the values leading to the Markov transformations, or 
to the more general values of the diagonals of the last paragraph, one automatically 
gets a diagonalization of the M matrix. The interpretation of the eigenvectors is now 
totally obvious as those linear combinations of nodal flows that give a single 
eigenvalue (decrease when the transformation is Markov) of the associated 
probability, for that eigenvector. This follows from the fact that all Markov 
eigenvalues are less than one except the one value for equilibrium which has 
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eigenvalue unity for equilibrium. That means that each of these eigenvalues of C 
reflect the decreasing exponential rates of decrease of the associated eigenvector as 
the system approaches equilibrium as λ approaches infinity in M= eλC . This insight 
allows us to see that all of the Renyi entropy values are increasing as the system 
approaches equilibrium, which is normally the state of all nodes having the same 
value of this hypothetical probability. The use here of this ‘artificial flow of 
probability under M’ provides us with more than just a method of encapsulating the 
topology with generalized entropy values, it also gives an intuitive model for the 
eigenvectors and eigenvalues for C and sheds light on the graph isomerism problem 
(different topologies having the same eigenvalue spectra). 

6   Conclusion. Potential Applications to Large Internet Networks 

Based upon the arguments above, we suggest that for real networks such as the 
internet, that the appropriate connection matrix be formed, from source and 
destination information transfers, where both asymmetry and levels of connection are 
to be maintained in the C(t) matrix values during that window of time about that time 
instant. Specifically, this means that if a connection is made multiple times in that 
time interval, then that C element should reflect the appropriate weight of 
connectivity as this adds substantial value to the entropy functions. We then suggest 
that at each instant, the column and row entropy spectra be computed along with the 
total row and column entropy and entropy of entropies and that this be done for lower 
order Renyi entropies as well as lower order values in the expansion of the Markov 
parameter λ  that includes higher order connectivity of the topology. We are currently 
performing tests to see how effective these entropy metrics are in detecting abnormal 
changes in topologies that could be associated with attacks, intrusions, malicious 
processes, and system failures. We are performing these experiments on both 
mathematical simulations of networks with changing topologies in know ways, and 
also on real network data both in raw forms and in forms simulated from raw data. 
The objective is to see if these metrics can be useful in the practical sense of 
monitoring sections of the internet and other computer networks. In addition to the 
two values of total entropy and entropy of entropy that summarize the column (or 
row) spectral distribution, we are looking at other natural expansions of this function 
in terms of functions or orthogonal polynomials that summarize the general behavior 
in useful ways thus providing other summary metric variables for the entropy spectra.   
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Abstract. Autonomic network elements cooperate for media and media signal-
ling delivery; the paper demonstrates how these nodes can elaborate significant 
trust and achieve self-organisation by the exchange of blueprints of their inter-
nal packet processing workflows. We outline a model of an etiquette for the 
above exchange under the governance of a locally computed community fitness. 
We concentrate on the etiquette design using extended protocol expressions as 
the notation for behaviours, and ad hoc communication example for the demon-
stration of design steps. We show that properly defined fitness can be used as a 
meta-rule modifying the etiquette towards wider or deeper trust within the 
community. 

1   Introduction 

Current progress in the design of wired and wireless network elements demonstrates 
the clear trend towards more flexible, finer grained and self-managing packet process-
ing. Self-management [1] is a top of a pyramid comprised of other self-properties: 
self-awareness, self-[re]configuration, self-optimization, self-healing, self-protection, 
self-adaptation, self-description, and finally self-implementation, or self-* for short. 
The autonomic communication research initiative [2] intends to apply self-* to all 
facets of communication. 

Autonomic Communication studies the individual network element as it is affected 
by and affects other elements and the often numerous groups to which it belongs as 
well as network in general. The goals are to understand how desired elements behav-
iours are learned, influenced or changed, and how, in turn, these affect other elements, 
groups and network. Autonomic communication intends during the design phase to 
embed into a system such features that will facilitate right decision making at run-
time, likely involving cross-layer interactions between protocol stack entities. Auto-
nomic decision making will be assisted by locally perceived and processed commu-
nity state under the governance of community fitness.  

Trust is the primary issue in IP communication, it is often achieved off path. Fun-
damental lack of security in the Internet is the inherent consequence of its main archi-
tectural principle, known as End-To-End [3, 4] that forbids in-network functionality 
placement, thus keeping network open. As it is noted in [22], “closed networks are a 
waste of public money, but open networks are a huge risk.” Facilitating end-user 
creativity and rapid deployment of new application level services the E2E has created 



 Trust by Workflow in Autonomic Communication 137 

at the same time possibilities for multiple exploits of Internet technology that are 
visible at higher levels but rooted at the bottom of its protocol stack. 

The self-* properties of autonomic communication promise to change existing bal-
ance between feature rich network edges and stupid core. The hope is to eliminate 
many if not all security threats found currently in IP-based networks by eliminating 
possible exploits. An autonomic network element empowered by self-* capabilities 
will not only able to detect an attack but also to act cooperatively with other elements 
of a trusted community against the reason. The power of autonomics is in community 
awareness; however community building and maintenance requires some sort of hose 
keeping — in-network information exchange between lower protocol layers. 

Alike routing — the dominant Internet house-keeping information exchange for 
topology and connectivity awareness, we propose packet processing information 
exchange between network nodes for trust awareness. Similar approaches were pro-
posed recently: forensic [5] and wafer-thin control plane [6] efforts aim at de-
anonymisation of attackers by correlating seemingly disjoint events collected from 
network observations. Here we go one step further — enable network itself to support 
this. 

Like telephone networks are designed with Trust By Wire principle in mind, the 
main principle we want to investigate is the Trust By Workflow, meaning that auto-
nomic nodes that cooperate at media delivery level can eventually elaborate signifi-
cant trust based on successful history of common work. Observing that network nodes 
are performing very repetitive work, and following the routing with a clue motivation 
[7] we generalise this principle for potentially any network function. 

Workflow information is readily available in network nodes. Media processing in a 
node uses a lot of local state data for decision making: Where to forward this data-
gram? Is this micro flow admitted to EF service class? Is this port number allowed for 
the requesting host? Is this peer allowed to upload a file on another peer’s computer? 
After a decision is made the result is usually dropped or at best logged.  

Most challenging, yet possible is trust in ad hoc communication scenario, with no 
infrastructure to host trusted third party, etc. When a pair of nodes realises that they 
belong to the same path shared by significant traffic volume they start exchanging 
their workflows for served traffic with the aim to agree on an optimization of a com-
mon service. This pair-wise process leads to a bootstrapping of a community (e.g. per 
path) of nodes; it starts with confirmation of the obvious. Exchange of workflows 
pertaining to a common media flow — information with firmly verifiable evidence, 
can be advanced after trust is achieved. We propose to use content adaptation: the 
more advanced is the trust the finer grained details are exchanged. Thus the amount of 
data exchanged is very close to constant, subject to media traffic volumes served. 

The paper is not about a trust establishment protocol, or fitness function calcula-
tion, though those are sketched as means to demonstrate our concepts; it’s rather 
about a new paradigm of in-network community communication that enables trust and 
immunity. The rest of the paper is organized as follows. Section two builds a model of 
node’s functionality and describes the vision of autonomic network, it introduces also 
the basic notation of protocol expressions that is used and extended throughout the 
paper to describe behaviours. Section three starts with a example, introduces some 
reasonable etiquette rules for cooperation, and picks some reasonable fitness function. 
It concludes with considerations of bootstrapping and finally demonstrates self-
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organisation of etiquette based on community context. Section four summarises our 
main claims. 

2   Functional Models 

2.1   Design Considerations 

We treat the self-* requirement as a meta-level non-functional one that supersedes 
other, often overlooked non-functional requirements such as security, manageability, 
and testing. By this we avoid partitioning of a system under design into separately 
handled concerns that later might require integration. Also, possible replication of 
features might be avoided. Finally, we hopefully meet all other non-functional re-
quirements within the same design paradigm. 

The most benefits can be achieved at the finest possible granularity of node’s func-
tion. Following the traditional telecommunication definition of a functionality found 
in [8] we model node’s function F as a triple 

F= <component, resources, controls>, (1)

where component is to denote the identity of autonomic node, device or functionality 
that hosts internal resources with local controls, we assume that local controls are 
represented by fully specified policies (see section 3.2). Inputs for F are media and 
media signalling; usually signalling inputs are destined to local controls, while media 
inputs are resource requests. Both inputs might have certain safeguards, preventing 
known to be unwanted inputs. An example of media safeguard is filtering of so called 
Martian addresses on router interface; an example of media signalling safeguard is 
filtering of attempts to contact network side signalling agents by non-authenticated 
roaming signalling user agents [9]. SMTP filtering of spam messages differs from the 
above examples in one important respect — it learns, but the process of learning is 
typically under the governance of a human [10]. There are also two types of outputs 
of F — media and its signalling, with optional safeguards on outputs, e.g. to ensure in-
profile transmission of outbound media.  

Functional safeguards play paramount role in the proposed cooperative defence of 
the infrastructure: locally triggered safeguard is an important source of vulnerability 
information that cooperating entities learn from the workflow and use for pressing 
back at potential attacker. 

2.2   Node Model 

Without loss of generality we model any network node media or media signalling 
function as an input-output relay with possible transformation. We no longer distin-
guish between media and media signalling, the both types of payloads will be treated 
as media, contrary to a new type of communication we aim to design. Thus, we can 
conceptually represent all node’s functionality as a matrix (2) 

Φ Fi j, i 1 n,= j; 1 m,=
=

, 

(2)
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where media flows arriving at n inputs are transformed by Φ  to m outputs. The inter-
pretation of model (2) to represent, for instance forwarding is straightforward — Φ  is 
then forwarding information base that defines in-node processing path from input i to 
output j. A number of different media datagrams processing types, that are termed — 
generic functions (gl) found in most advanced Internet routers is around ten [11]; they 
are receiving and transmitting, forwarding, SSL processing, IPv4/IPv6 interoperabil-
ity, header compression, classification, metering, scheduling, shaping, etc. — rela-
tively small number of gl makes workflow exchange feasible. 

In-node processing of a particular datagram instantiates and chains as required 
these generic functions per micro flow. Note, the micro flow awareness is no longer a 
scalability concern, new router designs are emerging that take advantage of flow 
awareness, e.g. a truly autonomic cross-protect router by J. Roberts [12].  

A workflow Wk  is a chain of generic functionalities for a single micro flow; each 

workflow is a sequence of functions from (2) for the k-th micro flow as shown in (3), 
where a dot sign is sequential order within a k-th workflow, square brackets are for 
repetition. Workflow’s sequence starts with the receiving of a datagram at the i-th 
physical interface, continues with processing by function Fi j,  that defines the next 

function Fj p, , and so on until the datagram leaves the node’s protocol stack.  

Wk F
k
i j, F

k
j p,[ ]•=

, 
(3)

In-node datagram processing as modelled by Φ  is an in-node hammock — directed 
acyclic graph interconnecting physical interfaces; matrix Φ  being asymmetric and 
triangular. Figure 1 shows an example (adopted from [13]) of a datagram processing 
hammock composed of five generic functions: g1 — receiving of a datagram from a 
link; g2 — optional datagram header decompression, g3 — forwarding with optional 
interoperability processing between IPv4 and IPv6, g4 — optional header compres-
sion, g5 — queuing and transmission to a link.  
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Fig. 1. In-node datagram processing hammock 

A number of workflows can be instantiated from a hammock in Fig1. For example, 
expression (4) outlines a workflow of a router that receives IPv4 datagrams from a 
wireless link, decompresses their headers, converts to IPv6 and sends over to wireless 
link with new headers compressed. 
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W1 F
1

1 1, F
1

1 3,• F
1
3 4,• F

1
1 4,• F

1
4 6,•=

, 
(4)

Forwarding is the key to the trust by workflow — any meaningful workflow will 
have forwarding in it; this ubiquity makes forwarding a universal source of informa-
tion on trustworthiness of network nodes. To speed up forwarding a routing cache 
stores recently used entries, and is consulted before the forwarding tables. If the ker-
nel finds a matching entry during route cache look up, it will forward the packet im-
mediately and stop traversing the forwarding tables [14]. Fig.  2 demonstrates a case 
of RC implemented as a compact binary trie data structure (only tails are shown) with 
leaves, being destination IP addresses labelled by a timestamp of last usage, outgoing 
port, error condition, if any was generated, and a source address of forwarded data-
gram, thus RC provides the evidence of performed forwarding. The rightmost icon 
shows how a compact tree is being expanded when a new entry is cached.  
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Fig. 2. Fast forwarding path (FIB — Forwarding Information Base; RC — Routing Cache; 
Age — time to expire for an RC entry; Err- error condition; $- leaf of a trie structure) 

2.3   Network Model 

The Internet of today handles media and media signalling flows, orthogonal to them 
management and control flows, when and if midcom infrastructure is available [15] as 
well as some in-network generated and consumed house-keeping flows, e.g. routing. We 
describe another house-keeping information exchange — autonomic communication. 

An autonomic network is an in-lay of a media network; each node is a first-class 
citizen; no distinction is being done intentionally between user, access, edge, back-
bone, etc. node types. We assume that autonomic communication is done by exchange 
of messages with no visible relation between message sequences, i.e. there is no no-
tion of autonomic communication flow. Message source and destination are not nec-
essarily always applications, the model allows nodes to exchange messages on the 
discretion of protocol stack entities, like it is done in ICMP [16] and IGMP [17]. This 
might look similar to exchange of messages between roles as proposed in role-based 
architecture [18], however we do not want to hard-code in role-specific headers 
sources and destinations of our messages.  

A message has a payload and a header: payload represents sender’s media behav-
iour, expressed in workflows, header has message source and indirects the destination 
by what is called here a concern — a predicate on the behaviour — to a concerned 



 Trust by Workflow in Autonomic Communication 141 

community. Messages do not disclose to communicating peers sender’s internal struc-
ture and algorithms, but only behaviour choices.  

Community behaviours are observed locally through message boxes. Processing of 
messages in autonomic nodes is FCFS, it follows the arrivals of messages in node’s 
message box. We assume that a node is able to create a message box per concern; this 
message box shall contain both sent and received messages pertaining to the concern. 
There are no assumptions on reliability of message delivery.  

To represent contents of message boxes and consequently behaviours reflected in 
these messages we shall use and extend the notation of protocol expressions following 
the seminal work on protocol validation by G. Holzmann [19]. Small Latin characters 
represent received messages; characters, written as denominators of a fraction repre-
sent own sent messages; a dot represents FCFS ordering of messages; a plus sign 
between two messages represents alternatives; bracketed message sequence taken to 
the power of N represents N or more repetitions of the same message sequence; 1 
stands for empty box, and  — for a deadlock.  

A cross operation ( B1[ ] B2 …[ ]⊗ ) applied to one or more message boxes verifies 
the soundness of message exchange; the exchange is sound if it is deadlock free and 
there are no residuals in message box[es]. As axiomatically suggested in [19] the 
properties (re-write rules) of protocol expression as in (5) should hold. 

a a
1
--- a 1

b
---• a

b
---

1
a b•----------- 1

a
---

1
b
---• a b+

c
------------

a
c---

b
c
---

a
b c+
------------

a
b---

a
c---+=;+=;=;=;=

, 

(5)

3   Autonomic Communication Models 

3.1   An Example of Etiquette 

Using the above models we show how autonomic node behaviours are induced by 
certain rules reflecting common community concern. To distinguish these rules from 
other rules (policies) we shall term them etiquette rules (e-rules), where etiquette is a 
complete ruleset reflecting the concern in question. As an example of a shared con-
cern we consider trust establishment in ad hoc communication environment, where 
nodes use/ donate each other’s resources to relay media datagrams with no infrastruc-
ture. Etiquette can be used in parallel with e.g. reputation schemes [20], or with infer-
ring trust from control exchange, e.g. routing [21].  

Consider the set of workflows (6) implemented by three nodes A, B, and C, and 
expressed in terms of functionalities (3) as introduced in Fig.  1. 

a W→ a F1 3,=
; 

b Wb→ F1 4,=
 ; 

c W→ c F1 3, F3 4, F1 4,••=
;  

d W→ d F1 4, F4 3, F1 3,••=
, 

(6)

Semantics of (6) and their distribution between nodes A, B, and C is represented in 
Fig. 3, where dotted line is a boundary between IPv4 and IPv6. 
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Fig. 3. Sample communication scenario 

Let all the nodes having trust establishment as a common concern to have the fol-
lowing etiquette rules, refined from the purpose of community communication: 

•  E0: autonomic communication message heard by a node is consumed if message 
header represents actual node’s concern; 

•  E1: each active workflow is advertised to the concerned community; 
•  E2: every heard advertisement of a remote workflow that is locally active is con-

sumed and notified; every consumption notification is consumed (by remote peer); 
•  E3: the trust per workflow is considered to be established between peers after a 

certain number of notifications (Nn) is exchanged; 
•  E4: trust relationships are to be evaluated and progressed in the direction of in-

creasing community fitness. 

Consumption of messages is caching and processing of messages per concern. For 
the concern of trust the processing of messages is applying the cross operator to each 
node’s message box; this hides sound behaviours. We extend the notation by overly-
ing consumed message: a  denotes consumption of a and 1 a⁄  is the notification to the 
sender. We reserve to mean: z -no trust, t — established trust, x — trust in progress. 

A1 A B B2
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DgramNextHop
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Forwarding

RC RC
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(a) (b)

Routing Input

Co-work

Request
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Fig. 4. Examples of auditing 

Etiquette creates prerequisites for auditable trust. Relaying of a micro flow from 
Fig.  3 that is presented in Fig.  4 (a) is accompanied by sending back a NextHop 
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notification, optionally forwarded to the source. Every receiver of a NextHop notifica-
tion will be in the position to audit the delivery and eventually to discover any black 
or grey hole [21] along the path.Auditing is just inspecting contents of routing cache 
of other members, as in Fig.  4 (b) to see whether datagrams have been really relayed. 
This kind of auditing is a natural step in community collaboration: recall that FIB is 
being computed by a node based on routing information offered by community mem-
bers. Of course access to private parts of RC can be protected by access control rules. 

Following etiquette rules the nodes shall exhibit their active workflows; for sim-
plicity we assume that all potential workflows from Fig. 3 are being simultaneously 
active. Expressions (7) through (9) present etiquette behaviours induced by E1 — E3 
as observed in message boxes. Etiquette shall eventually establish trust between A.a 
and B.a within IPv4 connectivity, and between C.b and B.b within IPv6 connectivity, 
as reflected in Fig. 5. The behaviours are partial in a sense that message sequences 
outlined in (7)–(9) will appear in the same message box of each node due to the as-
sumption of them having one message box per concern. 

Assuming that trust was established, we apply a cross operator and re-write rules 
(5) to each node’s message box that results in certain residuals as in (10). The (10) 
shows that certain workflows due to their incompatibility cannot be used to establish a 
trust based on the proposed etiquette; for example there is no trust between nodes A 
and C. However as it is obvious from Fig. 2 it might be possible for A and C to use 
node B as a trusted third party.  

A.a B.a

C.b B.b

C.d B.c

a
A

a
B

b
C

b
B

d
C

d
C

c
B

b
B

Legend:

- Trusted exchange
- In-node workflow

- Trust in progress

A.a - workflow a in node A

a
A

- advertisement of A.a

- node boundary

- workflow process

 

Fig. 5. Sample etiquette communication graph 

This will require modification of etiquette rules, i.e. introducing a new e-rule al-
lowing trust delegation or trust transfer, which might be regarded in general as a non-
desired feature from security viewpoint. In case one of the nodes is a malicious one, 
e.g. acting as a black hole the cross operator applied to message boxes of the nodes 
whose media datagrams would have been dropped will result in more residuals and no 
trust.  
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AE1 1 a⁄ A aB dC+( )•→
; 

BE1 1 a⁄ B 1 cB⁄• 1 bB⁄• aA dC bC+ +( )•→
; 

CE1 1 d⁄ C 1 bC⁄• bB cB aA+ +( )•→
. 

(7)

AE2 aB 1 aB⁄• aA+→
;  

BE2 aA 1 aA⁄• bC 1• bC⁄ dC aB bB+ + + +→
; 

CE2 bB 1 bB⁄• cB bC+ +→
. 

(8)

AE3 aB 1 aB 1 xB⁄•⁄•( )
Nn

1 tB⁄• xA tA+ +→
; 

BE3 aA 1 aA 1 xA⁄•⁄•( )
Nn

1 tA⁄• …+→

… bC 1• bC 1 xC⁄•⁄( )
Nn

1 tC⁄• xB tB+ + +
;

CE3 bB 1 bB⁄• 1 xB⁄•( )
Nn

1 tB⁄• xC tC+ +→
. 

(9)

AE1 AE2 AE3 dC tB+=⊗ ⊗
; 

BE1 BE2 BE3 1 cB⁄ d+
C

tA tC++=⊗ ⊗
; 

CE1 CE2 CE3 1 dC⁄ c+
B

tB+=⊗ ⊗
  

(10)

3.2   Fitness Function 

We consider e-rule E4 together with node’s fitness as a meta-rule that can be used to 
modify etiquette rules to safely adapt to network situation or context, how the trust 
establishment etiquette itself can be modified to progress trust. The rationale behind is 
that of community leadership expressed in local preferences for decision making; if the 
community is active, stable (conflict-free), and mutually trusted then the behaviour 
choices of every node can be streamlined, and, on contrary, when community is inac-
tive, unstable or disappears, the behaviour choices of every node should follow largely 
the principles of self-protection, survivability, etc. Natural metrics of community’s 
activity are the number of served workflows and the number of trusted or trust-in-
progress node pairs within the community. On the other hand, an autonomic node 
should preserve certain balance between the amount of served workflows and the rela-
tive amount of community members producing/consuming these workflows. The ra-
tionale for this is to avoid DoS and DDoS scenarios, where relatively small fraction of 
community is generating unrealitsically high volumes of workflows destined for a node. 

We claim that an optimal fitness function can be found for a given communication 
scenario, and given community, sets of etiquette rules, and concerns. Our goal is not 
to find an optimal fitness function but to demonstrate how a fitness function can be 
used as a mean for self-adaptation, in particular in autonomic adaptation of etiquette 
rules to situation changes. For demonstration purposes only we shall use (11) 
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Fϕ i( )
Nt i( ) ω Nx i( )⋅+

N----------------------------------------
nw i( )

nw

-------------⋅=

, 

(11)

where Fϕ i( )  — fitness function value computed by the i-th autonomic node; Nt i( )  

and Nx i( )  are respectively the number of nodes, with which node i has trust, including 

i itself, or trust in progress relation per advertised workflow, N  — total amount of 

community nodes the i-th node is aware of, including i itself; ω ω 0 1,[ ]∈,  — relative 

importance of trust as compared to trust in progress; nw i( ) nw,  — the number of work-
flows advertised by the i-th node and the total number of community workflows the i-
th node is aware of, including i-th own workflows. Note, that for the example in sec-
tion 3.1 in the state reflected by (10) nodes would have computed their fitness as in 
the second column of Table 1.  

This sample calculation demonstrates an interesting property, node fitness is a 
function of community awareness. Just two nodes having established trust for all 
advertised workflows will have maximum fitness 0,50. The (11) shows that the fittest 
node should have some community information beyond current communication sce-
nario; this information can be treated as community context, as degrees of freedom 
that can be used for adaptation. For example, as shown in (10) and (11) nodes B and C 
are fit not only because they have more trust relationships with other nodes than node 
A but also because they have more residuals in (10). 

Community fitness (12) is a generalisation of (11). Maximal community fitness is 
always higher than that of a single node. The function (12) for a community (Co) is 
non-linear (see table below) with regard to contributions of community members. 
Thus we propose that nodes compute their weighted fitness as (13); this computation 
for the situation (10) is presented in Table 1, last column.  

Fϕ C
o( )

Nt i( ) ω Nx i( )⋅+[ ] N–

nw i( ) --------------------------------------------------------------=

; i 1 N,= ; 
Fϕ 0 1,[ ]∈

  

            (12) 

Fϕ w, i( ) 1 Fϕ C
o~

  
  –  

  Fϕ i( )⋅=
; i C

o~⊄   

            (13) 

Table 1. Weighted fitness for situation (10) 

Node Node 
Fitness 

Community Fitness Node Fit-
ness Weight

Weighted Node 
Fitness 

  All nodes Without    
A 0,22 0,67 0,40 kA=0,60 0,13 
B 0,50  0,00 kB=1,00 0,50 
C 0,50  0,50 kC=0,50 0,25 

Fitness function must be evaluated continuously, starting from a boot process; at 
boot the only etiquette behaviour that a node can complete is the one defined by E1, it 
returns initially zero fitness. Evaluation of a local fitness function (that is easy to 
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associate with the processing of local etiquette message box) might be programmed to 
generate fitness function events — either reaching threshold values, or every change. 
We shall now demonstrate, starting with node’s bootsrapping how fitness function 
can help to modify e-rules towards increasing fitness of a node and a community. 

3.3   Bootstrapping 

On boot a node is assigned default role[s] and a purpose, this is done by enforcing 
locally the two rule sets — policy and etiquette. Policy set is node’s role refined into a 
set of fully specified policies — rules defining node’s functional behaviour choices. 
Etiquette is the refinement of node’s purpose with regard to autonomic communica-
tion; the purpose is enforced by a set of etiquette rules defining choices in node’s 
community behaviour. Role and purpose are local names persistently identifying boot 
configuration of a node; these names unambiguously point to node’s storage areas 
where fully parametrised policy set and yet behaviour-independent etiquette rule sets 
are stored. 

The boot manager keeps the values of role (Role) and purpose (Purpose), passes 
them for kernel initialisation and writes in a bootstrap log file the two values. After 
kernel initialisation is done, the log file is appended by the refinement of role — pol-
icy and by the refinement of purpose — etiquette. There is no assumption that boot 
configuration is conflict free, especially with regard to the agreement between Pur-
pose and Role; it is assumed however that role-defined Policy rules have higher prior-
ity than purpose-defined Etiquette. The assumption is motivated by the fact that Eti-
quette might need to be further refined (constrained) by policies depending on a situa-
tion in concern; the result of this refinement process is a set of e-rules — fully speci-
fied etiquette rules. Thus, e-rules and policy rules form a consistent and locally con-
flict-free set of rules, however only until the need for further refinement is identified. 

Consider node D with a bootsrap purpose defined by E0 – E3, it is refined to a 
bootsrap etiquette (14), with square brackets to denote optional extensions 

DE1 1 y⁄ D 1, 1 y⁄ D 2,[ ]•→
; 

DE2 yD 1, 1 yD 1,⁄• yD 2, 1 yD 2,⁄•[ ] …[ ] yY 1, yY 2,[ ]+ + + +→
; 

DE3 yD 1, 1 yD 1,⁄• 1 xY⁄•( )
Nn

1 tY⁄• …[ ]+→
, 

(14)

where yD 1, yD 2, …,,  are variables to be instantiated with D’s workflows as defined by 
policies, note that these variables are generic functionalities (g1, g2,... in Fig. 1); 
yY 1, yY 2, …,,  are variables to be instantiated by similar workflows of not yet known 

community member Y.  
Each policy from a policy set is represented as <event: condition, action>, where 

action is one of the node’s functions, as in (6). A mapping from the policy set to the 
set of workflows returns a list of workflow identifiers that are the values that instanti-
ate all variables in (14), thus the etiquette is refined by the mapping into a fully speci-
fied set of e-rules. In other words, the mapping function identifies for e-rules all 
workflows that are managed by policies, i.e that are potentially changeable by con-
text.  
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We consider the two types of boot behaviour: normal boot and soft boot. In normal 
boot a node completely suspends all its operations on media, media signalling and 
community communication; it drops all previously accommodated soft state and starts 
anew. On soft boot a node suspends only etiquette defined behaviour and drops only 
etiquette related state. Immediately after a normal boot a network element does not 
have any active workflow; it needs to receive either media or media signalling to 
launch one. However, etiquette behaviours are fully specified by the refinement proc-
ess above and can be used right after any type of boot, for example to collect commu-
nity context. On soft boot a network element has no memory on trust establishment, 
all even on-going workflows are considered as fresh, i.e. the e-rules within a policy 
set consider these workflows as just being started. In both boot cases we are interested 
in booting of the etiquette behaviour only, thus we no longer distinguish between the 
two types of bootstrapping. We introduced soft boot to reflect the process of a new 
node joining a community, thus soft boot can also be regarded as booting to a com-
munity. 

Community communication that can be done for a number of concerns must be 
performant and scalable. Our approach is to use progressive communication patterns 
that will gradually evolve to serve more complex tasks by morphing under already 
achieved progress within the concerns of interest. Trust establishment is a primary 
concern on boot, should follow easy to discover, or standard patterns like those 
sketched in E0 – E3. However, after initial trust is established, community peers 
could launch etiquette communication for other concerns (QoS, interoperability, auto-
configuration, etc.) using trusted peers — this substitution of etiquette messages (7) – 
(9) by messages of another concern we dub etiquette progression. Progression can be 
continued with deeper or wider trust establishment itself using fitness function events 
to modify etiquette messages as in the next section. 

3.4   Evolving to Fit the Community 

Situation outlined by (10) will be noted by each community member as stability of 
their message boxes and existing etiquette will be perceived as no longer productive. 
While trust is the permanent concern the peers will attempt to use progression as 
situative re-refinement of e-rules using basic etiquette and fitness function. Figure 6 
summarises a possible internal organisation of an autonomic node. 

After initial trust as in (10) is established between pairs of community peers the 
rule E4 — progression of the etiquette — will be triggered by the local fitness func-
tion event Fϕ i( ) const τ= , meaning that node’s fitness is unchanged during time 

interval τ . Natural etiquette progression suggested here is the exchange between 
trusted peers of summaries of established trust relations together with summaries per 
workflows. This way, trusted peers can compute [sub-]community fitness and distrib-
ute back to peers their trust connectivity. There is no need to make any additional 
computation for this, sufficient will be to distribute to peers residuals as in (10). 

The re-refined etiquette is the exchange of residuals from cross operation on local 
message boxes between trusted nodes that results in a new state, e.g. (15) 
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Fig. 6. Autonomic Node Architecture 

A dC tB+( ) 1 cB⁄ d+
C

tA tC++( )
B

•→
; 

B 1 cB⁄ d+
C

tA tC++( ) dC tB+( )
A

1 dC⁄ c+
B

tB+( )
C

+•→
; 

C 1 dC⁄ c+
B

tB+( ) 1 cB⁄ d+
C

tA tC++( )
B

•→
, 

(15)

where …( )
i  denotes a residual received from the i-th trusted peer. After (15) all 

trusted nodes share trusted sub-community state information including weighted node 
fitness values (Table 1, last column), and in accordance with the purpose shall try to 
increase their fitness and, consequently the fitness of the community. Each node ac-
cording to E4 shall attempt to achieve wider trusted connectivity based on the con-
tents of its message box. In our example only A succeeds: A that previously was 
aware of node C (because of dC( )  advertisement) concludes from (15) that its trusted 

peer node B is in trust with node C, it’s only possibility to enhance its fitness. Node A 
re-refines its E1 induced etiquette AE1 1 a⁄ A aB dC+( )•→  to advertise to the commu-

nity the following intended behaviour 

AE1' 1 a⁄ A dC•( ) 1 cB 1 bB⁄•⁄( )
B

bC dC•( )|| ||→
, 

            (16) 

where || is the intended concatenation of local behaviours of community members. 
Expression (16) is a payload of etiquette message, its concern is yet improved trust in 
the community, with message header signalling to community members that node A is 
proposing certain behaviour. Basically, (16) suggests trusted concatenation of local 
workflows: IPv4 forwarding from A to B, IPv4 to IPv6 interoperability at B and IPv6 
forwarding from B to C; reverse IPv6 to IPv4 interoperability at C. Though this sam-
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ple scenario might look artificial, it shows that community concerns taken locally and 
opportunistically may yield improvements to community fitness. 

4   Conclusions 

Design of autonomic communication systems and their elements is complicated by a 
large number of interdependencies between different concerns and requirements. The 
real challenge is not to attempt to solve associated problems at system design phase 
but to embed such features into a system that will facilitate solutions at run-time. We 
demonstrate this with soft-boot, run-time, local and context sensitive etiquette refine-
ment approaches. Autonomic network elements will likely to be much more flexible 
than current hosts and routers in cross-layer interactions between entities of their 
protocol stack; we try to capture this feature by the notion of a workflow — chromo-
some characterisation of node’s behaviour — the payload of proposed etiquette com-
munication.  

Etiquette is a mechanism for community building and community self-
management that is achieved through locally perceived and processed community 
state under the governance of community fitness. We select trust establishment in ad 
hoc networking as an example of non-functional requirement to be able to demon-
strate throughout the paper abstract concepts with examples; despite this demonstra-
tion purpose the future work will address more realistic scenarios for trust and intru-
sion detection based on the principles of autonomic communication. 
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Abstract. Complexity of modern information systems (IS), impose novel secu-
rity requirements. On the other hand, the ontology paradigm aims to support 
knowledge sharing and reuse in an explicit and mutually agreed manner. There-
fore, in this paper we set the foundations for establishing a knowledge-based, 
ontology-centric framework with respect to the security management of an arbi-
trary IS. We demonstrate that the linking between high-level policy statements 
and deployable security controls is possible and the implementation is achiev-
able. This framework may support critical security expert activities with respect 
to security requirements identification and selection of certain controls and 
countermeasures. In addition, we present a structured approach for establishing 
a security management framework and identify its critical parts. Our security 
ontology is being represented in a neutral manner, based on well-known secu-
rity standards, extending widely used information systems modeling ap-
proaches. 

Keywords: Security Management, Security Policy, IS Security, Security  
Ontology. 

1   Introduction 

Modern information systems offer organizations and individuals a lot of benefits. The 
advances in information and communication technologies (ICT) offer dramatic cost 
savings and can introduce new capabilities in order to support new and diverse ser-
vices to organizations and/or end users. A combination of conventional networks and 
wireless- and sensor-aware devices with traditional installations such as mainframes, 
becomes more and more popular. The dynamic character of IS exacerbates the secu-
rity risks innate in any IS; the lack of effective security requirements inclusion during 
the system development is the most important reason, which is further stressed by the 
rush of commercial competition. In addition, new technologies face several categories 
of risks; a number of these risks are similar to those of a conventional IS, while others 
are introduced by the new technologies’ immaturity and the lack of efficient integra-
tion with conventional ones. As an example, we might consider the vulnerabilities 
introduced by wireless where the use of the airwave as the underlying communication 
medium it might be an easy target to malicious users. 

                                                           
*  Corresponding author. 
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In this context, the organizations should be aware of the risks introduced by the 
dynamic nature of information systems which support the business functions; thus, the 
maintenance, management and administration of such network infrastructures should 
be a continuing process, which requires greater effort compared to conventional net-
works [1], [2]. IS security requirements might stem from the stakeholders and the envi-
ronment of the organization (market trends, data protection acts). Therefore, there is a 
need for the identification and implementation of robust security controls to ensure that 
information resources are protected against potential threats. By the term “Security 
Control” we mean the applicable, low-level technical countermeasures, which can be 
applied directly to the IS devices. Traditionally, the requirements of such controls 
come up as a result of an Information System (IS) Risk Analysis (RA) study, given the 
thorough intervention of a (possibly group of) security expert(s). Furthermore, the 
formulation of a generic security policy, which is linked with and exploits the RA 
results, is a usual addition to the RA process. In all cases such a process, either assisted 
through computerized tools or not, renders the security expert(s) responsible for the 
following tasks: a) capturing the security control requirements of the IS, b) translating 
organizational input to a set of semiformal security rules, c) transforming the security 
rules into an effective set of security controls, d) deploying and managing the security 
controls over the IS and, e) establish a risk management process over the effectiveness 
and efficiency of the security controls in place (optional). 

To accomplish the above tasks, security experts usually deal with high-level state-
ments from various sources (e.g. output of RA tools, policy statements expressed in a 
managerial level, Service Level Agreements), combined with IS technical informati-
on. This is often an effort-consuming intervention – especially for large organizations 
– which has not yet been properly assisted by automated processes. We argue that we 
may employ a structured approach to support the process leading from informal, high-
level statements found in policy and RA documents to deployable technical controls. 
The outcome of this process will be a knowledge-based, ontology-centric security ma-
nagement system, eventually bridging the IS risk assessment and organizational secu-
rity policies with security management.  

This paper aims to provide the foundations of a framework for supporting the 
above procedure. More specifically, the proposed framework will encapsulate IS secu-
rity management through the linking between high-level policy statements and explicit, 
low-level security controls adaptable and applicable in the IS environment. Addition-
ally, in the specific paper we propose an architecture that will facilitate the implemen-
tation of the above framework (scheme). Our overall approach is outlined as follows; 

1. Identify and define the necessary components and mechanisms of the frame-
work. 

2. Gather the security requirements that stem from the policy statements and ex-
press them in an information-rich manner. 

3. Associate security requirements with appropriate risk mitigation actions (i.e. 
specific countermeasures). 

4. Provide deployment mechanisms to the IS infrastructure. 
5. Define an architecture for security management of the IS. 

It should be noted that the paper deals with the description of the total framework 
and respective architecture, and as such, does not research into implementation details 
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of certain parts of the architecture; in addition, its’ modular structure permits inde-
pendence of implementation, provided that the interfaces between the architecture 
modules are well-defined. 

The rest of this paper is organized as follows: the next section gives an overview 
of the prerequisite information about IS management standards and the ontological 
paradigm, which will be the enablers for our approach. In section 3 we define an  
architecture and its components, while in section 4 we present the IS security man-
agement framework. In section 5 we present related work to our research and, finally, 
our conclusions and further work in section 6. 

2   Background 

2.1   Common Information Model 

The Common Information Model (CIM) [3] is a conceptual information model, which 
developed by Distributed Management Task Force (DMTF) for describing computing 
and business entities in Internet, enterprise and service provider environments. The 
CIM is a hierarchical, object-oriented architecture that makes it comparatively straight-
forward to track, and depict the complex interdependencies and associations among 
different managed objects. Such interdependencies may include those between logical 
network connections and underlying physical devices, or those of an e-commerce 
transaction and the web and database servers on which it depends. The CIM does not 
require any particular instrumentation or repository format, attempting to unify and 
extend the existing instrumentation and management standards (SNMP, DMI, CMIP, 
etc.) using object-oriented constructs and design. While CIM is an evolving standard, 
there are several commercial implementations from vendors like HP and Dell [3]. 

Management schemas are the building blocks for management platforms and ma-
nagement applications, such as device configuration, performance management, and 
change management. The CIM Schema supplies a set of classes with properties and 
associations that provide a well-understood conceptual framework, within which it is 
possible to organize the available information about the managed environment. The 
CIM Schema is the combination of the Core and Common Models. 

Core Model: The core model captures notions that are applicable to all areas of mana-
gement. The core model is a set of classes, associations, and properties that provide a 
basic vocabulary for describing managed systems, representing a starting point for de-
termining how to extend the common schema. 

Common Models: The Common Models are information models that capture notions 
that are common to particular management areas, but independent of any particular 
technology or implementation. Examples of common models include systems, appli-
cations, networks and devices. The classes, properties, associations and methods in 
the common models are intended to provide a view of the area that is detailed enough 
to use as a basis for program design and, in some cases, implementation. 

Extension Schema: Extension schemas represent extensions of the common models. It 
is expected that the common models will evolve as a result of the promotion of ob-
jects and properties defined in the extension schemas [3]. 
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CIM is advantageous for our approach in that the model can be mapped to struc-
tured specifications such as OWL [4]. 

2.2   Ontologies: Their Use in Knowledge Modeling 

An ontology is “an explicit specification of a conceptualization” [5]. Ontologies are 
discussed in the literature as means to support knowledge sharing and reuse [6]. This 
reusability approach is based on the assumption that if a modeling scheme - i.e. on-
tology - is explicitly specified and mutually agreed by the parties involved, then it is 
possible to share, reuse and extend knowledge. It is obvious that there is no “silver-
bullet” ontology - in other words, it is unlikely that there will be a single, common on-
tology for all domains of human activity. This led to the concept of newsgroup metap-
hor or domain specific ontology, in order to define the terminology for a group of pe-
ople that share a common view on a specific domain [6]. Ontologies can be used to 
describe structurally heterogeneous information sources of different levels of abstrac-
tion, such as found on security policy documents and RA outputs, helping both people 
and machines to communicate in a concise manner, a manner which is based not only 
on the syntax of security requirements, but on their semantics as well. 

An ontology is comprised by three major building blocks: concepts, relationships 
and constraints. Concepts are abstract terms, which are typically organized in taxono-
mies. Hierarchical concepts are linked with an “is-a” relationship. Furthermore, con-
cepts can have properties (or attributes), which help establishing relationships betwe-
en non-hierarchical concepts. Attributes may have a specific type like STRING, IN-
TEGER, BOOLEAN, etc. Axioms are rules that are valid in the modeled domain, fi-
nally constraining the possible (i.e. meaningful) interpretations for the defined con-
cepts. There are simple symmetric, inverse or transitive axioms and complex rules 
consisting of several relations. Ontologies provide for inheritance in an object-orient-
ed manner, with instances being concrete occurrences of abstract concepts. 

Ontologies are a vital part of our framework, which is described next. 

3   Proposed Security Architecture 

In the following paragraphs we present a generic architecture for IS security manage-
ment based on an ontology-centric approach. The main idea is to associate the secu-
rity requirements (“what”) stemming from the security knowledge sources with the 
appropriate actions (“how”) and eventually deploy them to the IS. To accomplish 
these tasks, four main phases exist: a) building the SO in order to simulate the under-
lying IS, b) capturing the IS security requirements (“what”) from high-level policy 
statements into appropriate instances of the SO concepts, c) matching every security 
requirement with the appropriate technical security control (“how”) that effectively 
produces a population of (what, how) pairs for every IS device instance, and d) the 
actual deployment of the identified actions to the IS, which can be accomplished by 
piping the necessary data to a policy-based management platform, such as Ponder [7]. 
Figure 1 depicts the architecture under consideration, whereas a detailed description 
of required steps is given in section 4. 

Our approach is modular enough, in such a way that enhancements in any given 
component(s) can be applied with a minimal overhead to the architecture. The propos-
ed security architecture is based on the combination of several methods, techniques 
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and enablers such as knowledge representation, information extraction, IS manage-
ment standards, and best practices from wide accepted security standards. The (vague) 
security knowledge that is present to high-level policy statements is transformed thro-
ugh successive steps into applicable security countermeasures. For simplicity, with 
the term “policy statements” hereafter we refer to RA outputs, lists of security cont-
rols requirements, organization policy statements and SLA requirements. 

In the next sections we present the components of our architecture, as well as the 
necessary steps that demonstrate the framework establishment. 

3.1   Sources of Security Knowledge 

A number of security-related knowledge information sources exist that influence in a 
direct or indirect way the security expert so as to implement the security controls. 
Direct sources are bound to the specific IS and include organization policies and 
SLAs, RA outputs and IS infrastructure information. Indirect sources are implicitly 
associated with the given IS and include security and risk management standards [8] 
[9], technical best practices [10], security advisories from vendors [11] and security 
portals [12], security mailing lists [13] and vulnerability catalogues such as CVE [14].  
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Fig. 1. An ontology-centric architecture for IS security management 
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An indirect source of security information, usually neglected by the experts is bu-
siness decisions made by the organization stakeholders (e.g. “Company’s IT systems 
should support the Sales process”). This may raise certain IS security considerations 
(e.g. “the sales application must be accessible by the salesmen with wireless laptops 
during business hours”). 

Furthermore, these sources of security knowledge can be classified among a 
number of criteria: the ambiguity of contained information, the relevance to the speci-
fic IS environment, the nature of the information therein - e.g. requirement (“what”) 
or implementation (“how”) - the target of appliance (e.g. applies to all IS assets or to 
a subset of them), etc. Figure 2 depicts a classification of certain security knowledge 
sources against the first two points of view, namely: ambiguity of contained infor-
mation, and relevance to the specific IS environment. The depicted sources of secu-
rity knowledge that span from high to low relevance reflect the existence of specific, 
still irrelevant information to the IS under question, due to diversity of technologies 
present in some knowledge sources such as mailing lists. 

Fig. 2. A classification of IS security knowledge sources 

In conclusion, it is evident that the complexity, the different way of representation 
and the diverse nature of abovementioned sources turns the work of security expert(s) 
into a challenging and time-consuming task. The modeling and extraction of security-
related information from different information sources can be addressed with stan-
dardization initiatives such as OVAL [15] and CVE [14], with separate information 
extraction modules for each definition [16] [17], etc; our knowledge-based system 
which will exploit this vast, but still unstructured wealth of security information is a 
valuable tool in the arsenal of security experts. 
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3.2   Security Ontology 

In this section, we define a generic Security Ontology (SO), as “an ontology that ela-
borates on the security aspects of a system”. In the sequel, the terms “Security Onto-
logy” and “Ontology” will be used interchangeably. 

Ontology languages such as OWL [18] provide for formal logic support like De-
scription Logics, a particular decidable fragment of first order logic (i.e. OWL DL 
version), which has desirable computational properties for reasoning systems. It is true 
that, OWL comparing to pure formal logic models expressing security issues may lack 
in expressiveness (issue which is expected to be supported with the evolution of tools 
compliant with OWL Full version), but ontologies have several advantages: a) ontolo-
gies are more close to human mentality expressing a world model, in contradiction 
with formal languages which are difficult to understand and use by humans, b) the 
formal models deal with access control issues mainly which can be expressed mathe-
matically and they lack support for more soft actions such as countermeasure selection, 
c) comparing to formal languages, ontologies are more well-suited for expressing ap-
proximations and decision support systems via semantic support and inferencing 
mechanisms, d) the query mechanisms which can be applied to OWL ontologies. 

Our SO extends CIM meta-model in order to capture the security requirements of 
an arbitrary IS. The SO is formulated as a CIM extension schema enriched with onto-
logical semantics, modeling the security management information; in addition, it is 
linked with the legacy CIM concepts in order to access the already modeled informa-
tion for the IS resources. The SO acts as a container for the IS security requirements 
(“What”), as they will be extracted from the available information sources. While 
there is no standard method for ontology development [19], we followed the col-
laborative approach for ontology design described in [20]. The idea is to build an on-
tology by a group of people in an iterative way, improving the ontology in every 
round. During design, well-known security standards and the design criteria in [5] we-
re taken into account. SO development is achieved through the following steps: 

Step 1 - Consideration of ontology design criteria [1] as a framework for the deve-
lopment process; 

Step 2 – Identification of core security concepts from security standards and best 
practice; from a literature review of wide-accepted standards such as ISO/IEC 
17799 [8], British Standard 7799 Part 2 [21], Australian Standard Handbook of 
Information Security Risk Management (AS/NZS 4360) [22], and Common 
Criteria framework [23], follows that there are recurrent and common used 
concepts including threats, vulnerabilities, risks, controls, assets, and impacts. 

Step 3 – Normalization of security vocabulary; although recurrent and common used 
entities and concepts exist in all standards, the vocabulary of risk and security 
concepts in several cases is not identical (or even corresponding). Further-
more, different relationships between similar concepts exist, e.g. in AS/NZS 
4360 vulnerabilities are linked directly to assets, whereas in CC vulnerabili-
ties are linked to assets through risks. Thus, focusing to provide a common 
model for these informally recurrent concepts, a common vocabulary is estab-
lished which will be used for the SO definition. 

Step 4 – Development of concept-centric partial ontologies; in this step, in order to 
facilitate understanding, we developed partial ontologies which include a cen-
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tral security concept and relations with its direct neighbors so as to be able to 
approach the IS security concepts from different views and perspectives. 

Step 5 – Integration of the partial ontologies in a SO prototype; in this step we integ-
rate each partial ontology perspective into a wider ontology and extend the 
model with additional attributes and rules, if any. 

Step 6 – Refinement of vocabulary and normalization of the SO prototype; we revise 
the vocabulary and adjust accordingly concept attributes and relationships in 
order to avoid redundancies. 

Step 7 – Evaluation and feedback; the integrated model representing the SO is evalu-
ated qualitatively through discussion and interaction among the participating 
individuals. 

If the developed SO is not satisfactory, then the process is repeated from Step 2. 

3.3   Knowledge Extraction Mechanisms 

As analyzed in section 3.1, a variety of diverse sources concerning security knowled-
ge is available to the security expert. The security knowledge can be acquired through 
several sources, namely: 

 From high-level policy statements, which express the view of organization ma-
nagement on risk avoidance and mitigation issues, ideally aligned with busi-
ness objectives and goals; for this task, information extraction tools with onto-
logical support is used. Such information may be gathered through the use of 
tools and techniques such as [16] [17]. 

 From widely accepted standards on security and assurance that act as a refer-
ence model and provide a best practice perspective; a container database for 
security requirements according to these standards is used (“Security and As-
surance Standards Database”).  

 From system-specific information from the organization domain, thereby fa-
cilitating the linkage of the model with the real world. Such information will 
be gathered twofold: 
o From the infrastructure level through the use of system- and network-au-

diting tools and techniques such as Nmap [24] and NetStumbler [25]. 
These tools provide useful information for network mapping, identifica-
tion of platforms and operating systems, available services and open ports; 

o From the managerial level through dialog-based interfaces from the hu-
man owners of the system (e.g. justification of policy decisions in order to 
achieve the business objectives). In this case, the responsible individual 
enters the information through specific forms to provide the desired data. 
Typically, this kind of information refers to business applications’ facts 
such as custom services / open ports etc. 

The security knowledge extraction process is depicted in Figure.3. Although the 
detailed techniques of extracting the information from the aforesaid sources, as well 
as the process of the ontology concepts instantiation are beyond the scope of this pa-
per, an overview is provided in section 4.  
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3.4   Database of Technical Controls  

This component is the counterpart of the SO, and describes the technical actions 
(“How”) in order to fulfill the security requirements identified in the SO (“What”), 
being actually a collection of security controls in a technical level; examples include 
executable programs and scripts, tools, secure configuration settings and security 
patches. These controls address, among others, the specific threats and vulnerabilities 
of IS and are highly technology- and platform-dependent. For instance, a script con-
figuring a certain access device in order to enforce a given access control policy, may 
be inappropriate for different versions of the device software. 

The idea is to provide customized, focused solutions in the technical level that 
address given security requirements of IS. These controls are organized in a relational 
database for easy retrieval and query support. Metadata of these security controls in-
clude, among others, the following attributes: target platform, operating system name 
and version, target domain, authorization level required, action performed, time con-
straints, prerequisite conditions for successful execution, clean-up actions, etc. The 
database of technical controls is by no means complete and/or static ; it should be up-
dated in regular periods with the latest technical controls. The database schema defini-
tion, as well as the database management itself, is out of scope of this paper. 

4   Security Management Framework 

In this section we present a brief description of the necessary steps in order to esta-
blish the IS security management framework under examination. Four major phases 
can be identified throughout the process, namely: a) Building of Security Ontology, b) 
Security Requirements Collection, c) Security Actions Definition, and d) Security 
Actions Deployment and Monitoring. The steps in each phase are as follows: 

1. Building of Security Ontology 

I. Get IS infrastructure data; in this initial step, vital data concerning the network 
topology, technologies used, servers, wireless access points, services and a-
ctive ports are located through the use of network scanning tools such as Nmap 
[24] and NetStumbler [25]; 

II. Justify with organization managers and discuss business decisions; manage-
ment input entered into the knowledge system via dialog-based interfaces may 
influence dramatically the security of the IS, since it might affect network to-
pologies, active services and open ports. 

III. Generate ontology concepts’ instances from infrastructure data; in this step 
there is enough information in order to generate instances from the correct 
concepts of the SO. Populate the instances with information from step I. The 
management of concepts’ instances and population may be performed via on-
tology environments and tools, such as Protégé [26]. 

2. Security Requirements Collection 

IV. Extract security knowledge from the IS policy document; perform information 
extraction work from the policy statements and populate the ontology concept 
instances with the extracted information, using tools such as GATE [16]. 
Eventually fill the gaps (if possible) in the instances from step II.  
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Fig. 3. SO population process with security knowledge 

V. Present the security requirements to management and security expert(s) for e-
valuation; if necessary, perform adjustments and/or corrections to security re-
quirements. This step will help towards to the refinement and training of the 
information extraction process. The database of security and assurance stan-
dards may be used for enriching the security requirements, in case the informa-
tion contained in the policy documents is deemed insufficient. 

3. Security Actions Definition 

VI. Associate the security requirements with specific security controls; this step 
performs the linking of requirements with deployable security controls (Data-
base of Technical Controls), customized for the concept instance under ques-
tion. In this task, valuable help will be utilized from the infrastructure data col-
lected during step I. 

VII. Transform the controls identified into a Ponder-compatible input; this step in-
volves the transformation of the controls (actions) specified in step VI into a 
form that can be piped into Ponder rules. The Database of Technical Controls 
is not a part of Ponder or CIM framework, but rather an enabling repository of 
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deployable security measures. The transformation to Ponder can be realized 
through an appropriate interface. The CIM-Ponder transformation/mapping is 
already discussed in [27] [28] [29]. 

4. Security Actions Deployment and Monitoring 

VIII. Deploy the Ponder rules over the IS infrastructure; employ Ponder manage-
ment framework in order to realize the security requirements (enforcing the 
policy statements that apply to technical controls) over the IS devices. 

IX. Iterate from step I in a timely basis; in order to keep up with the changes in 
the IS environment and policy modifications, the whole process should be 
employed over certain periods of time.  

Furthermore, reporting facilities should be in place so as to be able to monitor every step 
of the process. Additional capabilities, such as storage of the ontology in a suitable manner 
so as to be able to perform queries upon the ontology, are highly preferable. Moreover, the 
representation of the ontology should be available in a semantic web language, such as 
OWL [18], so as to promote reusability and exchange of security knowledge. 

5   Related Work 

Regarding previous work, two main directions exist: policy specification and (partial) 
security-related ontologies. 

There is a research effort on different approaches to policy specification [7]; 
IETF/DMTF and the network component manufacturers are concentrating on infor-
mation models [3] and condition-action rules focusing on the management of Quality 
of Service (QoS) in networks [30]. The security community has developed a number 
of models with respect to specification of mandatory and discretionary access control 
policies (e.g. such as Clark-Wilson), further evolving into work on role based access 
control (RBAC) and role based management where a role may be considered as a 
group of related policies pertaining to a position in an organization [31]. Finally, con-
siderable work within the greater scope of management has already resulted in archi-
tectures and technologies that provide the basic infrastructure required to implement 
policy-based management solutions [32]. 

Although the need for a security ontology has been recognized by the research 
community [33] [34] [35], only partial attention has been drawn for a common solu-
tion. A loosely related to our work [34] [35] deal mainly with access control issues; 
Standards discussed include XML Signatures and integration with Security Assertions 
Markup Language (SAML), an XML-based security standard for exchanging authen-
tication and authorization information [36]. Furthermore, work on KAON [37] focus-
es mostly on the managing infrastructure of generic ontologies and metadata, whereas 
in [38] authors present a policy ontology based on deontic logic, elaborating, among 
others, on delegation of actions. 

Raskin et al. presented an ontology-driven approach to information security [39]. 
They argue that a security ontology could organize and systematize all the security 
phenomena such as computer attacks. Furthermore, the inherent ontology modularity 
could support the reaction in attacks by relating certain controls with specific attack 
characteristics, and finally, support attack prediction. 

In general, we should mention that the policy languages which are represented 
using Semantic Web languages are, usually, defined in terms of ontologies. In this 
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context the design of the KAoS [40, 41] policy ontology suggests the use of a descrip-
tion logic inference engine to analyze policy rules. The Rei [38] policy ontology re-
quires the use of an F-Logic based interpreter to compute the defined policy restric-
tions and constraints. The policy analysis mechanism in the e-Wallet system [42] 
exploits the XSLT technology to translate policy rules from RDF to JESS rules and 
uses a JESS rule engine to compute policy restrictions. Furthermore, the SOUPA [43] 
policy language is similar to Rei in modeling a policy as a set of rules that defines 
restrictions on actions but the specific policy ontology has limited support for meta-
policy reasoning and speech-acts (for a detailed description and comparison of policy 
representation and reasoning languages at the semantic level see [41]).  

The legacy DMTF approach (i.e. the root of our SO), lacks a) the security manage-
ment aspect (which we define as an Extension Schema), b) the centralized management 
of security management information, and c) the domain knowledge perspective, which 
we incorporate into our model enriching the Extension Schema with ontological support. 

In addition, most of these approaches are related with specific aspects of security 
and particularly to specific application domains; our approach is generic enough to be 
applied in every information system, incorporating security knowledge from various 
sources. Furthermore, all aforementioned approaches lack the security standards sup-
port, which we use for modeling the security requirements.  

6   Conclusions and Further Research 

In this paper we set the foundations for establishing a knowledge-based, ontology-
centric framework with respect to the security management of an arbitrary IS. We 
demonstrated that the linking between high-level policy statements and deployable 
security controls is possible and the implementation is achievable. This framework 
may support critical security expert activities with respect to security requirements 
identification and selection of certain controls that apply to a certain IS. In addition, 
we presented a structured approach for establishing a security management frame-
work and identified its critical parts. Our security ontology is represented in a neutral 
manner, based on well-known security standards and can be used for security knowl-
edge reusability and exchange.  

Moreover, a reference representation for SO in OWL is underway, examining in 
parallel the possibility of integrations with other security standards, such as [44]. The 
combination of formal methods and an ontology-based semantic reference model is a 
very interesting direction and is under consideration. The standardization of security 
requirements in order to implement a standards-based, security requirements database 
(Security & Assurance Standards Database) is also investigated. Further steps of our 
work will include the practical implementation of the framework; a comprehensive set 
of attributes, relationships and constraints for the security ontology is under investiga-
tion. Additionally, we investigate ways of extracting security information from high-
level documents (e.g. security policy and risk analysis documents) and from the infra-
structure level of the organizational domain, as well. 

Finally, open issues include conflict resolution on security requirements, comp-
liance checking against desirable IS policy, automated development of IS audit pro-
grams; integration of the approach into a security/risk management framework; 
evaluation metrics of produced security controls; definition of a comprehensive matc-
hing algorithm between countermeasures in security ontology instances and technical 
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security controls database. Other issues include storage and retrieval issues of security 
requirements, as well as development of a query-based system. 
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Abstract. Most of access control mechanisms use the matrix model to
represent protection states of computer systems. We present a variant
of the access control matrix model obtained by incorporating temporal
constraints saying that “subject s has right r on object o since at least
duration d”. In connection with this enriched model, we also discuss the
decidable and undecidable cases of one of the major themes of computer
security, namely the classical safety problem for access control matrices.

1 Introduction

The need for protection arises in any computer system where several users share
multifarious data and resources. The protection state of a computer system is
the set of all values of memory locations of the computer system that deal with
protection. Protection models provide a foundation for the representation of pro-
tection states of computer systems. They are usually defined in terms of subjects,
objects, and rights between subjects and objects. In the matrix model introduced
by Lampson [9], rows represent subjects and columns represent objects. Each el-
ement of the matrix is a set of rights. On most computer systems, “subject s has
right r on object o” if and only if r belongs to the element (s, o) of the matrix.
The access control model formalized by Harrison, Ruzzo, and Ullman [8] was
the first model to propose a language for administrating protection in terms of
propagation of rights. Within the HRU model, a protection system consists of a
set of commands. As commands are executed, the protection state of the com-
puter system, i.e. its access control matrix, changes. Protection models based on
the HRU language must consider the well-known safety problem: given a right
r, a protection system Π , and a protection state Δ, is there a protection state
containing r and reachable from Δ in a finite number of Π-steps? The safety
problem is undecidable for generic protection systems but it becomes decidable
if protection systems are restricted in some way. Can the borderline between
decidable and undecidable cases of the safety problem be drawn sharply and on
the basis of which criteria? This matter is analysed in [7,8]. See also [2] in this
connection.

Additional topics related to the HRU model include results concerning a
number of interesting variants obtained by extending HRU in various ways. Re-
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visiting the results obtained so far, Sandhu [11] and Soshi [14] expanded the
HRU model by typing subjects and objects. The papers [3,5,12] formulated role-
based access control, RBAC, a model within which the right for a subject to
have access to an object depends both on the roles assigned to the subject and
on the permissions allocated to the object. In this connection see also [4]. RBAC
has recently attracted a great deal of attention. However, nothing is known
about role-based protection systems for which the safety problem is decidable.
An interesting extensions of HRU is HRU with explicit prohibitions saying that
“subject s has not right r on object o”. The essential ingredients of this variant of
the HRU model have been introduced by Sandhu and Ganta [13]. Nevertheless,
nothing is known about protection systems with explicit prohibitions for which
the safety problem is decidable. In [10], an access control mechanism based on
Boolean expression evaluation, BEE, is presented. This mechanism defines ele-
ments of the matrix to be sets of pairs of the form (r, B) where r is a right and B
is a Boolean expression. Whenever subject s attempts to r-access object o, the
Boolean expression associated with r in element (s, o) of the matrix is evaluated:
if it is true, access is allowed. Yet, nothing is known about protection systems
with Boolean expression evaluation for which the safety problem is decidable.

In practice, computer systems provide primitives such as “date” which cor-
responds to the current date and “time” which corresponds to the current time.
Incorporating them into access decisions based on BEE would afford an excel-
lent example of an access control matrix whose elements depend on temporal
requirements. Since temporal requirements are involved in every aspect of human
activity and computing, it becomes essential to develop protection systems which
can take temporal constraints into account. The temporal role-based access con-
trol model proposed by Bertino, Bonatti, and Ferrari [1] provides support for
periodic role enabling and disabling whereas the temporal data authorization
model proposed by Gal and Atluri [6] is able to express access control poli-
cies based on the temporal characteristics of data. In this paper we investigate
the description of a HRU model incorporating temporal constraints saying that
“subject s has right r on object o since at least duration d”. The bulk of this
paper is devoted to the problem of trying to characterize the borderline between
decidable and undecidable cases of the safety problem for HRU with temporal
constraints. Before we proceed with the next sections, let us briefly describe
their contents. Section 2 presents the concept of protection state in matrix form
and defines a set of primitive operations that alter the access control matrix of
computer systems. Section 3 deals with HRU protection systems and examines
under what conditions the classical safety problem for access control matrices
becomes decidable. Section 4 expands the HRU model by incorporating tem-
poral constraints and extends the concept of safety defined within the context
of HRU protection systems to the concept of timed safety. Section 5 considers
under what conditions the timed safety problems defined within the context of
timed protection systems become decidable.
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Table 1. Protection state Δ

A o0 o1

s0 {r1, r2} {r0, r1, r2}
s1 {r0, r1, r2} {r1, r2}
s2 {r1, r2} {r1, r2}

2 Protection States

Let R be a finite set with typical member denoted r, r′ etc, possibly with sub-
scripts. Its elements are called rights. The rights of our abstract model corre-
spond, for instance, to those of the Unix system: read, write, etc. Let SC be a
countable set of individuals of type subject with typical member denoted s, s′

etc, possibly with subscripts, and OC be a countable set of individuals of type
object with typical member denoted o, o′ etc, possibly with subscripts. Indi-
viduals will also be denoted by the letters a, a′, etc, possibly with subscripts.
Elements of SC will also be called subjects and elements of OC will also be called
objects. The set of subjects is the set of active entities, such as human beings.
The set of objects is the set of passive entities, such as files. To characterize the
connection between subjects and objects, we present the concept of protection
state. A protection state (S, O, A) has three components: a finite subset S of
SC, a finite subset O of OC, and a function A assigning to each subject s in
S and each object o in O a subset A(s, o) of R. With each finite subset S or O
we associate its cardinality, denoted by |S| or |O|. Let |R| be the cardinality of
the finite set R. For subject s in S and object o in O, the relationship “r is in
A(s, o)” means that subject s has right r on object o. Protection states will be
denoted by the letters Δ, Δ′, etc, possibly with subscripts. Table 1 illustrates a
simple protection state Δ presented in a matrix form. The entries in the matrix
specify the rights that each subject has on each object. Seeing that entities such
as processes can be treated as both subjects and objects, we will assume that for
all protection states (S, O, A), S is included in O. Let SV be a countable set of
variables of type subject with typical member denoted σ, σ′ etc, possibly with
subscripts, and OV be a countable set of variables of type object with typical
member denoted ω, ω′ etc, possibly with subscripts. Variables will also be de-
noted by the letters X , X ′, etc, possibly with subscripts. There are 6 primitive
operations which are used to modify protection states:

– “create subject σ” and “destroy subject σ”,
– “create object ω” and “destroy object ω”,
– “enter r into A(σ, ω)” and “delete r from A(σ, ω)”.

Primitive operations will be denoted by the letters π, π′, etc, possibly with
subscripts. Substitutions replace individuals for variables. Hence they are finite
sets of the form {X1/a1, . . . , Xn/an} where each Xi is a variable, each ai is an
individual, and the variables X1, . . ., Xn are pairwise distinct. We will always
consider that substitutions are balanced, i.e. for all i in {1, . . . , n}, Xi and ai are
of the same type. Substitutions will be denoted by the letters θ, θ′, etc, possibly
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with subscripts. Each primitive operation modifies the current protection state
in a way which is peculiar to what its name implicitly means. To make things
perfectly clear, it is convenient to consider the concept of state derivability. Let
θ be a substitution and π be a primitive operation. Suppose there is no variable
in θ(π), i.e. every variable in π is replaced by an individual through the use of
θ. If Δ = (S, O, A) and Δ′ = (S′, O′, A′) are protection states then we shall say
that Δ′ is derivable from Δ in one step using θ and π, in symbols Δ −→θ

π Δ′,
iff one of the following conditions is satisfied:

– π is “create subject σ”, θ(σ) is not in S, and the only difference between Δ
and Δ′ is that S′ = S ∪ {θ(σ)},

– π is “destroy subject σ”, θ(σ) is in S, and the only difference between Δ and
Δ′ is that S′ = S \ {θ(σ)},

– π is “create object ω”, θ(ω) is not in O, and the only difference between Δ
and Δ′ is that O′ = O ∪ {θ(ω)},

– π is “destroy object ω”, θ(ω) is in O, and the only difference between Δ and
Δ′ is that O′ = O \ {θ(ω)},

– π is “enter r into A(σ, ω)”, θ(σ) is in S, θ(ω) is in O, and the only difference
between Δ and Δ′ is that A′(θ(σ), θ(ω)) = A(θ(σ), θ(ω)) ∪ {r},

– π is “delete r from A(σ, ω)”, θ(σ) is in S, θ(ω) is in O, and the only difference
between Δ and Δ′ is that A′(θ(σ), θ(ω)) = A(θ(σ), θ(ω)) \ {r}.

Consider again the protection state Δ shown in table 1. If primitive operations
π1, π2, π3, and π4 are “create object ω”, “enter r0 into A(σ, ω)”, “enter r1 into
A(σ, ω)”, and “enter r2 into A(σ, ω)” and substitution θ is {σ/s2, ω/o2} then
Δ −→θ

π1
◦ −→θ

π2
◦ −→θ

π3
◦ −→θ

π4
Δ′, where Δ′ is the protection state defined by

table 2. If primitive operation π5 is “enter r3 into A(σ′, ω)” and substitution θ
is {σ′/s0, ω/o2} then Δ′ −→θ

π5
Δ′′, where Δ′′ is the protection state defined by

table 3. If primitive operation π6 is “enter r4 into A(σ′, ω)” and substitution θ is
{σ′/s1, ω/o2} then Δ′′ −→θ

π6
Δ′′′, where Δ′′′ is the protection state defined by

table 4. If primitive operation π7 is “enter r5 into A(σ′′, ω)” and substitution θ
is {σ′′/s2, ω/o2} then Δ′′′ −→θ

π7
Δ(4), where Δ(4) is the protection state defined

by table 5.

3 HRU Protection Systems

Within the context of HRU protection systems, primitive operations can be
invoked indirectly via HRU commands of the form:

Table 2. Protection state Δ′

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} ∅
s1 {r0, r1, r2} {r1, r2} ∅
s2 {r1, r2} {r1, r2} {r0, r1, r2}
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Table 3. Protection state Δ′′

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} {r3}
s1 {r0, r1, r2} {r1, r2} ∅
s2 {r1, r2} {r1, r2} {r0, r1, r2}

– “if C1 and . . . and Ci then begin π1; . . .; πj end”,

where C1, . . ., Ci are elementary conditions like:

– “r is in A(σ, ω)”,

and π1, . . ., πj are primitive operations. The number of elementary conditions
is i, a non-negative integer, and the number of primitive operations is j, a pos-
itive integer. A HRU command is invoked by replacing all variables in it with
individuals of the appropriate types. After that, if the elementary conditions C1,
. . ., Ci are evaluated to true in terms of the current protection state then the
primitive operations π1, . . ., πj are executed. HRU commands will be denoted
by the letters α, α′, etc, possibly with subscripts. By a HRU protection system,
we simply mean a finite set {α1, . . . , αk} of HRU commands. We shall say that
a command is conditional iff it contains at least 1 elementary condition. A HRU
protection system is monotonic iff none of its HRU commands contain a prim-
itive operation of the form “destroy” or “delete”. It is monoconditional iff none
of its HRU commands contain more that 1 elementary condition whereas it is
mono-operational iff none of its HRU commands contain more that 1 primitive
operation. HRU protection systems will be denoted by the letters Π , Π ′, etc,
possibly with subscripts. For all i ∈ {0, 1, 2, ∞} and for all j ∈ {1, 2, ∞}, let
CHRU (i, j) be the class of all HRU protection systems such that none of their
HRU commands contain more than i elementary condition or more than j prim-
itive operations and C+

HRU (i, j) be the class of all monotonic HRU protection
systems in CHRU (i, j). For example, the HRU protection system Π shown in
table 6 is in the class C+

HRU (2, ∞). Let θ be a substitution and C be an elemen-
tary condition. Suppose there is no variable in θ(C), i.e. every variable in C is

Table 4. Protection state Δ′′′

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} {r3}
s1 {r0, r1, r2} {r1, r2} {r4}
s2 {r1, r2} {r1, r2} {r0, r1, r2}

Table 5. Protection state Δ(4)

A o0 o1 o2

s0 {r1, r2} {r0, r1, r2} {r3}
s1 {r0, r1, r2} {r1, r2} {r4}
s2 {r1, r2} {r1, r2} {r0, r1, r2, r5}
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Table 6. HRU protection system Π

begin create object ω; enter r0 into A(σ,ω); enter r1 into
A(σ,ω); enter r2 into A(σ, ω) end
if r0 is in A(σ, ω) then enter r3 into A(σ′, ω)
if r0 is in A(σ, ω) then enter r4 into A(σ′, ω)
if r3 is in A(σ, ω) and r4 is in A(σ′, ω) then enter r5 into
A(σ′′, ω)

replaced by an individual through the use of θ. If Δ = (S, O, A) is a protection
state then we shall say that θ makes C true at Δ, in symbols Δ |=θ C, iff the
following condition is satisfied:

– C is “r is in A(σ, ω)”, θ(σ) is in S, θ(ω) is in O, and r is in A(θ(σ), θ(ω)).

It follows from the definition that if substitution θ is {σ/s2, ω/o2} and elementary
condition C is “r0 is in A(σ, ω)” then Δ′ |=θ C, where Δ′ is the protection state
defined by table 2. As well, if substitution θ is {σ/s0, σ

′/s1, ω/o2} and elementary
conditions C′ and C′′ are “r3 is in A(σ, ω)” and “r4 is in A(σ′, ω)” then Δ′′′ |=θ C′

and Δ′′′ |=θ C′′, where Δ′′′ is the protection state defined by table 4. Let Π be
a HRU protection system. If Δ = (S, O, A) and Δ′ = (S′, O′, A′) are protection
states then we shall say that Δ′ is derivable from Δ in one step using Π , in
symbols Δ −→Π Δ′, iff there exists a substitution θ and a HRU command
α ∈ Π with elementary conditions C1, . . ., Ci and primitive operations π1, . . .,
πj such that:

– Δ |=θ C1, . . ., Δ |=θ Ci,
– Δ −→θ

π1
◦ . . . ◦ −→θ

πj
Δ′.

It is obvious from the definition that Δ −→Π Δ′ −→Π Δ′′ −→Π Δ′′′ −→Π Δ(4)

where Δ, Δ′, Δ′′, Δ′′′, and Δ(4) are the protection states defined by tables 1,
2, 3, 4, and 5 and Π is the HRU protection system defined by table 6. Let
Π be a HRU protection system and Δ be a protection state. Π is said to be
unsafe for r with respect to Δ iff there exists a sequence Δ0 = (S0, O0, A0), . . .,
Δn = (Sn, On, An), Δn+1 = (Sn+1, On+1, An+1) of protection states such that:

– Δ0 −→Π ◦ . . . ◦ −→Π Δn −→Π Δn+1,
– the following conditions are satisfied for some individual s ot type subject

and for some individual o of type object:
• if s is in Sn and o is in On then r is not in An(s, o),
• s is in Sn+1, o is in On+1, and r is in An+1(s, o),

– Δ0 = Δ.

We also say that the sequence Δ0 = (S0, O0, A0), . . ., Δn = (Sn, On, An),
Δn+1 = (Sn+1, On+1, An+1) leaks r with respect to Π and Δ. For example,
with respect to Δ, the HRU protection system Π defined in table 6 is unsafe for
r0, r1, r2, r3, r4, and r5, where Δ is the protection state defined by table 1. Let
CHRU be a class of HRU protection systems. The most basic problem on HRU
protection systems in CHRU is the following decision problem:
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Problem: SAFETY(CHRU ),
Input: a right r, a HRU protection system Π ∈ CHRU , and a protection state

Δ = (S, O, A),
Output: determine if Π is unsafe for r with respect to Δ.

The above is a planning problem. Abstractly, we have an initial protection state
and certain HRU commands that can be performed in a given protection state
if it satisfies certain conditions. Performing a HRU command with respect to a
protection state brings about a new protection state. The goal is to bring about
a protection state leaking the right r and the task is to find a sequence of HRU
commands that achieves this end.

Theorem 1. 1. SAFETY(CHRU (∞, 1)) is decidable,
2. SAFETY(C+

HRU (1, ∞)) is decidable,
3. SAFETY(C+

HRU (2, ∞)) is undecidable.

Proof. See [7,8].

4 Timed Protection Systems

Within the context of HRU protection systems, the mechanism granting and
revoking access of subjects to objects is based on the execution of commands.
This mechanism tends to restrict our thinking about access control to just the
ordering between protection states in a transition Δ −→Π Δ′ rather than to the
duration that elapse between protection states in the transition Δ −→Π Δ′. At
a more sophisticated level, it is not enough that the computer system is in such
or such protection state. For some positive real number d, we must additionally
ensure either that the computer system has remained in such or such protection
state since at least duration d or that the computer system has remained in
such or such protection state since at most duration d. For instance, we might
wish to force the protection system either to wait at least d units of time before
granting access or to wait at most d units of time before revoking access. We are
primarily concerned with the temporal aspect of state derivability. The central
point of this paper is to demonstrate that adding temporal requirements to
protection systems can be achieved. For this purpose, we have developed a new
HRU model incorporating temporal constraints saying that “subject s has right
r on object o since at least duration d”, leaving aside for another paper temporal
constraints saying that “subject s has right r on object o since at most duration
d”. Hence, within the context of timed protection systems, primitive operations
can be invoked indirectly via timed commands of the form:

– “if C1 and . . . and Ci then begin π1; . . .; πj end”,

where C1, . . ., Ci are now elementary conditions like:

– “r is in A(σ, ω) since at least duration d” where d is a positive real number.
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Table 7. Timed protection system Π ′

begin create object ω; enter r0 into A(σ,ω); enter r1 into
A(σ,ω); enter r2 into A(σ, ω) end
if r0 is in A(σ, ω) since at least duration 2 then enter r3

into A(σ′, ω)
if r0 is in A(σ, ω) since at least duration 2 then enter r4

into A(σ′, ω)
if r3 is in A(σ, ω) since at least duration 3 and r4 is
in A(σ′, ω) since at least duration 3 then enter r5 into
A(σ′′, ω)

The concept of timed protection system and the adjectives conditional, monotonic,
monoconditional, and mono-operational are defined as in section 3. For all i ∈
{0, 1, 2, ∞} and for all j ∈ {1, 2, ∞}, let Ctimed(i, j) be the class of all timed
protection systems such that none of their timed commands contain more than
i elementary condition or more than j primitive operations and C+

timed(i, j) be
the class of all monotonic timed protection systems in Ctimed(i, j). For example,
the timed protection system Π ′ shown in table 7 is in the class C+

timed(2, ∞). A
timed history is a mapping that assigns to every non-negative real number a pro-
tection state. Timed histories will be denoted by the letters h, h′, etc, possibly
with subscripts. We are interested in non-Zeno timed histories, i.e. timed histo-
ries changing at most a finite number of times in any finite interval. Hence, we
assume that for all timed histories h, there exists a strictly increasing sequence
v0, v1, . . . of real numbers such that:

– v0 = 0,
– limn→∞ vn = ∞,
– for all non-negative integers n, there exists a protection state Δn such that

h(v) = Δn for all v ∈ [vn, vn+1[.

We shall say that the sequence (v0, Δ0), (v1, Δ1), . . . is a timed sequence for h.
In such sequences, the three components of protection state Δn will be denoted
Sn, On, and An for each non-negative integer n. To gain some intuition, the
reader may easily see that the sequence (0, Δ), (1, Δ′), (2, Δ′), (3, Δ′′), (4, Δ′′′),
(5, Δ′′′), (6, Δ′′′), (7, Δ(4)), (8, Δ(4)), . . . is a timed sequence for the timed history
h shown in table 8, where Δ, Δ′, Δ′′, Δ′′′, and Δ(4) are the protection states
defined by tables 1, 2, 3, 4, and 5. Let θ be a substitution and C be an elementary
condition. Suppose there is no variable in θ(C), i.e. every variable in C is replaced
by an individual through the use of θ. If h is a timed history with timed sequence
(v0, Δ0), (v1, Δ1), . . . and v is a non-negative real number then we shall say that
θ makes C true in h at v, in symbols h, v |=θ C, iff the following condition is
satisfied:

– C is “r is in A(σ, ω) since at least duration d”, d ≤ v, and for all non-negative
integers n, if vn < v and v− d < vn+1 then θ(σ) is in Sn, θ(ω) is in On, and
r is in An(θ(σ), θ(ω)).
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It follows from the definition that if substitution θ is {σ/s2, ω/o2} and elemen-
tary condition C is “r0 is in A(σ, ω) since at least duration 2” then h, 3 |=θ C,
where h is the timed history defined by table 8. As well, if substitution θ is
{σ/s0, σ

′/s1, ω/o2} and elementary conditions C′ and C′′ are “r3 is in A(σ, ω)
since at least duration 3” and “r4 is in A(σ′, ω) since at least duration 3” then
h, 7 |=θ C′ and h, 7 |=θ C′′, where h is the timed history defined by table 8. The
concept of timed history is used to model the behaviour of timed protection sys-
tems. We shall say that timed history h is a model for timed protection system
Π , in symbols h |= Π , iff there exists a timed sequence (v0, Δ0), (v1, Δ1), . . . for
h such that for all non-negative integers n, there exists a substitution θn and a
timed command αn ∈ Π with elementary conditions C1

n, . . ., Cin
n and primitive

operations π1
n, . . ., πjn

n such that:

– h, vn+1 |=θn C1
n, . . ., h, vn+1 |=θn Cin

n ,
– Δn −→θn

π1
n
◦ . . . ◦ −→θn

πjn
n

Δn+1.

We shall say that the sequence (v0, Δ0, θ0, α0), (v1, Δ1, θ1, α1), . . . is a dynamic
timed sequence for h. It is obvious from the definition that the timed history
h shown in table 8 is a model for the timed protection system Π ′ of table 7.
It is now time to get more precise concerning the question of safety in timed
protection systems. Let Π be a timed protection system and Δ be a protection
state. If d is a positive real number then Π is said to be d-unsafe for r with
respect to Δ iff there exists a timed history h with dynamic timed sequence
(v0, Δ0, θ0, α0), (v1, Δ1, θ1, α1), . . . such that:

– h |= Π ,
– the following conditions are satisfied for some individual s of type subject

and some individual o of type object:
• if s is in Sn and o is in On then r is not in An(s, o),
• s is in Sn+1, o is in On+1, and r is in An+1(s, o),

– Δ0 = Δ,

for some non-negative integer n such that vn+1 ≤ d. We shall also say that d is
a waiting period of Π for r with respect to Δ. For example, with respect to Δ,
the timed protection system Π ′ defined in table 7 is 1-unsafe for r0, 1-unsafe for
r1, 1-unsafe for r2, 3-unsafe for r3, 4-unsafe for r4, and 7-unsafe for r5, where Δ
is the protection state defined by table 1.

Table 8. Timed history h

v h(v)
v ∈ [0, 1[ Δ

v ∈ [1, 3[ Δ′

v ∈ [3, 4[ Δ′′

v ∈ [4, 7[ Δ′′′

v ∈ [7,∞[ Δ(4)
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5 Some Mathematical Results

Consider a timed protection system Π . If Π ′ is a timed protection system ob-
tained from Π by modifying all or part of its timed constraints “since at least
duration d” then, obviously, Π and Π ′ leak the same rights, possibly at different
points in time. Hence, HRU(Π) denoting the HRU protection system obtained
from Π by removing all its timed constraints “since at least duration d”, the
following lemma should not come as a great surprise.

Lemma 1. Let Δ be a protection state. The following conditions are equivalent:

– there exists a positive real number d such that Π is d-unsafe for r with respect
to Δ,

– HRU(Π) is unsafe for r with respect to Δ.

Let Ctimed be a class of timed protection systems. The most basic problem on
timed protection systems in Ctimed is the following decision problem:

Problem: UNIVERSAL TIMED SAFETY(Ctimed),
Input: a right r, a timed protection system Π ∈ Ctimed, and a protection state

Δ = (S, O, A),
Output: determine if there exists a positive real number d such that Π is d-

unsafe for r with respect to Δ.

Like all decision problems, UNIVERSAL TIMED SAFETY(Ctimed) must have
a countable set of instances. As a result, hereafer, we will always assume that
for all positive real numbers d, if a timed protection system Π ∈ Ctimed contains
the timed constraint “since at least duration d” then d is rational.

Theorem 2. 1. UNIVERSAL TIMED SAFETY(Ctimed(∞, 1)) is decidable,
2. UNIVERSAL TIMED SAFETY(C+

timed(1, ∞)) is decidable,
3. UNIVERSAL TIMED SAFETY(C+

timed(2, ∞)) is undecidable.

Proof. The corresponding results for SAFETY with respect to HRU protection
systems have been proved by [7,8]. Lemma 1 now finishes the proof.

Let r be a right, Π ∈ Ctimed be a timed protection system, and Δ be a protection
state. Suppose that the set of all waiting periods of Π for r with respect to Δ
is nonempty. Hence, it has a greatest lower bound dglb. What is the crucial
observation we need to make about dglb? Simply this: in view of the fact that
the timed constraints in Π are rational, dglb must be rational. This suggests the
following optimization problem:

Problem: MIN TIMED SAFETY(Ctimed),
Input: a right r, a timed protection system Π ∈ Ctimed, and a protection state

Δ = (S, O, A),
Output: if the set of all waiting periods of Π for r with respect to Δ is nonempty

then find its greatest lower bound.
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Let us observe that it need not be the case that dglb is a waiting period of Π for
r with respect to Δ. To see this, let us consider the timed protection system Π ′

shown in table 7. It is easy to see that for all positive real numbers d, 5 < d iff
d is a waiting period of Π ′ for r5 with respect to the protection state Δ defined
by table 1 whereas Π ′ is not 5-unsafe for r5 with respect to Δ.
Theorem 3. 1. MIN TIMED SAFETY(Ctimed(∞, 1)) is solvable,
2. MIN TIMED SAFETY(C+

timed(1, ∞)) is solvable,
3. MIN TIMED SAFETY(C+

timed(2, ∞)) is unsolvable.

Proof. (1) To prove that MIN TIMED SAFETY(Ctimed(∞, 1)) is solvable, let
HRU(Π) be the HRU protection system obtained from Π by removing all its
timed constraints “since at least duration d”. If the sequence Δ0 = (S0, O0, A0),
. . ., Δn = (Sn, On, An), Δn+1 = (Sn+1, On+1, An+1) of protection states leaks r
with respect to HRU(Π) and Δ then following the line of reasoning suggested
by Harrison, Ruzzo, and Ullman [8], we may assume that n ≤ (|S|+ 1)× (|O|+
1)×|R|+1, where Δ = (S, O, A) is the given protection state. The corresponding
waiting period necessary if one wants to reach Δn from Δ0 by performing timed
commands in Π is computable in linear time. To finish the proof we only need
to note that the number of requisite waiting periods that we should compute
and compare is finite.
(2) To prove that MIN TIMED SAFETY(C+

timed(1, ∞)) is solvable, let HRU(Π)
be the HRU protection system obtained from Π by removing all its timed
constraints “since at least duration d”. If the sequence Δ0 = (S0, O0, A0), . . .,
Δn = (Sn, On, An), Δn+1 = (Sn+1, On+1, An+1) of protection states leaks r
with respect to HRU(Π) and Δ then following the line of reasoning suggested
by Harrison and Ruzzo [7], we may assume that n ≤ 3×|R|, where Δ = (S, O, A)
is the given protection state. The corresponding waiting period necessary if one
wants to reach Δn from Δ0 by performing timed commands in Π is computable
in linear time. To finish the proof we only need to note that the number of req-
uisite waiting periods that we should compute and compare is finite.
(3) If we had an algorithm A for solving MIN TIMED SAFETY(C+

timed(2, ∞))
then we would be able to derive an algorithm for deciding UNIVERSAL TIMED
SAFETY(C+

timed(2, ∞)): given input (r, Π, Δ), we would be able to decide whe-
ther there exists a positive real number d such that Π is d-unsafe for r with
respect to Δ by simply telling whether A(r, Π, Δ) is defined. Since UNIVER-
SAL TIMED SAFETY(C+

timed(2, ∞)) is undecidable, then MIN TIMED SAFE-
TY(C+

timed(2, ∞)) is unsolvable.

Sometimes it is less important to know the greatest lower bound of the set of
all waiting periods of timed protection system Π ∈ Ctimed for right r than to
know given a positive rational number d, that there is no history h modelling
Π and leaking r between time points 0 and d. This observation leads us to the
following decision problem:
Problem: BOUND TIMED SAFETY(Ctimed),
Input: a right r, a timed protection system Π ∈ Ctimed, a protection state

Δ = (S, O, A), and a positive rational number d,
Output: determine if Π is d-unsafe for r with respect to Δ.
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Theorem 4. 1. BOUND TIMED SAFETY(Ctimed(∞, 1)) is decidable,
2. BOUND TIMED SAFETY(C+

timed(1, ∞)) is decidable.

Proof. (1) The proof that BOUND TIMED SAFETY(Ctimed(∞, 1)) is decidable
is an adaptation of the proof that MIN TIMED SAFETY(Ctimed(∞, 1)) is solv-
able.
(2) The proof that BOUND TIMED SAFETY(C+

timed(1, ∞)) is decidable is an
adaptation of the proof that MIN TIMED SAFETY(C+

timed(1, ∞)) is solvable.

We do not know at present whether BOUND TIMED SAFETY(C+
timed(2, ∞)) is

undecidable. However, considering regular timed protection systems in
C+

timed(∞, ∞) makes a limited variant of the BOUND TIMED SAFETY ques-
tion decidable. A timed protection system Π is regular iff there exists a positive
real number dΠ such that for all positive real numbers d, if Π contains the timed
constraint “since at least duration d” then d = dΠ . Let C⊕timed(∞, ∞) be the class
of all regular timed protection systems in C+

timed(∞, ∞).

Theorem 5. The following decision problem is decidable:

Input: a right r, a timed protection system Π ∈ C⊕timed(∞, ∞), a protection
state Δ = (S, O, A), and a positive rational number d such that d < 2× dΠ ,

Output: determine if Π is d-unsafe for r with respect to Δ.

Proof. Let r be a right, Π ∈ C⊕timed(∞, ∞) be a timed protection system, Δ =
(S, O, A) be a protection state, and d be a positive rational number such that
d < 2 × dΠ . Without loss of generality, we may assume that S �= ∅ and O �= ∅.
If Π is d-unsafe for r with respect to Δ then there exists a timed history h with
dynamic timed sequence (v0, Δ0, θ0, α0), (v1, Δ1, θ1, α1), . . . such that:

– h |= Π ,
– the following conditions are satisfied for some individual s of type subject

and some individual o of type object:
• if s is in Sn and o is in On then r is not in An(s, o),
• s is in Sn+1, o is in On+1, and r is in An+1(s, o),

– Δ0 = Δ,

for some minimal non-negative integer n such that vn+1 ≤ d. The key arguments
we need are embodied in the following lemmas.

Lemma 2. If the sequence α0, . . ., αn contains at least 1 conditional command
then the command αn is conditional.

Proof. Suppose that the sequence α0, . . ., αn contains at least 1 conditional com-
mand. If the command αn is not conditional then n ≥ 1. Moreover, there exists
a timed history h′ with dynamic timed sequence (v′0, Δ

′
0, θ

′
0, α

′
0), (v′1, Δ

′
1, θ

′
1, α

′
1),

. . . such that:

– h′ |= Π ,
– the following conditions are satisfied for some individual s′ of type subject

and some individual o′ of type object:
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• if s′ is in S′
0 and o′ is in O′

0 then r is not in A′
0(s

′, o′),
• s′ is in S′

1, o′ is in O′
1, and r is in A′

1(s
′, o′),

– Δ′
0 = Δ,

contradicting the minimality of n.

Lemma 3. The sequence α0, . . ., αn contains at most 1 conditional command.

Proof. If the sequence α0, . . ., αn contains at least 2 conditional commands
then the command αn is conditional and there exists a non-negative integer p in
{0, . . . , n− 1} such that the command αp is conditional. Moreover, there exists
a timed history h′ with dynamic timed sequence (v′0, Δ

′
0, θ

′
0, α

′
0), (v′1, Δ

′
1, θ

′
1, α

′
1),

. . . such that:

– h′ |= Π ,
– the following conditions are satisfied for some individual s′ of type subject

and some individual o′ of type object:
• if s′ is in S′

n−1 and o′ is in O′
n−1 then r is not in A′

n−1(s
′, o′),

• s′ is in S′
n, o′ is in O′

n, and r is in A′
n(s′, o′),

– Δ′
0 = Δ,

contradicting the minimality of n.

How do such ideas bear on theorem 5? By lemmas 2 and 3, there are two possi-
bilities:

– the commands α0, . . ., αn are not conditional,
– the commands α0, . . ., αn−1 are not conditional and the command αn is

conditional.

In the first case, n is equal to 0. In the second case, n is less than or equal to the
number of elementary conditions in αn. This completes the proof of theorem 5.

6 Conclusion

Temporal constraints allow the security administrator to clearly express the
desired temporal requirements that must satisfy the successive alterations of the
protection state of a computer system. The critical issue is the characterization
of classes of timed protection systems for which the safety problems considered in
section 5 are decidable. A key feature of access control with temporal constraints
is its extensibility. The form of elementary conditions is not fixed. We could, for
example, explore the effects of allowing testing in an access control matrix for
the presence of rights since at most duration d as opposed to testing for the
presence of rights since at least duration d which the model described in this
paper does. The intensive study of the issues relating to the support of such
conditions in our timed protection systems is still to be done.
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Abstract. Making correct access-control decisions is central to security,
which in turn requires accounting correctly for the identity, credentials,
roles, authority, and privileges of users and their agents. In networked
systems, these decisions are made more complex because of delegation
and differing access-control policies. Methods for reasoning rigorously
about access control and computer-assisted reasoning tools for verifica-
tion are effective for providing assurances of security. In this paper we
extend the access-control logic of [11,1] to also support reasoning about
role-based access control (RBAC), which is a popular technique for reduc-
ing the complexity of assigning privileges to users. The result is an access-
control logic which is simple enough for design and verification engineers
to use to assure the correctness of systems with access-control require-
ments but yet powerful enough to reason about delegations, credentials,
and trusted authorities. We explain how to describe RBAC components
such as user assignments, permission assignments, role inheritance, role
activations, and users’ requests. The logic and its extensions are proved
to be sound and implemented in the HOL (Higher Order Logic version
4) theorem prover. We also provide formal support for RBAC’s static
separation of duty and dynamic separation of duty constraints in the
HOL theorem prover. As a result, HOL can be used to verify properties
of RBAC access-control policies, credentials, authority, and delegations.

1 Introduction

The ubiquitous use of inter-networked computers makes controlled access to
information and services simultaneously essential and complex. Access is ulti-
mately granted based on establishing a relationship between a principal and her
privileges with respect to a particular object. In networked systems, requests
and authority may be delegated. This complicates the task of establishing the
identity and authority of principals behind access requests.

One interesting specialty logic for reasoning about access-control policies and
decisions is the access-control logic of Abadi and colleagues [11,1]. This modal
logic brings clarity and consistency to reasoning about access requests because it
provides a formal model of principals, statements, credentials, authority, trust,
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and delegations. However, this logic lacks the capability for specifying and rea-
soning about role-based access control (RBAC) [4,6]. RBAC policies are par-
ticularly well-suited for large-scale computing systems, because they reduce the
administrative complexity of associating users with permissions by decoupling
the two: users are authorized for roles, and permissions are assigned to roles.
RBAC also supports a decentralized view of access control.

Our objective is to unify within a single logic the ability to describe and
reason about access-control requests and decisions based on the relationships
between principals, statements, and trusted authorities while accounting for cre-
dentials, delegation, and RBAC roles. We therefore extend the access-control
logic of Abadi to encompass three major RBAC components: (1) user-role asso-
ciations, (2) role-permission associations, and (3) role-inheritance relations. We
express user-role associations as delegations (roles delegate their authority to
users to act on their behalf); role-permission associations and role-inheritance
relations are expressed as relations among principals and sets of statements by
which certain statements of one principal may be attributed to another principal.
With these extensions, we can (1) model RBAC policies within the access-control
logic, and (2) reason about RBAC-based access-control decisions.

Other researchers have used modal logic for describing security policies and
properties [8,2]. Those frameworks are more general than ours, but require a
high level of sophistication on the part of users. Our objective was to identify
a simple logic accessible to engineers that nonetheless could describe a wide
variety of access-control concerns. Our experiences teaching the Abadi logic to
computer science and engineering Master’s students indicate that the logic meets
those criteria [12,13].

To verify the soundness of the access-control logic and its extensions, we
use the HOL (Higher Order Logic version 4) theorem prover [7,10]. Defining
the access-control logic within HOL serves several purposes. First, HOL is used
to verify the soundness of the access-control logic. Second, because HOL is an
open system, all of our proofs can be easily checked by third parties. Finally,
the existence of an executable and verifiable access-control logic implemented
in HOL makes both the access-control logic and a means for formal verification
available to design and verification engineers.

In addition to user-role associations, role-permission associations, and role
hierarchies, RBAC allows the specification of constraints that prevent users from
(1) being assigned to roles that are in conflict (static separation of duty), and
(2) activating certain roles simultaneously (dynamic separation of duty). These
constraints are outside the direct scope of the access-control logic, which focuses
on access-control decisions for a specific policy. In contrast, the separation of
duty constraints impose limits on what should be considered a well-defined or
consistent policy in the first place. However, like the access-control logic, these
constraints can be described and verified within the higher-order logic of HOL.
Hence, we are able to use higher-order logic to verify the consistency of a specific
RBAC policy prior to using the access-control logic to reason about access-
control decisions based on that policy.
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The rest of this paper is organized as follows. Section 2 provides a brief
RBAC tutorial. Section 3 describes the syntax and and semantics of our logic,
which builds on the work of Abadi and colleagues [11,1]. Section 4 explains how
RBAC relations are described in our extended logic. Section 5 presents the HOL
definitions of static and dynamic separation of duty constraints. Finally, our
conclusions are in Section 6.

2 Role-Based Access Control (RBAC)

Role-Based Access Control (RBAC) [5,4,6] replaces direct user-permission as-
sociations in traditional access control through a combination of user-role and
role-permission associations. Rather than assigning individuals specific permis-
sions that may change as their duties and status change, an RBAC policy assigns
users to roles and grants permissions to roles. In RBAC, an access request q made
by a user U will be granted if and only if U is authorized to act in a role R that
has been granted the permission q.

RBAC policies involve three essential entities: a set of users, a set of roles,
and a set of permissions. RBAC also defines a set UA of user assignments and a
set PA of permission assignments: (U, R) ∈ UA means that user U has the right
to act in role R, and (p, R) ∈ PA means that permission p is assigned to role R.

2.1 Role Inheritance

RBAC also includes a partial order over roles called role inheritance. When
role R1 inherits role R2, denoted R1 � R2, every user U explicitly assigned
to role R1 is also implicitly assigned to role R2; likewise, every permission p
explicitly associated with role R2 is implicitly associated with role R1. The sets
authorized users(R) and authorized permissions(R) define the authorized users
and authorized permissions of a role R are given respectively:

authorized users(R) =
{U ∈ USERS | ∃R′ ∈ ROLES. (R′ � R) ∧ ((U, R′) ∈ UA)}

authorized permissions(R) =
{p ∈ PRMS | ∃R′ ∈ ROLES. (R � R′) ∧ ((p, R′) ∈ PA)}.

From these definitions, it is straightforward to verify the following two properties:

1. If R1 � R2, then authorized users(R1) ⊆ authorized users(R2).
2. If R1 � R2, then authorized permissions(R2) ⊆ authorized permissions(R1).

2.2 Separation of Duty

RBAC also supports constraints such as separation of duty. Static separation of
duty provides a way to specify mutually exclusive roles (i.e., roles that should
never have authorized users in common). In RBAC, static separation of duty is
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Untenured
   Faculty

Faculty
(Fac)

(UnTen)(CE Fac)(CS Fac)

Department Chair
(Chair) (P&T VM)

CS Faculty CE Faculty
(Ten)
Faculty

Tenured

Voting Member
Promotion & Tenure

Fig. 1. Role Hierarchy Structure

represented by a set SSD of pairs (rs, n), where rs is a set of mutually exclusive
roles and n ≥ 2. When (rs, n) is in SSD, no users should be authorized to act in
n or more of the roles in rs.

Note that static separation of duty constrains the role hierarchy as well as
the user-role assignment UA. For example, if a user U is authorized to act in
role R1 and R1 inherits R2, U is also authorized to act in role R2. Thus, both
UA and � must be checked to ensure that they satisfy the SSD constraints.

Dynamic separation of duty constrains the combinations of roles that users
may activate at any given instant, and is specified by a set DSD of pairs similar
to SSD. When (rs, n) is in DSD, a user cannot have n or more roles in rs simulta-
neously activated. When a user activates a set of roles, the set of roles constitutes
a session. The function session roles(s) determines the set of activated roles as-
sociated with the session s. In an RBAC system, the role-activation monitor
denies any role-activation requests that would violate the DSD constraints.

2.3 RBAC Example

As an example of an RBAC policy, consider a hypothetical academic department
that houses both Computer Science (CS) and Computer Engineering (CE) pro-
grams. The department includes both tenured and untenured faculty, and every
faculty member is associated with at least one of the two academic programs.
In addition, the department has a chairperson and a Promotion & Tenure (P&
T) committee. Thus, there are seven relevant roles for this example:

ROLES = {Fac,Ten,UnTen,CS Fac,CE Fac,Chair,P&T VM}.

Figure 1 provides a Hasse diagram representing a plausible role-inheritance re-
lation for this scenario (e.g., the roles Chair and P&T VM both inherit Ten).

The standard academic situation is that no one can be both tenured and
untenured, and hence the roles Ten and UnTen should be mutually exclusive.
Furthermore, the department’s bylaws mandate that the chair cannot be a P&T
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voting member. These constraints can be represented by the following static
separation-of-duty relation:

SSD = {({Ten,UnTen}, 2), ({P&T VM,Chair}, 2)}.

Because the roles Chair and P&T VM both inherit the Ten role, these two
constraints also prevent untenured faculty from being department chair and
from being voting members of the P&T committee.

The department’s bylaws also require the P&T Committee to contain a fixed
number of representatives from each of the CS and CE programs. Thus, for
the purposes of P&T deliberations, no faculty member can simultaneously rep-
resent both the CS and CE programs, although she may be associated with
both programs. This constraint can be represented by the following dynamic
separation-of-duty relation:

DSD = {({CS Fac,CE Fac,P&T VM}, 3)}.

Thus, no one may simultaneously act as CS faculty, CE faculty, and a P&T
voting member, although they may authorized for all three roles and may act in
any two of those roles simultaneously.

We have not explicitly given the user-role and permission-role assignments.
However, suppose that the permission read student grade reports is associated
with the faculty role Fac (i.e., (read student grade reports,Fac) ∈ PA), and that
Alice is explicitly assigned to the role Chair (i.e., (Alice,Chair) ∈ UA). First of
all, note that the SSD relation prohibits any user from being authorized for both
the Ten and UnTen roles. Thus, the role hierarchy prevents Alice from being
assigned to the UnTen role, as her assignment to Chair also implicitly authorizes
her for the Ten role. Second, the role-inheritance relation also authorizes Alice
to act in the role Fac (Alice ∈ authorized users(Fac)), and hence she is entitled
to adopt either the Fac or Chair roles to read student grade reports.

Having described the key concepts of RBAC, we now introduce a modal logic
for access control in which RBAC relationships can be described.

3 A Logic for Reasoning About Access Control

The access-control logic of Abadi and colleagues [11,1] incorporates a calculus of
principals into a standard multi-agent modal logic. The result is a set of logical
rules for manipulating formulas that provides a tool for reasoning about access
control, delegation, and trust.

Principals are entities (e.g., people, machines, encryption keys, and processes)
that make statements. Principals can be either a simple name (e.g., “Alice”) or
compound principals (e.g., “Alice and Carol”). Statements are the things that
principals say, such as “read file foo” or “Alice can read file foo.”

In this section, we extend the Abadi logic with a few constructs that will
allow us to reason about requests in the context of RBAC.
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3.1 Syntax

We start out by introducing a collection of principal expressions, ranged over by
P and Q. Letting A range over a countable set of simple principal names, the
abstract syntax of principal expressions is given as follows:

P ::= A | P & Q | P |Q | P forAQ

The principal P & Q represents a compound principal who makes exactly those
statements made by both P and Q. P |Q represents an abstract principal cor-
responding to principal P quoting principal Q. P forAQ represents a principal
P acting on behalf of principal Q: P forAQ is syntactic sugar for P |Q & A|Q,
where A is a principal that vouches for P ’s authorization to make statements on
Q’s behalf [1].

For the logic itself, we let p range over a countable collection of primitive
propositions and define the abstract syntax for the logic as follows:

ϕ ::= p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 ⊃ ϕ2 | ϕ1 ≡ ϕ2 | P says ϕ | P ⇒ Q

| P �T Q | P servesAT Q | P �T Q

Here, T ranges over sets of formulas that include only formulas of the forms
included on the first line (e.g., not involving �T , servesAT , or �T ); the forms
involving T are our extensions.

Primitive propositions are used to represent requests and permissions, while
the formula P says ϕ represents principal P making the statement ϕ. In turn,
P ⇒ Q represents a relationship between principals P and Q through which
statements of P can also be attributed to Q. The formula P �T Q, pronounced
as “P is mimicked by Q on T ,” is our extension to the logic, inspired by Howell
and Kotz’s restricted speaks for relation T⇒ [9]. This restricted mimics formula
represents a weaker relation than P ⇒ Q, in part because only P ’s statements
from the set T can be attributed to Q. Finally, P servesAT Q (the restricted serves
relation) and P �T Q (the restricted inherits relation) are syntactic sugar for
P |Q �T A|Q and (P ⇒ Q) ∧ (Q �T P ), respectively.

3.2 Semantics

The semantics of the logic is based on Kripke structures. A Kripke structure is a
triple M = 〈W, I, J〉, where W is a set of possible worlds, I is an interpretation
function that maps each primitive proposition to a set of worlds, and J is an
interpretation function that maps each primitive principal to a binary relation
over W . We extend J to a function J̃ over arbitrary principal expressions as
follows:

J̃(A) = J(A)
J̃(P & Q) = J̃(P ) ∪ J̃(Q)

J̃(P |Q) = J̃(P ) ◦ J̃(Q)
= {(w1, w3) | ∃w2. (w1, w2) ∈ J̃(P ) ∧ (w2, w3) ∈ J̃(Q)}.
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EM[[p]] = I(p)

EM[[¬ϕ]] = W − EM[[ϕ]]

EM[[ϕ1 ∧ ϕ2]] = EM[[ϕ1]] ∩ EM[[ϕ2]]

EM[[ϕ1 ∨ ϕ2]] = EM[[ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ⊃ ϕ2]] = EM[[¬ϕ1]] ∪ EM[[ϕ2]]

EM[[ϕ1 ≡ ϕ2]] = EM[[ϕ1 ⊃ ϕ2]] ∩ EM[[ϕ2 ⊃ ϕ1]]

EM[[P says ϕ]] = {w | J̃(P )(w) ⊆ EM[[ϕ]]}
= {w | {w′ | (w, w′) ∈ J̃(P )} ⊆ EM[[ϕ]]}

EM[[P ⇒ Q]] =

{
W if J̃(Q) ⊆ J̃(P )
∅ otherwise

EM[[P �T Q]] =

{
W if ∀s ∈ T. P says s ⊃ Q says s,

∅ otherwise

EM[[P servesAT Q]] = EM[[P |Q �T A|Q]]

EM[[P �T Q]] = EM[[(P ⇒ Q) ∧ (Q �T P )]].

Fig. 2. The meaning functions EM[[−]]

We then define a family (indexed by Kripke structuresM) of extended mean-
ing functions EM[[−]], which map arbitrary formulas to the sets of worlds in which
they are considered true. The definition of EM[[−]] appears in Figure 2. We write
(M, w) |= ϕ if and only if w ∈ EM[[ϕ]], and we say that M satisfies ϕ provided
that (M, w) |= ϕ for all w ∈ W . We say that ϕ is valid if every Kripke structure
M satisfies ϕ.

3.3 Logical Rules

The Kripke structures provide a precise semantics for the logic, but it is not
convenient to reason at that level. Thus, we introduce a collection of logical rules
for manipulating logical expressions. These rules, given in Figure 3, are sound
with respect to the Kripke semantics: for every formula ϕ, if ϕ is derivable (i.e.,
� ϕ), then ϕ is valid (i.e., satisfied in all Kripke structures).

3.4 Our Extensions to the Access-Control Logic

The original Abadi logic is unable to adequately describe RBAC for two reasons:
its notion of roles conflicts with the RBAC concept, and it provides no way to
express the role-permission associations. Specifically, the Abadi logic includes a
special class of principals called roles, and arbitrary principals can adopt roles to
make requests (e.g., “(Alice as Fac) says ϕ”). However, adopting roles is at the
principal’s discretion, and the effect is a reduction of privileges (e.g., Alice as Fac
has fewer privileges than Alice does). In contrast, an RBAC user is granted
privileges purely through the adoption of roles, and only when the user has been
authorized to adopt a given role. Thus, reasoning about RBAC requires us to
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� ϕ
if ϕ is an instance of a propositional-logic tautology

� ϕ � ϕ ⊃ ϕ′

� ϕ′
� ϕ

� P says ϕ
(for all P )

� (P says (ϕ ⊃ ϕ′)) ⊃ (P says ϕ ⊃ P says ϕ′)

� ϕ
if ϕ a valid formula of the calculus of principals

� P says (ϕ1 ∧ ϕ2) ≡ (P says ϕ) ∧ (P says ϕ)

� (P | Q) says ϕ ≡ P says Q says ϕ

� (P ⇒ Q) ⊃ ((P says ϕ) ⊃ (Q says ϕ)) (for all ϕ)

� (P �T Q) ⊃ ((P says ϕ) ⊃ (Q says ϕ)) (for all ϕ ∈ T )

Fig. 3. Logical rules for the derivability predicate �

� (P �T Q) ∧ (Q �T R) ⊃ (P �T R)
(� Trans)

� (P �T1 Q) ⊃ (P �T2 Q)
(for all T2 ⊆ T1) (� Sub)

� (P �T Q) ⊃ (R|P �T R|Q)
(� Mon)

� (P servesAT Q) ∧ (P |Q says s) ⊃ (P forAQ says s)
(for every s ∈ T ) (Role Del)

� P �T P
(� Ref)

� (P �T1 Q) ∧ (Q �T2 R) ⊃ (P �T1∩T2 R)
(� Trans)

� (Q1 �T2 Q2) ∧ (P servesAT1
Q1) ⊃ (P servesAT2

Q2)
(for all T2 ⊆ T1) (Role Sub)

Fig. 4. Logical rules related to �T , servesA
T , and �T

model role-permission associations, which relate roles (principals) with sets of
permissions (sets of statements).

We can model these RBAC notions in our logic using our three extensions: the
restricted mimicked by relation, the restricted serves relation, and the restricted
inherits relation. We explain how to do so in the next section. For now, we
introduce to our logical system some additional rules related to these relations.
These rules (see Figure 4) are all sound with respect to the Kripke semantics.

4 Describing RBAC Policies in the Access-Control Logic

When a user U acts in a role R and makes a request q, a reference monitor makes
an access-control decision based on UA and PA. The request will be granted if
the user has the right to act in role R (i.e., U ∈ authorized users(R)) and q is a
permission associated with role R (i.e., q ∈ authorized permissions(R)).
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For the logic to support reasoning about a specific RBAC policy, it must
provide ways to express the following components: (1) RBAC entities (e.g.,
users, roles, permissions), (2) role activation and user requests, and (3) the role-
inheritance relationship. We consider these components in turn.

4.1 Describing RBAC Entities

We represent users and roles as principals in the logic, and we represent permis-
sions as primitive propositions. UA and PA are jointly represented in the logic
as statements of the form

U servesRA
ap(R) R,

where RA represents a role authority that certifies that the user U has the right
to act in the role R, and ap(R) is the set of propositions corresponding to the
permissions in the set authorized permissions(R).1 Simply put, U servesRA

ap(R) R
indicates that user U is an authorized user of role R and may make requests
involving permissions associated with R.

The reference monitor’s ultimate decision on whether to grant a request q
is based on a series of access-control list (ACL) entries, each of which can be
expressed as

((U forRAR) says q) ⊃ q,

where U ∈ authorized users(R) and q ∈ authorized permissions(R). That is, if
the reference monitor can verify that (1) a user U is making the request q while
activated in the role R, and (2) q is a permission associated with role R, then
the reference monitor will grant the request.

4.2 Describing User Requests

In RBAC, all requests by users are made within the context of a role. The result
is that two principals—the user and the role—are involved in all requests.

We use quoting to describe role assertions (e.g., U |R) and the says operator to
represent the actual requests. For example, a user U asserting role R and making
a request q is represented as U |R says q. Multiple requests can be expressed
through conjunction, as in U |R says (q1 ∧ q2) or (U |R1 says q1)∧ (U |R2 says q2).

Note that the statement U |R says q does not guarantee that U is authorized
for role R: it merely states that U is claiming to be acting in role R. There is no
danger, however that an inappropriate request will be granted: the ACL entry
requires the reference monitor to deduce (via Role Del) that (U forRAR) says q,
which is possible only when U is authorized for role R.

4.3 Describing Role Inheritance

The relationship R1 � R2 is expressed in the logic by the formula R1 �ap(R2) R2,
which is syntactic sugar for (R1 ⇒ R2) ∧ (R2 �ap(R2) R1).

1 Henceforth, we shall blur the distinction between actual permissions and the primi-
tive propositions that are associated with them.
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It is important to confirm that this formulation accurately captures all of
the important properties of inheritance: reflexivity, transitivity, and the subset
relationships between related roles’ authorized users and authorized permissions.
That is, we must ensure that the logical rules (and thus the logic’s semantics)
validate the following properties:

– For all roles R, � R �ap(R) R.
This rule is an instance of the �-reflexivity rule (� Ref) from Figure 4.

– For all roles R1, R2, R3,

� (R1 �ap(R2) R2 ∧R2 �ap(R3) R3) ⊃ R1 �ap(R3) R3.

Recall that, whenever R2 � R3, authorized permissions(R3) is a subset of
authorized permissions(R2), and thus ap(R3) ⊆ ap(R2). Therefore, ap(R3) =
ap(R3) ∩ ap(R2), and the desired rule is simply an instance of the �-
transitivity rule (� Trans) from Figure 4.

– For all roles R1 and R2, users U , and role authorities RA,

� (R1 �ap(R2) R2 ∧ U servesRA
ap(R1) R1) ⊃ (U servesRA

ap(R2) R2).

That is, if U is an authorized user of R1 and R1 inherits R2, then U is
also an authorized user of R2. Once again, we rely on the relationship
ap(R2) ⊆ ap(R1) to see that the desired rule is simply an instance of the
role-subsumption (Role Sub) rule from Figure 4.

4.4 Reasoning About Access-Control Decisions

To demonstrate the use of the logic in reasoning about access-control decisions,
we return to the example from Section 2. We temporarily ignore the separation-
of-duty constraints, and focus on the access-control aspects of the example.

Recall that the permission read student grade reports is associated with the
role Fac: we use rsg as the primitive proposition corresponding to this per-
mission. For simplicity, we also assume the permission rant (proposition rt) is
assigned to the Ten role; there are no other explicit permission assignments.

Thus, the role hierarchy shown in Figure 1 can be described as follows:

(CS Fac �{rsg} Fac) ∧ (CE Fac �{rsg} Fac) ∧ (UnTen �{rsg} Fac)∧
(Ten �{rsg} Fac) ∧ (Chair �{rsg,rt} Ten) ∧ (P&T VM �{rsg,rt} Ten).

Recall that Alice is explicitly assigned to the role Chair. This fact can be
represented in the logic by the statement Alice servesRA

{rsg,rt} Chair. This state-
ment, along with the description of the role hierarchy above, provide the basis for
reasoning about whether Alice should be allowed to read student grade reports.

More specifically, we interpret Alice’s attempt to read student grade reports
as a statement Alice|Fac says rsg. Ultimately, the reference monitor must be
able to deduce that (Alice forRAFac) says rsg, in which case the request will be
granted.
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Table 1. Mapping from RBAC to Access-Control Logic

RBAC Access-Control Logic
A permission q is associated with role R p ∈ ap(R)
User U is authorized to act in role R. U servesRA

ap(R) R

Role R1 inherits role R2 (R1 � R2) R1 �ap(R2) R2

User U asserting role R makes a request q. U |R says q
User U , acting in authorized role R, makes a request q. U forRAR says q

From above, we know that (Chair �{rsg,rt} Ten) ∧ (Ten �{rsg} Fac). Role
transitivity allows us to conclude Chair �{rsg} Fac. Taken together with

Alice servesRA
{rsg,rt} Chair,

Figure 4’s role-subsumption rule (Role Sub) lets us deduce Alice servesRA
{rsg} Fac.

From Alice|Fac says rsg and Alice servesRA
{rsg} Fac, we can use the Figure 4’s

role-delegation rule (Role Del) to deduce (Alice forRAFac) says rsg as needed. As
a result, Alice’s request can be granted.

4.5 Summary

Table 1 summarizes how RBAC concepts are translated into formulas of the
access-control logic, providing a guideline for describing RBAC policies in the
logic. The logical rules in Figure 4 provide the basis for reasoning about access-
control decisions. Specifically, to determine whether a request U |R says q should
be granted, it suffices to determine whether the statement (U forRAR) says q can
be deduced from the logical rules.

5 Formal Specifications of RBAC Constraints

RBAC’s separation-of-duty constraints do not directly affect access-control de-
cisions, in that they are not checked at the time a decision is made. Rather, they
impose additional restrictions on the initial specification of an RBAC policy.
Therefore, we have not incorporated them into our access-control logic. However,
it is desirable to be able to verify that a given policy is consistent: its user-role
assignment and role hierarchy should not conflict with the stated separation-of-
duty constraints.

For this reason, we have formalized RBAC constraints in the Higher-Order
Logic (HOL) theorem prover. The result is a tool which one can verify the con-
sistency of RBAC policies. Because the access-control logic has also been imple-
mented and proved sound in HOL, we can easily convert RBAC policies which
has been proved consistent in HOL into the access-control logic for reasoning
about access-control decisions.

5.1 Static Separation of Duty

The role-inheritance relationship between roles R1 and R2 (R1 � R2) is a par-
tial order and thus reflexive, transitive, and antisymmetric. In RBAC, the role
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hierarchy is generally represented pictorially by a Hasse diagram. We implement
Hasse diagrams in HOL as a set HSD of pairs, with (R1, R2) ∈ HSD precisely
when there’s an explicit edge between R1 and R2 in the Hasse diagram. It is then
straightforward to define � as the reflexive, transitive closure of HSD, relative
to the set ROLES of roles:

rhRel HSD ROLES = {(R1, R2) | (R1 ∈ ROLES) ∧ (R2 ∈ ROLES)∧
(RTC (CURRY HSD) R1 R2)},

where (CURRY HSD) R1 R2 is equivalent to (R1, R2) ∈ HSD and the predicate
RTC (defined in HOL’s Relation theory) identifies the elements in the reflexive,
transitive closure of a relation.

For example, the Hasse diagram from Figure 1 can be represented by a set
HSD as follows:

HSD = {(Chair,Ten), (P&T VM,Ten), (Ten,Fac),
(CS Fac,Fac), (CE Fac,Fac), (UnTen,Fac)}

Letting ROLES be the set {Chair,P&T VM,Ten,UnTen,CS Fac,CE Fac,Fac},
the inheritance relation � is given by:

rhRel HSD ROLES =
HSD ∪ {(R, R) | R ∈ ROLES} ∪ {(Chair,Fac), (P&T VM,Fac)}.

The set of users authorized for a role R depends on both the user-role as-
signments (UA) and the inheritance relation �; likewise, the set of permissions
associated with a role depends on the permission assignments (PA) and �. Thus,
we define predicates authorized users and authorized permissions as follows:

authorized users R UA HSD ROLES =
{U | ∃ R′. (R ∈ ROLES) ∧ ((R′, R) ∈ rhRel HSD ROLES) ∧ (U, R′) ∈ UA},

authorized permissions R PA HSD ROLES =
{p | ∃ R′. (R′ ∈ ROLES) ∧ ((R, R′) ∈ rhRel HSD ROLES) ∧ (p, R′) ∈ PA}.

It is straightforward to prove that, whenever R1 � R2—that is, when (R1, R2)
is in rhRel HSD ROLES—the following two properties hold:

(authorized users R1 UA HSD ROLES) ⊆
(authorized users R2 UA HSD ROLES)

(authorized permissions R2 PA HSD ROLES) ⊆
(authorized permissions R1 PA HSD ROLES).

As described in Section 2, static separation-of-duty constraints are given by
a set SSD : each pair (rs, n) ∈ SSD represents a constraint to prevent users from
being authorized for n or more roles in rs. Because the set of authorized users
for a given role depends on both the user assignment and the role hierarchy,
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we must consider both when determining whether a particular RBAC policy
is consistent with its separation-of-duty constraints. The predicate isConsistent
verifies that a given user assignment UA and role hierarchy (given as a Hasse
diagram HSD and a set of ROLES ) do not violate the SSD constraints:

∀ UA SSD HSD ROLES. isConsistent UA SSD HSD ROLES =
∀ rs n. (rs ⊆ ROLES) ⊃ (FINITE rs) ⊃ (n ≥ 2) ⊃ (rs, n) ∈ SSD ⊃

(∀ t. (t ⊆ rs) ⊃ (CARD t ≥ n) ⊃
(¬∃ U. ∀r. (r ∈ t) ⊃ (U ∈ authorized users r UA HSD ROLES))),

where CARD t returns the number of elements in the finite set t and FINITE
s returns true if the set s is a finite set.

[4] identifies several properties that should hold of consistent RBAC policies,
such as that if two roles are mutually exclusive, then no nonempty role can
possibly inherit both of them. We have verified that these properties do hold
in our HOL implementation, which provides additional assurance that we have
accurately captured the definitions.

5.2 Dynamic Separation of Duty

Dynamic separation of duty imposes constraints on the roles that a user can have
activated at any given instant. Like static separation of duty, these constraints
are expressed as a set DSD : each pair (rs, n) ∈ DSD represents a constraint that
prevents a user from activating n or more roles in rs simultaneously.

In other words, if the set of roles associated with a user’s session s is a subset
of rs, the number of roles in session roles(s) must be less than n. The predicate
SessionSatisfies verifies that a session s satisfies the DSD constraints:

∀ s DSD ROLES. SessionSatisfies s DSD ROLES =
∀ rs n. (rs ⊆ ROLES) ∧ (FINITE rs) ∧ (n ≥ 2) ∧ (CARD rs ≥ n)∧

((rs, n) ∈ DSD) ⊃
(∀ t. (t ⊆ rs) ∧ (t ⊆ session roles(s)) ⊃ (CARD t < n)).

As with static separation of duty, [4] also identified necessary consequences for
dynamic separation of duty constraints, such as that, if two roles are mutually
exclusive for activation, no session may involve both roles. We have verified that
these properties hold of our HOL implementation.

6 Conclusions

Building information systems correctly is difficult—assuring information systems
are secure is even more difficult. As the size, scope, and complexity of information
systems is ever increasing, designers and verifiers of information systems face
an ever more challenging task when assuring security. Many have observed that
engineers must design security into systems from the start and that designs must
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be provably secure. An implication of this last point is the need for a simple,
formal, and rigorous logic for reasoning about access control in a wide variety
of forms and situations. Such a logic could be used by designers to reason about
access-control decisions in ways that are analogous to how digital designers use
propositional logic to reason about digital designs. Our conclusion is that such
a logic is possible, based on our experience defining a modal logic capable of
specifying and reasoning about access-control policies and decisions that utilize
role-based access control (RBAC).

In our logic, user assignments, permission assignments, and role hierarchies
are defined within the access-control logic. In so doing, we have soundly united
in a single logic the ability to reason about privileges, authority, delegation,
credentials, and RBAC. We are currently extending the logic to support the
administration of RBAC roles with concepts such as administrative scope [14,3].

The requirement that engineers prove that their designs are correct and se-
cure necessitates the development of automated tools and verification methods.
To help meet this need, both the access-control logic and the consistency checks
for static and dynamic separation-of-duty constraints are defined as conservative
extensions to the logic of the Higher Order Logic (HOL) theorem prover [10].
The HOL extensions provide an executable implementation of the access-control
logic, and the inference rules have been verified to be sound. Likewise, verifi-
cation of static and dynamic separation-of-duty constraints of RBAC policies is
also done in HOL. While we do not anticipate that theorem provers such as HOL
will be routinely used by practicing engineers, the HOL definitions and theorems
are a rigorous and provably correct basis for computer-assisted reasoning tools
such as symbolic simulators, rewriting systems, and symbolic calculators. Such
tools are accessible and familiar to engineers and do not carry the same burden
of formal proof when compared to full-scale theorem proving systems such as
HOL.
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Abstract. This paper presents a method to generate unique and never-
theless highly random pseudonyms in a distributed environment. More
precisely, each user can now generate his pseudonym locally in his per-
sonal security environment, e.g. in his smart card or his personal digital
assistant. There is no need for any information interchange between is-
suing parties or global data (especially keys), except unique identifiers
for each user and each device of the system. Additionally the holder can
prove, that he generated a specific pseudonym without revealing his iden-
tity and he can reveal his identity by disclosing the pseudonym. Whereas
the verifier of a disclosed pseudonym can be sure, that the presenter of
the pseudonym is the holder of the pseudonym (i.e. the person which
originally generated it). The identifier of the user and the identifier of
the user’s device will be used to generate unique pseudonyms, but to
ensure pseudonymity, both components will be stored in the pseudonym
in encrypted form.

1 Introduction

Pseudonyms (or nyms) are identifiers of subjects. The subject that may be iden-
tified by the pseudonym is the holder of the pseudonym (see [7,9]). From the
technical point of view, a pseudonym is a bit string which is

– (locally or globally) unique as identifier and
– suitable to be used to authenticate the holder and his/her data (e.g. messages

sent).

Most of the applications of pseudonyms have in common, that there should be
no way to correlate data (of the pseudonym) stored in different applications or
to link these data to the holder of the pseudonym and his identity. So another
important aspect in the scope of pseudonyms is linkability, i.e. the knowledge of
the relationship between the holder and his/her pseudonym. This linking may
be known to third parties or only to the holder of the pseudonym.

Up to date, there are two ways to generate globally unique pseudonyms for
a person (here called holder):

Centralized Generation: This approach employs a centralized third party,
which generates the pseudonym on the user’s behalf. This party can easily avoid
duplicates and hence the generated pseudonyms are unique. On a larger scale, we

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 194–205, 2005.

c© Springer-Verlag Berlin Heidelberg 2005
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may employ several hierarchically organized issuing parties. In order to guaran-
tee the uniqueness of the pseudonyms, these issuers either generate pseudonyms
in a specific (previously specified) range, or they have to check the randomly
generated pseudonym with all other issuers which causes immense communica-
tion efforts. Additionally, the holder of the certificate has to trust in the issuer,
since the issuer knows the linking of the holders identity to his pseudonym.

Local (Holder-based) Generation: The other way is, that the user gener-
ates his pseudonym locally. Now, only the user knows the linking between his
identity and his pseudonym. But again we need some sort of cross-checking to
avoid duplicates.

In the approach presented in this paper, the holder locally generates globally
unique pseudonyms, which are nevertheless highly random. There is no need for
any information interchange between issuing parties or global data (especially
keys), except unique identifiers for each user and each device of the system. Ad-
ditionally the holder can prove, that he generated a specific pseudonym without
revealing his identity and he can reveal his identity by disclosing the pseudonym.
This disclosure is achieved by presenting some additional, previously unknown,
information to the verifier. As a security feature, this information (the opening
information) cannot be forged, so that the verifier retrieves an identity different
from the identity used in the generating process of the pseudonym. Another fea-
ture of the proposed system is, that there is no way to disclose the pseudonym,
if the holder does not cooperate. For several application scenarios this may seem
to be a major drawback (e.g. the holder of a pseudonym has just won an auction,
but does not want to pay). But there are others, where there is either no need for
enforced disclosure, or where the holder of the pseudonym has a strong interest
in disclosing his pseudonym at a certain point of time and hence will cooperate.

The application scenarios of pseudonyms (providing pseudonymity or ano-
nymity), where the approach presented in this paper is suitable, include:

(Centralized) Register for Medical Records: Concerning medical records,
there is a strong interest in privacy, i.e. to keep the connection between a person’s
name and his/her medical record(s) private. On the other hand many countries
(like Austria and Germany) run centralized databases, in order to provide data
for statistical studies. To achieve this, each medical record is sent to a Server,
which keeps an anonymized medical history for each person. Hence the patients
have to trust in this server, because it knows the relation between the patient’s
identifier and his/her (anonymous) record identifier. If the server has been com-
promised and the algorithm for mapping the patients name (or social insurance
number) to his/her record identifer is publicly known, the privacy of all pa-
tients is at risk. In contrast to this, by applying our scheme for globally unique
pseudonyms, the medical records are anonymized before sending them to the
server. Hence, there is no way (except breaking the encryption algorithm) to
re-map a pseudonym to a user of the system.

Online Gambling: Here, the player wants to stay anonymous during gam-
bling. He participates in the game by using his pseudonym. In case of a win, he
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discloses his pseudonym. Since he wants to receive his prize, he will be coopera-
tive and will not try to forge the disclosed identity.

Online Retrieval of Information: By correlating the different areas, where
a certain person retrieves information (e.g. patents or conference papers), one
may conclude the research topic (and the state of the research) of this person.
Applying pseudonyms (actually anonyms) here, would solve the problem.

Electronic Voting: Here, the voter may use his unique identifier received dur-
ing the setup phase of the voting scheme to choose his pseudonym locally. Unfor-
tunately, by now there is no way to prove the binding between the identifier and
the pseudonym without disclosing the pseudonym. Nevertheless, this approach
may be useful within closed systems, where each participant in the system is a
legitimate voter.

Other applications may be in the field of online-subscription of newspapers
or temporary identifiers in the scope of mobile phones or RFID (radio frequency
identification).

2 Generation of Pseudonyms

The method presented in this paper is based on the idea of generating unique
keys (or key components like primes) within isolated instances [3] which has been
refined in [4,5,6,14]. Figure 1 shows the operating principle of the original scheme.
Here, we first generate unique identifiers (EID1||k1 respectively EID2||k2) by
means of symmetric encryption, where EID = Ek(UID||Data||PAD). The
proof of uniqueness will be given later on in this paper. These identifiers are
concatenated with some bits (PP1 respectively PP2) in order to generate proba-
bilistic primes. Finally, the primes are multiplied and the result gives the unique
modulus of an RSA-Crypto-System consisting of two unique primes p1 and p2.

UID || Data1 || PAD1 k1

EID1 PP1

Modulus n = p1 p2

Prime p1

k1

E

UID || Data2 || PAD2 k2

EID2 PP2k2

E

Prime p2

Fig. 1. Basic Idea – Generation of Unique Key Components
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One may now directly use the unique Identifier (EID1||k1) as a pseudonym.
But it is obvious, that this pseudonym does not hide any information (especially
the user identifier – UID) without additional measures. Given a pseudonym of
this form, the ID of the user which has been used to generate the pseudonym
can be easily retrieved by decrypting the block EID1 with key k1. Replacing
the symmetric encryption by asymmetric encryption (in this paper RSA) solves
that problem. For simplicity of our notation, we will only display the public and
private exponents (e and d) of the public and private keys (e, n) and (d, n). So
for example Ee(m) represents the asymmetric encryption of message m with the
public key (e, n).

More generally, a pseudonym P of an user identity (UID) is generated by
use of a function f parameterized with at least two parameters: the user identity
UID and a secret key k. In our approach, this function f has to be a bijective
(one-to-one) one-way computation, more precisely an asymmetric encryption
function, and the key k is the public key (e, n). Hence the pseudonym results in
P = f(UID, k) = Ee(UID)||k = Ee(UID)||e||n.

Since the public key (and its components) are random, two different users
may accidentally choose the same key. By concatenating Ee(UID) and e||n we
ensure, that at least one of the components and hence the concatenation of the
components is globally unique. For details see the proof of uniqueness given later
on in this paper.

This scheme generates unique but nevertheless highly random pseudonyms
in a distributed environment. More precisely, each user can now generate his
pseudonym locally in his personal security environment (PSE), e.g. in his smart
card or his PDA (personal digital assistant). There is no need for any global
data (especially keys) or information interchange between issuing parties. The
only requirement is a unique identifier (UID – user identifier) for each user of
the system and a unique identifier for each PSE of the system, which may easily
be managed by the use of a hierarchical issuing structure. If smart cards are
used as a PSE, then the ICCSN (integrated chip card serial number [10]) – a
globally unique identifier which is stored in every smart card – can be used in
the generating process. So we do not need to distribute or manage any IDs at all.

One problem with using the ICCSN is, that this number may be used during
the authentication of the smart card (e.g. to derive the individual authentication
key of the card) or to manage black-lists of revoked or lost smart cards. In this
case, the card has to hold a user identifier, which cannot be linked to the holder of
the card. Nevertheless, by now only the need for a globally unique identifier shall
be emphasized, one concrete mechanism for such an identifier will be presented
in section 5.

The principle to generate unique and highly random pseudonyms is quite
easy (see figure 2 and figure 3):

1. The user (respectively his PSE) generates a key-pair for an asymmetric en-
cryption algorithm.

For the ease of description, we will focus on the RSA-System [11] in the
remainder of this paper. Other asymmetric encryption schemes will work as
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well. Hence the PSE generates the modulus n, the public exponent e, and
the private exponent d. In the generation process, there is no need for the
private exponent d. This parameter is only needed for later disclosure of the
pseudonym.

EID e n

UID || Data || PAD e n

D

Fig. 2. Generation of a Unique Pseudonym

2. The unique identifier (UID) is concatenated with some additional data
(Data) and some padding (PAD) and is finally encrypted with the public-
key (e, n). In the remainder of this paper we will call this block holding the
user identifier the UID-Block.

The data field has to contain a serial-number of the pseudonym, which
has to be incremented automatically each time a pseudonym is generated
by the PSE. If a user employs different PSEs, the data-field has to store a
device identifier as well. By this, we can guarantee, that different devices
generate different pseudonyms.

Additionally, the data field may contain the (unique) identifier of the
Application (AID) requesting the pseudonym. By this, the user holds differ-
ent pseudonyms for different applications and there is no way for correlating
data of different applications. If these application-specific pseudonyms are
used, the PSE has to store the pseudonym along with the AID for later
usage.

3. The result of this encryption process, the so called encrypted ID (EID), is
concatenated with the public-key. In case of RSA this results in EID||e||n,
which forms the unique and highly random pseudonym P = EID||e||n.

The proof of uniqueness is given in the next section. Concerning the
randomness of the pseudonym, it is obvious that the second half is com-
pletely random, because we chose e, p1 and p2 (and hence n) at random.
The first half is an encrypted block. Since the key used for encryption was
chosen at random, the encryption function works as a strong pseudo-random
function.

2.1 Proof of Uniqueness

The proof of uniqueness of the generated pseudonyms is straight forward and is
based on the following facts:
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input : UID, Data
output: P
(1) generate two random primes p, q ∈RIP
(2) generate a random public key e with ((p − 1)(q − 1), e) = 1
(3) compute the private-key d = e−1 MOD (p − 1)(q − 1)
(4) generate the pseudonym P = Ee(UID||Data||PAD)||e||n
(5) return P

Fig. 3. Generation of a Unique Pseudonym

Fact 1: Each issued user identifier (UID) is unique. A hierarchical structure of
the identifiers may be used, in order to simplify the management of the identi-
fiers.

Fact 2: Ee(m1) �= Ee(m2) ⇔ m1 �= m2, since Ee(m) is a bijective (one-to-one)
function for some constant public key (e, n).

To prove the uniqueness of the pseudonym generated by two different users,
we have to distinguish two cases:

1. Both users (respectively their PSEs) accidentally generate (choose) the same
public key (e, n). In this case, the second halves of the pseudonyms (namely
e||n) are equal for both users. But fact 1 and fact 2 guarantee, that the first
halves, namely Ee(UID1||Data1||PAD1) and Ee(UID2||Data2|| PAD2), dif-
fer in at least one bit, since UID1 and UID2 differ in at least one bit.

2. The second case is quite easy to prove: the users generate (choose) different
keys, and hence, the second halves of the generated pseudonyms (namely
e1||n1 and e2||n2) differ in at least one bit. So we do not need to care about
the first halves, which may be accidentally equal (different plaintexts en-
crypted with different keys may result in the same ciphertext). Note: This
proof obviously holds also for symmetric encryption (see [14]).

Pseudonyms generated by a specific user may either be generated by the use
of the same PSE or by use of different PSEs:

1. Pseudonyms generated by the same PSE will differ in at least one bit, because
the serial numbers of the pseudonyms will differ in at least one bit.

2. Pseudonyms generated by different PSEs will differ in at least one bit, be-
cause the device identifiers of the PSEs will differ in at least one bit.

3 Proof of Ownership

One central problem of pseudonyms is to prove, that a certain pseudonym has
been generated by a certain person. In principle, this can be achieved straight
forward by disclosing the pseudonym. In our case, we do not want to disclose
our identity, we simply want to prove, that we have generated the pseudonym.
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Since only the generator of the pseudonym knows the factorization of n, only
he can calculate d. The verifier who holds a pseudonym P = Ee(UID||Data||
PAD)||e||n knows e and n and can simply run a challenge-response protocol,
where the holder of the pseudonym has to prove the knowledge of d. To achieve
this, the verifier encrypts some (random) challenge r with the public key (e, n)
and sends c = Ee(r) to the prover. The prover decrypts the encrypted challenge,
retrieves r′ = Dd(c) and returns r′ to the verifier. If r′ matches r the verifier is
convinced, that the prover has generated the pseudonym.

Since the verifier chooses the challenge, he might try to trick the prover by
sending c = Ee(UID||Data||PAD). In this case, the prover would return the
value r′ = Dd(Ee(UID||Data||PAD)) = UID||Data||PAD which would reveal
his identity UID. So the prover has to dismiss the encrypted challenge c if it
matches Ee(UID||Data||PAD).

Within our scheme of pseudonyms, two users may accidently choose the same
public key (e, n) and hence the same value of d. In this case, they can obviously
forge the proof of ownership of each other’s pseudonym. Regarding key com-
ponents of 1024 bits, this is a very rare scenario. To overcome this drawback,
one may use the original scheme of generating unique key-components by use of
trustworthy smartcards presented in [3] which has been refined in [4,5,6,14]. By
applying this scheme, all primes and hence all public and private keys will be
pairwise different (see also figure 1).

4 Disclosure of Pseudonym

In order to disclose his pseudonym (and to reveal his identity), the user simply
presents his private exponent d. Now, the encrypted identifier EID may be
decrypted and the resulting plaintext holds the user identifier UID (see figure
4 and figure 5).

D

UID || Data || PAD

dEID e n

Fig. 4. Unique Pseudonyms – Disclosure

5 Forgery of Pseudonyms

Here we will investigate two attack scenarios and present solutions which prevent
the following attacks:
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input : pseudonym P , private exponent d

output: UID || OK / NOK

(1) retrieve EID and n form P

(2) compute UID = Dd(EID) // retrieve the UID

(3) return UID || OK

Fig. 5. Disclosure of a Unique Pseudonym (1)

1. When disclosing his pseudonym, the user sends a modified value of his private
exponent d′ such that UID′ = Dd′(EID) and UID′ �= UID.

2. Another User (with identifier UID′) who knows the identifier of a specific
user (UID) generates a pseudonym P = Ee(UID||Data||PAD)||e||n in order
to impersonate the user with UID.

5.1 Disclosure of a False Identity

If somebody reveals a private key d (and the primes p and q building the modulus
n = p ·q) to a verifier in order to disclose his pseudonym, this private key cannot
be manipulated (forged) so that the verifier retrieves an identity different from
the identity used to generate the pseudonym. This is simply given by the fact,
that exactly one value of d fulfills the requirement e · d ≡ 1 (mod ϕ(n)), with
ϕ(n) = (p− 1)(q − 1).

Note: This is contrary to the variant that employs symmetric encryption,
where the key may be changed (attack based on a plaintext-ciphertext-pair) in
order to retrieve a different identity.

input : pseudonym P , private exponent d, primes p and q

output: UID || OK / NOK

(1) retrieve EID, e and n form P

(2) if (p · q 	= n) then // check the primes

(3) return 0 || NOK
(4) if (e · d 	≡ 1 (mod ϕ(n))) then // check the public exponent

(5) return 0 || NOK
(6) compute UID = Dd(EID) // retrieve the UID

(7) return UID || OK

Fig. 6. Disclosure of a Unique Pseudonym (2)

The complete procedure for disclosure of a pseudonym is given in the algo-
rithm stated in figure 6. The algorithm runs on the inputs P , d, p and q and
returns the user identifier UID if all checks concerning the correctness of d have
been passed.
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5.2 Forgery of a User’s Pseudonym (Impersonation)

Another central problem of pseudonyms (presented in this paper) is, that a
pseudonym which has been disclosed to a verifier may be used by the verifier
to impersonate its original holder. This is possible, because after disclosure the
verifier knows d, p, and q. Hence he can act like the original holder; he may use
and disclose the ’stolen’ pseudonym to proof the ownership, which enables him
to impersonate the original holder.

A straight-forward solution for this problem is to sign the ID-Block (UID||
Data||PAD) and to replace the original ID-Block by the new ID-Block UID||
V alidity||Data||SIGNds(UID||V alidity||Data||PAD)||PAD. Here SIGNds(m)
is the signature of the hash value of m using the private signing key (ds, ns)
with the according public verification key (es, ns). The value V alidity holds the
time of generation (i.e. the time, the pseudonym was requested by some applica-
tion) and the time-to-live of the pseudonym. These values may be used to check
the freshness of a presented (and disclosed) pseudonym, after the signature has
been verified by use of the public key which may be retrieved from a certificate
issued by a trusted certification authority. A drawback of this approach is, that
only the application that requested the pseudonym is able to verify the value of
V alidity. All other applications which also use the pseudonym do not know the
point in time when the pseudonym has been requested (and generated). Hence,
they cannot verify the freshness.

If the freshness of the pseudonym cannot be checked by the application using
the pseudonym, we need some other mechanism to avoid the reuse of a previ-
ously disclosed pseudonym. Now, the verifier of the pseudonym simply checks
if the presenter (i.e. the supposed holder) of the pseudonym has generated the
signature within the pseudonym. This can again be checked by verifying, that
the holder knows the according private key (ds, ns). As above, we will employ a
challenge-response protocol to accomplish this proof.

The certificates used to sign the ID-Block, show a method to retrieve a unique
user identifier. This identifier may be the distinguished name of the certificate
issuer concatenated with the distinguished name of the owner of the certificate.
It would be more practical to replace the distinguished name of the owner of
the certificate by the serial number of the certificate. Since the verifier of a
disclosed pseudonym knows the issuer and the serial number, he may retrieve
the according certificate and use the public key to check (as described above), if
the supposed holder of the pseudonym knows the private signing key. If we use
this method, there is no need to include a signature in the pseudonym. In order
to verify a presented pseudonym, it is sufficient to check that the presenter of
the pseudonym knows the private key belonging to the certificate holding the
identifier of the pseudonym’s holder.

6 Analysis of the Proposed Scheme

For security reasons (i.e. to withstand factorization) the length of a modulus
(which is the product of two primes) has to be significantly larger than 512 bit
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(N.B. on December 3, 2003, the 174 digit (576 bit) RSA Challenge Number has
been factored [12], whereas the next challenge, a 193 digit (640 bit) number has
not been factored yet [13]).

Pseudonyms may be analyzed (and classified) according to the following cri-
teria:

– Involved mechanisms (e.g. symmetric/asymmetric encryption, hash-function,
MAC or digital signature)

– Pre-computation (Are pre-computations possible? Which values may be pre-
computed?)

– Generation efforts (Which values have to be calculated at the time, the
pseudonym is generated?)

– Length of pseudonym
– Proof of ownership (with or without disclosure)
– Disclosure (local/global, Key Escrow)
– Security (forging of pseudonyms, non-repudiation)

The last three points have been discussed in previous sections of this paper.
Now we would like to analyze the length of the proposed pseudonyms and the
(pre-)computation efforts.

Pseudonym: P = Ee(UID||AID||PAD)||e||n
Involved Mechanisms: asymmetric encryption (here RSA)
Pre-computations: e, d, and n.
Generation Efforts: Needs one asymmetric encryption. This may be done in

advance as well, if the pseudonym does not contain any data concerning the
application which requests the pseudonyms (e.g. the application identifier
AID).

Length: |P | = |n| + |e| + |n| = 2|n| + |e|, where |n| is the block-length of the
cipher (which is equal to the length of the modulus n) and |e| is the length
of the public exponent.

A variant of the proposed scheme uses a common public exponent e for all
users of the system. Hence, there is no need to include e in the pseudonym, and
the modified pseudonym results in P = Ee(UID)||n. The bit-length of this type
of pseudonyms is only slightly smaller than the length above (N.B. e will be
most commonly some small number, like 3, 17 or 216 + 1).

7 Resumee, Problems, Extensions and Future Research

In this paper we presented a scheme for generating digital pseudonyms, which
does not apply any centralized issuers or any online-communications between
issuers. The holder of the pseudonym can generate his pseudonym locally in his
personal security environment (e.g. in his smart card or his personal digital assis-
tant). The proposed method generates unique and nevertheless highly random
pseudonyms in a distributed environment and with considerable computation
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efforts. On the one hand, the holder of a pseudonym can prove that he gener-
ated the pseudonym without disclosing it. On the other hand, the verifier of a
disclosed pseudonym can be sure, that the presenter of the pseudonym is the
original holder (i.e. the person who generated it).

However, there are still some open problems and possible extensions. These
questions, which are scope of ongoing research include:

Enforcement of Disclosure: One of the major drawbacks of our approach is,
that the disclosure of the pseudonym is completely under control of the holder.
In specific application scenarios, this is an appreciated feature. In other scenarios
we would like some mechanism which ensures, that a pseudonym can be disclosed
under certain (previously specified) circumstances. Escrowing of the private key
(d, n) is a straight-forward solution for this problem; but there may be better
ones.

Certification of the Private Exponent d: A user may certify his private ex-
ponent d (note NOT his public key which would include n) at a certification
authority. So he can later on prove that a specific pseudonym belongs to his
identity.

Other Types of Pseudonyms: Different mechanisms and different types of
common components influence the properties (pre-computations, generation ef-
forts, length of pseudonym, proof of ownership, disclosure and security) of the
generated pseudonym.

Pseudonyms by means of Unique Primes: Here, we will combine the orig-
inal scheme of generating unique primes and the proposed scheme for unique
pseudonyms in order to overcome the drawback discussed in section 3.

Proof of Binding between ID and Pseudonym: By now, the only way to
prove the binding between the ID of a user presenting a certain pseudonym, is
to disclose the pseudonym.
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Abstract. We study probabilistic information flow from a property-
specific viewpoint. For a given property of interest, specified as set of
traces, we examine whether different low-level observations imply differ-
ent probabilities for the occurrence of the property. Quantifying over all
properties in a given class (e.g., high-level traces, or high-level sequences
separated by low-level events) we obtain different notions of information
flow. We give characterizations of systems that are secure according to
these definitions. We consider both properties that are expressed over
whole traces and those that distinguish between past and future given
a reference point. In this framework, we can express several classical
definitions of possibilistic security, as well as giving a more detailed,
quantitative measure of information flow.

1 Introduction

Several classical treatments of information flow exist in the literature. Trace-
based approaches assume a set of observable low-level events L and a set of
(not directly observable) high-level events H . The question is whether observing
a certain low-level trace can give information about the occurrence of high-
level events, either in a possibilistic sense (the possibility or impossibility of a
certain high-level interleaving) or in a probabilistic sense, yielding quantitative
information about high-level activity.

It is generally accepted that there is no single all-encompassing definition
of information flow. Different notions are noninterference [5], generalized nonin-
terference [11], noninference [14], generalized noninference and separability [13],
depending on the kind of information about high-level behavior considered rele-
vant. In these possibilistic approaches, information flow is prevented if the trace
set corresponding to a low-level observation contains “enough” traces to make
inferences about high-level behavior impossible. Indeed, there can be no infor-
mation flow if all high-level behaviors of interest are possible, i.e., included in
the set of traces corresponding to a low-level observation. Precisely which traces
must be present depends on the individual notion of information flow.
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Subsequently, various frameworks for information flow [13,18,10], have been
developed, attempting to unify the various existing definitions. McLean’s intro-
duction of selective interleaving functions [13] provides a way to reason about
the relative strength of different security properties and their preservation under
composition. Zakinthinos and Lee [18] propose “perfect security” as the weakest
property on trace sets which guarantees absence of information flow (in a rather
informally defined sense). In contrast, Mantel [10] argues the need for variety
and modularity, and provides a library of basic security predicates from which
common notions of security properties can be constructed.

In the same view, that an analysis of information flow must be flexible enough
to be adapted to the specific features and needs of the considered application,
we propose a parameterized view of information flow that develops a quantita-
tive, probabilistic approach sketched in [17]. We define information flow with
respect to a property (a set of system traces, possibly abstracted in its low-level
part) which is deemed important for the system under scrutiny. The system has
information flow with respect to the given property if there exist two low-level
observations for which the chosen property has different probabilities of occur-
rence. In this case, the quantitative, probabilistic knowledge about the given
property is sensitive to the observation which can be made, and so there is
information flow in the system with respect to this property.

From this starting point, we define several generic notions of information
flow, corresponding to different classes of properties of interest. These include
high-level information flow, in which properties are sets of sequences of high-level
events, and sequential information flow, in which properties can describe not only
sequences of high-level events but also how these sequences are interrupted by
the low-level, following the view of [12].

In examining information flow, we consider two views on the sequence of
events in a trace. In the first, a global view, properties are simply sets of traces
(infinite sequences of events). Alternatively, in a relativized view, the present
timepoint splits a trace into a pair: a finite sequence of past events and an
infinite sequence of future events. In this way, we can express properties that
link the past behavior with the future behavior of the system; we have absence of
information flow if such a behavior set is equiprobable regardless of the low-level
observation up to the current timepoint. For instance, a property may state that
if the last event before the time point is a then the next event is a′ and if the
last event before the time point is b then the next event cannot be a′.

We then give characterizations of systems that are secure according to these
views of information flow, describing the structure of their trace sets in terms of
high/low-level events and their probabilities.

Using this framework, and choosing appropriate sets of properties, we can
express several classical definitions of possibilistic security: generalized noninter-
ference [11], noninference [14], and separability [13]. At the same time, by sup-
porting a user-defined choice of properties, we allow a finer granularity for the
definition of information flow than previous approaches. In addition, for systems
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that are not secure according to one of these notions, the probabilistic approach
allows us to give a quantitative measure of the appearing information flow.

An important issue when defining security properties is deciding what kinds
of information flow are acceptable. In some existing definitions of information
flow, such as noninference [14] or the perfect security property [18], covert chan-
nels already existent in the description of a system are allowed, such as auditing
or copying low-level events on a high-level. Such definitions take a causal view,
defining information flow as the fact that high-level behavior influences low-level
behavior. Conversely, this means that viewing a string of low-level events may
allow us to deduce something about the high-level events that have occurred in
the past, prior to these observations.

In contrast, we take a purely observational view. Thus, if a low-level obser-
vation is compatible only with an interleaving of high-level events, but not with
another, this constitutes information flow, regardless whether this knowledge is
already present in the description (trace set) of the system. Indeed, the proba-
bility of a given interleaving of high-level events depends in this situation on the
low-level observation, which corresponds to our definition of information flow.

Related Work

Work on tailoring security properties to the system under consideration orig-
inates with the string of different definitions for information flow [5,11,14,13].
Following the recognition that security is a property of trace sets rather than
traces (e.g., [13]), in [18], security properties are defined uniformly by specifying
a predicate that the low-level equivalent bunch of a trace has to satisfy. The ap-
proach is taken further in [10] by defining basic security predicates in terms of a
restriction and a closure requirement on a trace set. The parameterization in the
latter paper is given by the variants in which the basic operations of inserting
and deleting high-level events in a trace (to keep their absence and presence,
respectively, confidential) can be performed.

Probabilistic information flow has naturally been more difficult to treat than
the possibilistic version. McLean [12] introduces the flow model which distin-
guishes mere correlation from actual causal influence. Gray [7] introduces prob-
abilistic interference in a context of finite state machines and gives a more general
information-theoretic framework, including probabilistic channel capacity [6].
Sabelfeld and Sands [16] define probabilistic noninterference in the context of
schedulers for multithreaded programs, based on the concept of probabilistic
bisimulation, and show compositionality properties. Lowe [9] treats quantita-
tive information flow distinguishing probabilistic aspects from nondeterminism,
which is handled from an adversarial worst-case perspective; the treatment is
done in a discrete-time context, considering also the rate of information flow. A
probabilistic process-algebraic approach is given in [1], focused on noninterfer-
ence, generalizing the possibilistic variant and allowing formal reasoning about
the amount of information flow.

All these approaches, whether possibilistic or probabilistic, treat general,
system-independent notion of information flow. A framework which parameter-
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izes information flow is defined in [8] by giving a definition of secrecy in multi-
agent systems, using a modal logic of knowledge in a state-based model. This
generalizes several existing approaches and can be extended to probabilistic se-
curity. Their parameterization stems from defining formulas (knowledge) of what
must be kept secret, thus providing a fine-grained way of characterizing security
requirements. Since the approach is state-based, our model appears complemen-
tary in that it can talk about both past and future evolution of the system.

Other perspectives on information flow include that of [2] which offers a
variety of characterizations of non-interference, expressed in Hoare logics and
CTL; however, the variety is not given by parameterization, but language as-
pects such as sequential vs. concurrent, or termination sensitivity. Closer to a
parametric view is the approach of [4], where the parameter is an observable
property (an abstraction) of the public observations of a program. Thus, the at-
tacker is a data-flow analyzer, and can be specified in an abstract interpretation
framework. Both approaches deal with much more specific systems, described in
particular programming languages, and the class of expressed properties, though
parameterized to some extent, is not as general.

Beyond the possibilistic approaches, [3] analyzes quantitative information
flow for a simple imperative language from a semantic point of view, whereas [15]
replace indistinguishability in the formalization of non-interference by similarity
based on the notion of distance, in a process-algebraic setting. In comparison,
we also define quantity of information flow based on the distance between the
probability of a property given an observation.

Our approach to parameterization allows properties that range from the gen-
eral to the entirely system-specific. Thus we can select the granularity (a partic-
ular trace set or even a single trace) with respect to which information flow is
analyzed. Alternatively, quantifying over classes of such properties, we can still
obtain and reason about several of the classic definitions of information flow.

Paper Outline. We first introduce the mathematical model of probabilistic event
systems which we use throughout the paper. Section 3 gives property-based de-
finitions for three classes of probabilistic information flow, and theorems char-
acterizing systems that conform to these notions. These results are extended in
Section 4 to properties which distinguish between past and future with respect
to the reference point defined by the observation. Section 5 shows how some of
the classic definitions of information flow can be expressed in this formalism.

2 Probabilistic Event Systems

Notations

Given a finite alphabet A, we let A∗ (resp. Aω) denote the set of finite (resp.
infinite) sequences (or traces) over this alphabet. The set A∞ is the union of A∗

and Aω . The empty sequence is denoted ε. Given a sub-alphabet A′ ⊂ A and a
trace λ, λ|A′ denotes the projection of λ onto this sub-alphabet. If λ is a finite
non-empty trace, last(λ) denotes the last letter of λ.
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Let λ be a (finite or infinite) trace. We denote by Pref (λ) the set of finite
prefixes of λ. More generally, if Tr is a set of traces, Pref (Tr) =

⋃
λ∈Tr Pref (λ).

Let u, v ∈ (A∗)n, u = (x1, x2, . . . , xn), v = (y1, y2, . . . , yn). We denote by
u⊗ v the simple interleaving of u and v defined as u⊗ v = x1y1x2y2 . . . xnyn.

If U, V ⊂ (A∗)n, we denote by U ⊗V the set: U ⊗V = {u⊗ v|u ∈ U, v ∈ V }.
If U, V ⊂ (A∗)ω, the definition of U ⊗ V is extended in a standard way.
The interleaving of two sequences x, y, denoted by interl(x, y) is the set of

sequences: {x1y1x2y2...xnyn | x = x1x2...xn, n ∈ N, y = y1y2...yn, xi, yi ∈ A∗}.
This extends to sets of sequences: interl(X, Y ) = {interl(x, y)| x ∈ X, y ∈ Y }.

Probabilistic Event System

The execution of a system is modeled by its set Tr of traces which are finite or
infinite sequences of atomic events from a set E. A particular atomic event τ is
distinguished which represents the halting of the system. For example, if λ is a
sequence of atomic events, it is useful to distinguish between “λ has occurred but
the system still executes”, and “λ has occurred and the system has stopped”.
The latter case is modeled by the event λτ . To unify the presentation, it is
convenient to use only infinite sequences, writing λτω instead of λτ . Then, from
now on, Tr is a set of infinite sequences which do not contain any occurrence of
τ except when they are of the form λτω where λ contains no occurrence of τ .

The set of atomic events E is divided into two disjoint sets, the set H of high-
level atomic events and the set L of low-level ones. Depending on the situation,
the stop event τ can be considered as a low-level or a high-level event. In this
paper, we only consider the case when the low-level user can observe that the
system has stopped, i.e., τ ∈ L.

The set of traces Tr is equipped with a probability measure μ over the σ-
algebra generated by the cylinders λEω , λ ∈ E∗, such that Tr is μ-measurable.
The measure μ(X) of a measurable set X is denoted as Prμ(X), or shortly
Pr(X). Thus if we consider the infinite tree T built from Tr with edges labeled
by atomic events, each edge of the tree is equipped with a non-zero probability.
(We assume that every prefix of a trace in Tr has a non-zero probability).

Traditionally, an event is a measurable set in the theory of probabilities, so
to avoid confusion, the atomic events of the system will be called actions.

We use the customary notation for conditional probabilities: if P and Q are
two measurable events and Pr(Q) �= 0, the conditional probability Pr(P |Q) is
Pr(P ∩Q)/Pr(Q). Since we are interested only in traces of the system S we deal
only with conditional probabilities relative to Tr . Thus, for each measurable
event X we denote by PrS(X) the probability Pr (X |S) (assuming Pr(S) > 0).

Definition 1. An event system S is a tuple (E, H, L,Tr , μ) where E = H ∪ L,
and H (resp. L) is the set of high-level (resp. low-level) actions, Tr is the set of
traces of the system, and μ is a probabilistic measure on Tr.

We assume that only low-level actions are observable on the low-level, i.e.,
for a trace λ the projection λ|L is observable by low-level users. More precisely,
a finite prefix of λ|L is observable. Thus, from the observation of u ∈ L∗, the
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low-level user who is supposed to know the entire system can construct the bunch
BS(u) = {λ ∈ Tr | u is a prefix of λ|L} and possibly deduce some information
about what happened or what will happen at the high-level. When there is no
ambiguity, we will write B(u) instead of BS(u). For every u such that B(u) is
non empty, B(u) is supposed to be measurable and without lost of generality
the measure PrS(B(u)) is supposed to be positive. A projection u ∈ L∗ such
that B(u) is non empty is called possible.

3 Global Information Flow

Depending on the level of information we are interested in, we introduce an
abstraction function φ : L → L′ ∪ {ε}, where L′ is some set with |L′| ≤ |L| and
express properties as sets of infinite traces on (H ∪ L′)ω . We extend φ on H as
the identity, and then on Eω in a classical way. Notice that it is possible that an
infinite trace of Eω has an image which is finite.

A property of abstraction level φ is a subset of (H ∪L′)∞. We consider only
properties P such that φ−1(P ) ∩ Tr is a measurable subset of Tr . By abuse
of notation we write PrS(P ) =df PrS(φ−1(P ) ∩ Tr), and write P instead of
φ−1(P )∩Tr everytime we compute probabilities, e.g., in Pr(P ∩A) or Pr(P |A).

Definition 2. Given a system S, the quantity of information flow for a prop-
erty P of abstraction level φ is the value IF (P, S) = maxu,v|PrS(P |B(u)) −
PrS(P |B(v))| for all possible u, v ∈ L∗.

A system S is without information flow for a property P of abstraction level
φ if IF (P, S) = 0.

We can also consider a “qualitative” version of this definition:

Definition 3. A system S is without qualitative information flow for a prop-
erty P of abstraction level φ if for every u ∈ L∗ such that B(u) is non-empty,
PrS(P ) �= 0 → PrS(P |B(u)) �= 0.

Definition 4. A system is without information flow for a given abstraction level
if it is without information flow for all properties of this level.

We will consider three abstraction functions which are of interest in an ob-
vious way. If L = L′ and φ is identity, i.e., there is no abstraction, we will speak
of general information flow. If L′ is a singleton {l}, and φ(li) = l for every
li ∈ L, a trace on (H ∪ L′)ω expresses what happens on the high-level, as well
as whether two high-level events have been separated by a low-level event or
not (the identity of this low-level event does not matter). In this second case we
speak of sequential information flow. Finally, if L′ = {τ} and φ(τ) = τ , φ(li) = ε
for every li ∈ L \ {τ}, that is we are interested only in the projection on the
high-level of a trace, we will speak of high-level information flow.

The intuition behind this hierarchy of abstractions stems from the fact that
we may be interested whether an event x is followed by an event y, in other
words, in the presence of the pattern xy in a system trace.
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If x and y are both high-level events, this property cannot be expressed
using the definition of high-level information flow, since any intervening low-
level events are projected out by the abstraction. However, it can be expressed
as a sequential property: (H ∪ {l})∗xy(H ∪ {l})ω.

If one of the events (say x) is low-level and the other one high-level, the
property can no longer be expressed by a sequential property, since the identity
of y is lost by abstraction to l. However, the presence of the pattern xy can still be
expressed as a general property: (H∪L)∗xy(H∪L)ω. This motivates considering
properties which preserve full information for both high- and low-level events.

Another example to motivate our framework is the following. Consider a
program where variables are classified as low (observable by low level users) or
high. The system consists of the set of executions of the program. A regular
property like ”during every time duration t (the duration is measured by the
number of events and t is a fixed integer), the high level variable x is updated
at least once”, in other words, it is impossible that there exists a time duration
t without an update of variable x can be of interest, and one can require that
the system does not suffer information flow for this property.

Let L0 = L \ {τ}.
We write E = (H ∪L0)ω ∪(H ∪L0)∗τω for the set of all infinite words formed

by actions from H and L. This is a superset of the set of system traces: Tr ⊆ E .
In the following, low level actions are denoted a, b, ..., sequences of low-level

actions u, v, ..., sequences of high-level actions α, β, ... and traces λ,λ
′, ....

Let S = (E, H, L,Tr , μ) be a system and T be the associated probabilistic
tree. We define:

Hn(Tr) = {(α1, ..., αn) ∈ (H∗)n|∃a1...an ∈ L α1a1α2a2...αnan ∈ Pref (Tr)}.
Hω

n (Tr) = {(α1, ..., αn) ∈ (H∗)n−1Hω|∃a1...an−1 ∈ L α1a1α2a2...αn ∈ Tr}.
Ln(Tr) = {(a1, ..., an) ∈ Ln|∃ α1 . . . αn ∈ H∗ α1a1α2a2...αnan ∈ Pref (Tr)}.
Trn = {α1a1α2a2 . . .αnan ∈ Pref (Tr )| αi ∈ H∗, ai ∈ L}.
We give below a characteristic property for a system S to be without sequen-

tial information flow. For this we need to introduce some technical terms related
to the probabilistic tree T .

We color edges labeled by a high-level action black and edges labeled by
a low-level action red. We are interested in the set of sequences of high-level
actions (including the empty word) which can occur starting from a node x. To
make this set of sequences more explicit we build for each such node x a ”black”
probabilistic tree Tx in the following way: we keep only the black edges reachable
in T from x, and for each node y (including x) accessible from x by a black path,
we add a node y′ and an edge (y, y′) labelled by ε and with a probability equal
to the sum p of the probabilities of red edges starting from y in T . The tree Tx

is a probabilistic tree which has the following meaning: the probability of a path
in Tx starting from x labelled by α (without ε labels) is exactly the probability
that the sequence of high-level actions α occurs from x; the probability of a path
in Tx starting from x labelled by α and ending in a leaf is the probability that
from x the sequence of actions α followed by a low-level action occurs.
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A node has the color of the edge ending in this node. The root is red.
Two red nodes x and x′ of T are H-equivalent if there exists an integer n

such that the labels of the paths from the root to x and x′ are respectively
α1a1α2a2...αnan and α1b1α2b2...αnbn where αi ∈ H∗ and ai, bi ∈ L.

We also need to state an equivalence property on L. Two nodes x and x′

of T are L-equivalent if there exists an integer n such that the labels of the
paths from the root to x and x′ are respectively α1a1α2a2...αn−1an−1αnan and
β1a1β2a2...βn−1an−1βnan where αi, βi ∈ H∗ and ai ∈ L.

A tuple (x, x′, y, y′) of red nodes of the tree T is H, L-compatible if x and
x′ are H-equivalent, y and y′ are H-equivalent, x and y are L-equivalent and
x′ and y′ are L-equivalent, i.e., there exist (α1, ..., αn), (β1, ..., βn) ∈ Hn, and
(a1, ..., an), (b1, ..., bn) ∈ Ln such that the paths from the root to x, x′, y, y′ are
labeled respectively by α1a1...αnan, α1b1...αnbn, β1a1...βnan and β1b1...βnbn.

Let p1, ..., pn, q1, ..., qn be the probabilities of edges labeled by a1, ..., an on
the path from the root to x (resp. y). Let p′1, ..., p

′
n, q′1, ..., q

′
n be the probabilities

of edges labeled by b1, ..., bn on the path from the root to x′ (resp. y′).
A H, L-compatible tuple (x, x′, y, y′) is perfect if for every i = 1, ..., n we have

pi/qi = p′i/q′i.
The systems we consider are supposed to satisfy:

(1) Tr is a closed subset of E
(2) For each measurable subset X of Tr , the closure X̄ is measurable and

PrS(X) = PrS(X̄).

We start by characterizing sequential information flow, where the identity
of low-level events is abstracted out, and only their position in the sequence of
events is preserved.

Theorem 1. A probabilistic system S such that Tr �⊂ Hω is without sequential
information flow iff

(1) ∀n > 0 Trn = Hn(Tr )⊗ Ln(Tr).
(2) Every H, L-compatible tuple of the tree T is perfect.
(3) For every pair of H-equivalent nodes x, x′ of T , the probabilistic trees Tx and

Tx′ are isomorphic.
(4) For every n > 0 (Ln(Tr ) �= ∅→ PrS(Tr ∩ (H∗L)n−1Hω) = 0).

The intuition behind this characterization is the following: we don’t want the
low-level traces to give any information on the interleavings with the high level.
Then, if a sequential high-level trace is possible, this trace can occur whatever
the trace on the low level is. Point (4) states that observing that k low-level
actions have occurred doesn’t give any additional information, since all traces
of Tr have the same number of low-level events. Points (2) and (3) state that
probabilities of certain subtrees have to be equal or in equal ratios.

We give here only a sketch of the proof.
If the system has no information flow, then we prove (1), (4) and, by con-

tradiction, the existence of the same edges in Tx and Tx′ in (2). For the latter,
we exhibit properties for which, if one edge is not in T then for some u, v,
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Pr(P |B(u)) > 0 and Pr(P |B(u)) = 0. The probabilistic parts of (2) and (3)
are proven by contradiction as well, assuming that there exist nodes with dif-
ferent ratios, considering the pair of nodes with the highest ratio and obtaining
information flow for some property.

The converse is proven by considering basic cylinders for which it is possible
to show that there is no information flow. Then we define measurable subsets Pn

which are disjoint unions of cylinders and we prove that there is no information
flow for these sets. Taking the limit of these sets we show that the absence of
information flow follows for P .

Next, we characterize general information flow, which turns out to be a very
strong property:

Theorem 2. The only systems with Tr �⊂ Hω which are without general infor-
mation flow are those which have a projection on L reduced to a single trace.

Proof. Suppose that the projection of Tr on L is a trace w. Since Tr �⊂ Hω

this trace w is different from ε and the finite non-empty low-level words u such
that B(u) �= ∅ are the finite prefixes of w. Moreover for such a trace u, we have
B(u) = Tr and in this case, the system is without general information flow.

Conversely, suppose that the projection on L of the trace set Tr contains two
different traces w and w′, and let u be their longest common prefix. Let a ∈ L
such that ua is a prefix of w′. Let P be the property which consists of the infinite
sequences in Tr whose projection on L is equal to w. We have PrS(P | B(u)) > 0
and PrS(P | B(ua)) = 0. Therefore S has general information flow. �

To our knowledge, there is no simple characterization of systems which are
without high-level information flow. It is immediate that any system without
sequential information flow is without high-level information flow, since the de-
finition of the latter has a coarser abstraction function. Also directly from the
definition, it follows that the projection of any nonempty bunch B(u) onto H
must be the same, otherwise, for a high-level sequence α ∈ H∗ distinguishing
between B(u) and B(v) we can take P = αHω and we have PrS(P |B(u)) �=
Prbs(P |B(v)), since one is zero and the other one not.

4 Relativized Information Flow

The definitions of the previous section capture information flow, but provide
no specific information about the time moment of the low-level observation and
the events whose occurrence are linked to it. For a more refined and relativized
view, one may wish to introduce the moment of observation in the property under
consideration. For example a question of interest could be: observing some partial
low-level trace at the current moment, what is the probability that the potential
trace satisfies some past or future or more generally some relativized property?
For example, what is the probability that starting from the current time, there
is still one high-level action which will occur? Or, what is the probability that
at current time, an event has occurred in the past, and will never occur in the
future?
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In this case, properties we are interested in are called relativized properties
and are defined as subsets of (φ(H∪L))∗×(φ(H∪L))ω , where φ is the abstraction
function. The first component represents the past, and the second one the future.

A property P is a past property (resp. future property) if P = R×φ((H∪L)ω)
(resp. P = φ((H ∪ L)∗)×R) where R ⊂ φ((H ∪ L)∗) (resp. R ⊂ φ((H ∪ L)ω)).

We state the definition of information flow in this relativized situation.
Let u ∈ L+ with B(u) �= ∅. For a relativized property P we define PrS(P, u)=

PrS({γ ∈ Tr | γ = γ1γ2, γ1|L = u, last(γ1) = last(u), (γ1, γ2) ∈ P})/PrS(B(u)).
The event {γ ∈ Tr | γ = γ1γ2, γ1|L = u, last(γ1) = last(u), (γ1, γ2) ∈ P}

corresponds to the situation when the low-level user observes u and the last
action which occurred is a low-level action. We assume that P is well-behaved
such that this event is a measurable set for every u ∈ L+.

We can give now a definition of relativized information flow:
Definition 5. A system S is without relativized information flow for a rela-
tivized property P of abstraction level φ if for every u, v ∈ L+ such that BS(u)
and BS(v) are nonempty, PrS(P, u) = PrS(P, v).

Definition 6. A system is without relativized information flow for a given ab-
straction level if it is without relativized information flow for all relativized prop-
erties of this level.

Again, one can use different levels of abstraction depending on the type of the
events whose occurrence is of interest. For instance, consider the high-level event
sequence xy, and assume one wishes to express that it occurs without any low-
level event intervening after the last event of the low-level observation u. This can
be expressed by the sequential relative property (H∪{l})∗×H∗xy(H∪{l})ω. (A
sequential property is needed to express the fact that x and y are not separated
by low-level events). If now one of the interesting events (say y) is low-level, we
need a general relative property so the identity of y is not abstracted away. For
instance, (H ∪L)∗ × (H ∪L)2xy(H ∪L)ω expresses that xy will occur with two
intervening events after the last low-level event of the given observation.

Theorem 3. The only systems such that Tr �⊂ Hω which are without relativized
general information flow are those which have a projection on L equal to τω.

Proof. Suppose that the projection of Tr on L is equal to τω , then the only
finite sequences u �= ε such that B(u) is non-empty are τn, n > 0, and in that
case PrS(P, τn) = PrS(P, τm) for all positive integers m, n for every relativized
general property P . We conclude that the system S has no relativized general
information flow.

Conversely, suppose that the projection of Tr on L contains a trace w �= τω .
Then the first action a of w is different from τ , otherwise w would be equal
to τω . Consider the property P = {(γ1a, γ2) ∈ E∗ × Eω | γ1|L = ε}. We have
PrS(P, a) > 0 and PrS(P, τ) = 0. Therefore S has a relativized general infor-
mation flow. �

The next theorem characterizes the systems without relativized sequential
information flow. Recall that in this case the abstraction function φ collapses all
the low-level actions into a single one, the action l.
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Theorem 4. The only systems with Tr �⊂ Hω which are without relativized se-
quential information flow are those which satisfy one of the following conditions:

(1) the projection of Tr on L is reduced to τω

(2) the projection of Tr on L is a subset M of L and Tr = U ⊗ (M ×{ε}) where
U = {(α1, α2) |α1lα2 ∈ φ(Tr )} and and for every pair of H-equivalent
nodes x, x′ of T , of depth one, the probabilistic trees T (x) and T (x′) are
isomorphic.

Proof. If the system S satisfies condition (1) it is easy to conclude like in
Theorem 3 that S is without relativized sequential information flow.

If the system S satisfies condition (2), the only finite non-empty traces u ∈ L+

such that the bunch B(u) is non-empty are actions the a ∈ M . Clearly for every
relativized sequential property P , PrS(P, a) = PrS(P, b) for a, b ∈M .

Conversely, let S be a system without relativized sequential information flow.
Suppose that the projection of Tr on L is not reduced to τω. We have to prove
that S satisfies (2). The projection of Tr on L cannot contain a trace w with
more than one action and different from τω . Indeed suppose that w = abw′,
a, b ∈ L. Then Tr contains a trace αaβbλ, where α, β ∈ H∗, and λ ∈ (H ∪ L)ω.
Consider now the relativized sequential property P = {αl} × {βl}(H ∪ {l})ω.
We have PrS(P, a) �= 0 and PrS(P, ab) = 0. Contradiction. So the projection of
Tr on L is a subset M of L. Let us prove that Tr = U ⊗ (M × {ε}). Suppose
that there exists α1lα2 ∈ φ(Tr ) and some a ∈ M such that α1aα2 �∈ Tr . Then
there is information flow for the property P = {αl}× (H ∪ {l})ω: PrS(P, a) = 0
and there exists b ∈M such that PrS(P, b) �= 0. Proving the other conditions of
(2) is straightforward, following steps of the proof of Theorem 1. �

The absence of relativized sequential information flow is a very strong prop-
erty, and as seen from the conditions in Theorem 4, very few probabilistic event
systems have this property. This stems from the fact that, in expressing the
property P , a trace is split into two parts, just after the occurrence of a low-
level event. If it is possible to observe more or fewer low-level actions in a trace
than specified in the property, there is information flow.

But it is still interesting to consider low-level traces of the same length n,
and examine if they give some additional high-level information (besides the fact
that n low-level events have occurred). We are then interested in a weaker notion
of “no information flow” for a relativized sequential property, namely:

Definition 7. A system S is without information flow at each fixed step for a
relativized property P if PrS(P, u) = PrS(P, v) for every u, v ∈ L+ such that
|u| = |v| and B(u), B(v) are non-empty.

In order to characterize the systems without sequential relativized information
flow at each fixed step we need to introduce a new definition. In the probabilistic
tree T of the system, the red depth of a node is the number of red edges on the
path from the root to it.

Theorem 5. A system S such that Tr �⊂ Hω is without sequential relativized
information flow at each fixed step iff
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(1) ∀n > 0 Trn = Hn(Tr )⊗ Ln(Tr).
(2) ∀n > 0, all nodes of red depth n with outgoing red edges are equivalent
(3) For every H-equivalent nodes x, x′ of T (S), the probabilistic trees Tx and Tx′

are isomorphic.

The proof of this theorem is based on the lemma given below which links
sequential relativized information flow at each fixed step with sequential rela-
tivized information flow. Then we can reuse the proof of Theorem 1.

Lemma 1. Let RE ′ be a sequential property on traces where R ⊂ (H ∪ l)∗ and
E ′ = (H ∪ l)ω ∪ (H ∪ l)∗τω . Then, for PR = {(γ1, γ2) | |γ1|L | = n, last(γ1) =
l, γ1γ2 ∈ RE ′}, for every u of length n we have PrS(PR, u) = PrS(RE ′|B(u)).

5 Comparison with Some Classical Security Properties

In this section we restrict ourselves to finite systems, for which Tr ⊆ (H∪L)∗τω ,
and we suppose that τ ∈ L. Denote by E0 the set H ∪ L0, where L0 = L \ {τ}.

We identify an element of Tr with its shortest prefix ending with the action τ .
Given a trace λ and a system S, the low-level user observing λ|L0τ can construct
the set of system traces which correspond to the same observation, the low-level
equivalent set [18] of λ:

For λ ∈ E∗
0{τ}, LLES(λ, S) = {β ∈ Tr | λ|L0 = β|L0}.

We will show that separability, noninterference and noninference can be ex-
pressed in our framework and correspond to the absence of information flow for
some classes of properties.

1. Noninference
Noninference is a security property which was introduced by O’Halloran [14].

It requires that every trace λ of the system admits in its low-level equivalent set
its projection λ|L0 . As a consequence a low-level user cannot deduce from an
observation the existence of any occurrence of a high-level action:

Noninference(S) ≡ ∀λ ∈ Tr ∃u ∈ LLES(λ, S) u ∈ L∗
0τ .

Consider the property NonInf = L∗
0τ ⊂ (H ∪ L0)∗τ . A trace satisfies this

property iff it does not contain high-level actions. Thus this property exactly
focuses on the (non) existence of a high-level activity. It turns out that nonin-
ference can be expressed in terms of information flow for the property NonInf .

Theorem 6. For a probabilistic system S, Noninference(S) holds iff
PrS(NonInf ) �= 0 and there is no qualitative general information flow for the
property NonInf .

Proof. Suppose PrS(NonInf ) �= 0 and there is no qualitative general in-
formation flow for the property NonInf . Let λ be a trace ∈ Tr . Consider the
projection u = λ|L. Since B(u) is non-empty, PrS(NonInf ) �= 0 and there is
no qualitative general information flow for the property NonInf . So we have
PrS(NonInf , u) �= 0. It proves that u ∈ Tr because B(u)∩NonInf = {u}. Thus,
Noninference(S) is true.
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Conversely, suppose that Noninference(S) holds. Let λ ∈ Tr , and u = λ|L.
Then PrS(NonInf ) �= 0, since u is also in Tr . Suppose there exists some v ∈ L∗

such that PrS(NonInf , v) = 0 and B(v) is non-empty. There exists some λ′ in
B(v), and the projection w of λ′ on L belongs to Tr and v is a prefix of w. So,
PrS(NonInf , w) > 0, but PrS(NonInf , v) > PrS(NonInf , w), a contradiction.
No qualitative general information flow for the property NonInf can occur. �

Moreover, we can quantify the degree of noninference by measuring the maxi-
mal value of |PrS(NonInf )−PrS(NonInf |B(u))| for all non-empty B(u), u ∈ L∗.

2. Separability
Separability is aimed to express a complete independence between the se-

quences of actions at high and low level:
Separability(S) ≡ ∀λ ∈ Tr ∀λ′ ∈ Tr interl(λ|L0 , λ

′
|H)τ ∈ Tr .

Again this security property can be expressed in terms of qualitative sequen-
tial information flow for some set of properties. For each ξ1, ..., ξn ∈ H∗, let
Sepξ1,...,ξn be the following predicate defined on (H ∪ {l})∗:

Sepξ1,...,ξn(λ) holds iff λ = ξ1lξ2l...ξplξp+1ξp+2...ξnl for some p ≤ n.

Theorem 7. For a probabilistic system S, Separability(S) holds iff for any prop-
erty Sepξ1,...,ξn, where ξ1...ξn ∈ Tr |H , PrS(Sepξ1,...,ξn) �= 0 and there is no
qualitative sequential information flow for these properties.

Proof. Suppose Separability(S) holds. Consider the property Sepξ1,...,ξn for
some ξ1, ..., ξn ∈ Tr |H . Suppose PrS(Sepξ1,...,ξn) = 0. Let v = a1a2...ap be the
projection on L of some trace in Tr . If p ≥ n then ξ1a1ξ2a2...ξnanan+1...ap ∈ Tr ,
and if p < n then ξ1a1ξ2a2...ξpapξp+1...ξn ∈ Tr . The two cases contradict
PrS(Sepξ1,...,ξn) = 0. Suppose that for some ξ1...ξn ∈ Tr|H , there is qual-
itative sequential information flow for property Sepξ1,...,ξn . This means that
PrS(Sepξ1,...,ξn) �= 0 and there exists u ∈ L+ with PrS(Sepξ1,...,ξn | B(u)) = 0
and B(u) is non-empty.

Let v = a1a2...ap be the projection on L of some trace in B(u). If p ≥ n then
ξ1a1ξ2a2..., ξnanan+1...ap ∈ Tr which contradicts PrS(Sepξ1,...,ξn | B(u)) = 0. If
p < n then ξ1a1ξ2a2..., ξpapξp+1...ξn ∈ Tr which contradicts again the fact that
PrS(Sepξ1,...,ξn | B(u)) = 0.

Conversely, suppose there is no qualitative sequential information flow for
any property Sepξ1,...,ξn , where (ξ1, ..., ξn) ∈ Hn(Tr) and there exists λ, λ′ ∈ Tr
and ν ∈ interl(λ|L0 , λ

′
|H)τ such that ν �∈ Tr .

The trace ν can be written ξ1a1ξ2a2...ξn−1an−1ξnτ , where ξ ∈ H∗, and ai ∈
L0. Thus PrS(Sepξ1,...,ξn | B(a1a2...an−1τ)) = 0 with B(a1a2...an−1τ) non-
empty since a1a2...an−1τ = λ′

|H . Therefore PrS(Sepξ1,...,ξn) must be equal to
zero since there is no information flow for this property. �

3. Noninterference
Noninterference is a security property introduced by Goguen and Meseguer

[5] and generalized by McCullough [11]. It demands that a low-level user cannot
infer that any sequence of high-level inputs has (not) occurred. Let HI ⊂ H (resp.
HO) is the set of high-level input (resp. output) actions. We have HI∩HO = ∅.
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∀λ ∈ Tr ∀γ ∈ interl(HI∗, λ|L0)∃δ ∈ LLES(λ, S) γ = δ|L0∪HI

For each μ1, ..., μn ∈ HI∗ let Noninterμ1,...,μn = interl(HO∗, μ1lμ2l...μnl)×
(H ∪ l)ω. In a similar way to Theorem 7, one can prove

Theorem 8. For a given probabilistic system S, Noninterference(S) holds iff
for each n, for each μ1, ..., μn ∈ HI∗ PrS(Noninterμ1,...,μn , u) �= 0 for every
u ∈ Ln such that B(u) is non-empty.

6 Conclusion

We have studied probabilistic information flow from a point of view parame-
terized by user-specified properties of interest. A property is a set of system
traces, possibly viewed through an abstraction function. Our definitions support
a range of property classes, e.g., referring to high-level events only, or high-level
sequences separated by low-level events. We also allow specifications where a
distinction is made between the past and future fragments of a trace. In this
way, we can define (absence of) information flow for a given property, or for an
entire set of properties of a given class.

We have given theorems that characterize the structure of systems for which
absence of information flow according to these notions is guaranteed: for instance,
a certain isomorphism between probabilistic trees is needed for properties which
can distinguish subsequences of high-level events separated by low-level ones. We
have also shown how several classic notions of possibilistic information flow (non-
inference, noninterference and separability) can be expressed using qualitative
versions of our definitions.

We believe that this property-specific fashion of characterizing information
flow is useful because it can be adapted to the particularities of the system
under analysis. In many cases, a mere division into high- and low-level events
and a single definition of information flow policy may not be enough, whereas
our approach allows for a finer granularity of reasoning depending on the
property.

An issue for future research is to apply this framework in the case where
systems and properties are explicitly given as Markov chains and regular lan-
guages, respectively, and to investigate the decidability of the above notions of
information flow in this setting.

Acknowledgements. We are grateful to Anatol Slissenko for the numerous and
fruitful discussions of the approach studied in this paper.
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Abstract. Abstract non-interference has been introduced as a weaken-
ing non-interference which models attackers as abstract interpretations
(i.e., static analyzers) of programming language semantics. In this paper
we generalize the notion of abstract non-interference to deal with tree-
like models of computation. This allows us to widen the scope of abstract
non-interference for modeling security properties in automata, timed au-
tomata as models of real-time systems, and concurrent systems. We show
that well known definitions of non-interference in these models of com-
putation can be viewed as instances of our generalization. This proves
that abstract non-interference can reasonably be considered as a general
framework for studying and comparing security properties at different
levels of abstraction in both programming languages and systems. More-
over, the most precise harmless attacker of a system is systematically
derived by transforming abstract domains, characterizing the security
degree of automata and concurrent systems.

1 Introduction

Non-interference [15] is a key notion in language based security. The idea is
that no information about confidential data can be obtained by observing public
information. The standard methods used for preventing interference are based
on access control, i.e. higher privileges are required in order to access files con-
taining confidential data. The problem with these methods is that, after access,
there is no further control on how confidential information flows during execu-
tion. Hence, many techniques for checking secure information flows in software
and systems, ranging from standard data-flow/control-flow analysis techniques
to type inference, are studied, based on non-interference (see [22] and [11] for
excellent surveys). All these approaches are devoted to prove that a system as
a whole, or parts of it, does not allow confidential data to flow towards public
variables. Type-based approaches are designed in such a way that well-typed
programs do not leak secrets. In a security-typed language, a type is induc-
tively associated at compile-time with program statements in such a way that
any statement showing a potential flow disclosing secrets is rejected [25,27,28].
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Similarly, data-flow/control-flow analysis techniques are devoted to statically
discover flows of secret data into public variables [4,18,19,23]. In concurrency,
bisimulation is used to prove equivalence between computations where private
actions are hidden with respect to the same system’s computations where these
actions are avoided [10]. In real-time systems trace equivalence is used to prove
that the computations where private actions are avoided are equivalent to the
same system’s computations where these actions are admitted with a minimum
fixed delay, and then hidden to the attacker [2]. These notions are all based on
the same principle, which is non-interference, but they can be hardly recognized
as instances of a same construction. This is due to the fact that different aspects
of the underlying computational models become crucial in order to provide ex-
pressive enough notions of secrecy in sequential, non-deterministic, concurrent
and real-time systems. While in sequential programs we are mainly concerned
with non-interference in input/output behavior, in concurrency and in real-time
we are, respectively, mainly concerned with interleaving actions and time delays.

Standard non-interference is often too strict for any practical use in language-
based security: most programs are rejected by static control/data flow analyzers
or type checkers for non-interference. In order to adapt security policies to practi-
cal cases, it is essential to know how much an attacker may learn from a program
by (statically) analyzing its input/output behavior. This idea led to the defini-
tion of the notion of abstract non-interference [14], which captures a weaker
form of non-interference. Namely, non-interference is made parametric relatively
to some abstract property, formalized as an abstract interpretation [7], of the
input/output behavior. This notion however is not adequate to cope with more
complex systems like concurrent and real-time systems. In particular, as stated
in [14], abstract non-interference strongly relies upon a denotational model of
computation, which is inadequate for modeling security protocols for instance.

Main Contribution and Related Works. In this paper, we prove that the no-
tion of abstract non-interference introduced in [14] can be generalized in order
to cope with many well-known models of secrecy in sequential, concurrent and
real-time systems and languages. This is achieved by factoring abstractions in
order to identify sub-abstractions modeling the different properties of the system
on which the notions of non-interference are based. Abstract interpretation [7]
and the theory of abstract domain transformers [8] plays a key role in this gen-
eralization: The abstraction represents here both what an attacker may observe
about a computation (as in abstract non-interference [14]) and which aspects of
the computation are relevant for checking non-interference. In this context, non-
interference corresponds to asking that the behavior of the chosen relevant as-
pects of the computation is independent from what an attacker may observe. We
prove that both narrow and abstract non-interference in [14] are instances of our
generalized abstract non-interference (GANI). Then we prove that NNI (Non-
deterministic Non-Interference), SNNI (Strong NNI), NDC (Non-Deducibility
on Compositions), BNDC (Bisimulation NDC), BNNI (Bisimulation NNI), and
BSNNI (Bisimulation SNNI) in [10] for Security Process Algebras (SPA), are all
instances of GANI. Finally, we prove that decidable notions of non-interference
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introduced for timed automata in [2] are again instances of GANI. In all these
constructions, the model of an attacker is specified as an abstract interpretation
of the system semantics. This is a key point in order to introduce systematic
methods for deriving attackers by transforming abstract domains. We general-
ize the method introduced in [14] to derive harmless attackers for GANI, i.e.,
abstractions of the semantics of systems which guarantee non-interference.

This is not the first attempt neither for deriving general schemes for security
policies [12], nor for trying to bridge language-based and process-calculi secu-
rity [13,16,20]. In particular, in [12] the authors provide a uniform method for
defining computer security properties for process algebras, obtaining a quite flex-
ible schema for reasoning about different properties. What we do in this paper is
something similar since the aim is the same, but in a more general context which
ranges from language based-security to process algebras, to timed automata. The
problem of studying the link between language-based and process calculi secu-
rity is well known in literature. In particular, recently [13] this problem has been
approached by transforming imperative language in a CCS-like process calculus,
and by defining a notion of BNDC which corresponds for imperative languages to
the standard notion of non-interference. In our case, we don’t have to transform
programs, since we consider a general model that can cope with both imperative
programming languages and process algebras.

2 Information Flows in Language-Based Security

Non-interference can be naturally expressed by using semantic models of pro-
gram execution. This idea goes back to Cohen’s work on strong dependency
[5], which uses denotational semantics for modeling how information can be
transmitted among variables during the execution of programs. Therefore non-
interference for programs essentially means that “a variation of confidential
(high or private) input does not cause a variation of public (low) output” [22].
When this happens, we say that the program has only secure information flows
[3,5,9,18,26]. This situation has been modeled by considering the denotational
(input/output) semantics �P � of the program P . In particular, we consider pro-
grams where data are typed as private (H) or public (L). Program states in Σ
are functions (represented as tuples) mapping variables in the set of values V. If
T ∈ {H, L}, n = |{x ∈ Var(P )|x : T}|, and v ∈ Vn, we abuse notation by writing
v ∈ VT when v is a value for the variables with security type T. Moreover, we
assume that any input s, can be seen as a pair (h, l), where sH = h is a value
for private data and sL = l is a value for public data. In this case, (standard)
non-interference can be formulated as follows:

A program P is secure if ∀ input s, t . sL = tL ⇒ (�P �(s))L = (�P �(t))L.

This problem has been formulated also as a Partial Equivalence Relation (PER)
[17,23]. In [14], the notion of abstract non-interference is introduced for mod-
eling both weaker attack models, and declassification. The idea is that, instead
of observing the concrete semantics of programs, namely the concrete values of
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Table 1. Narrow and Abstract Non-Interference

[η]P (ρ) if ∀h1, h2∈VH, ∀l1, l2∈VL. η({l1})=η({l2})⇒ρ({�P �(h1, l1)L})=ρ({�P �(h2, l2)L})

(η)P (φ �[]ρ) if ∀h1, h2∈VH, ∀l∈VL. ρ(�P �(φ({h1}), η({l}))L) = ρ(�P �(φ({h2}), η({l}))L)

public data, the attackers can only observe properties of public data, namely ab-
stract semantics of the program. For this reason we model attackers by means of
abstract domains. Formally, the lattice of abstract domains of a concrete domain
C is isomorphic to the lattice uco(C) of all the upper closure operators on C [8].
An upper closure operator ρ : C → C on a poset C is monotone, idempotent,
and extensive1. The model of an attacker , also called attacker , is therefore a pair
of abstractions 〈η, ρ〉, with η, ρ ∈ uco(℘(VL)), representing what an observer can
see about, respectively, the input and output of a program. The notion of nar-
row (abstract) non-interference (NANI), denoted [η]P (ρ), is given in Table 1. It
says that if the attacker is able to observe the property η of public input, and
the property ρ of public output, then no information flow concerning the pri-
vate input is observable from the public output. The problem with this notion is
that it may introduce deceptive flows [14], generated by different public outputs
due to different public inputs with the same η property. Consider, for instance,
[Par ]l := l∗h2(Sign)2, then we can observe a variation of the output’s sign due to
the existence of both negative and positive even numbers, revealing flows not due
to private data, since h cannot affect the sign of the result. Most known mod-
els for weakening non-interference (e.g., PER model [23]) and for declassifying
information (e.g., robust declassification [29]) corresponds to instances of NANI
[14,17]. In order to avoid deceptive interference we introduce a weaker notion of
non-interference. In this case, the set of all the elements sharing property η is
used as the public input. Moreover we consider also a property φ ∈ uco(℘(VH)),
modeling the private property that has not to be observed by the attacker 〈η, ρ〉.
This notion, denoted (η)P (φ �[]ρ), is called abstract non-interference (ANI) and
is defined in Table 1.

Note that [id]P (id) models exactly (standard) non-interference. Moreover,
we have that abstract non-interference is a weakening of both, standard and
narrow non-interference: [id]P (id) ⇒ (η)P (φ �[]ρ) and [η]P (ρ) ⇒ (η)P (φ �[]ρ),
while standard non-interference is not stronger than the narrow version, due to
deceptive interference. In [14], two methods for deriving the most concrete output
observation for a program, given the input one, for both narrow and abstract
non-interference are provided. In particular the idea is that of abstracting in the
same object all the elements that, if distinguished, would generate a visible flow.
These most concrete output observations, that are not able to get information
from the program P observing η in input, are, respectively, denoted [η]�P �(id)
and (η)�P �(φ �[]id), both in uco(℘(VL)).

1 ∀x ∈ C. x ≤C ρ(x).
2 Note that Par

def= {�, ev, od,⊥} and Sign
def= {�, 0+,−,⊥}.
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3 Generalized Abstract Non-interference

In this section, we introduce a generalization of abstract non-interference, called
generalized abstract non-interference (shortly GANI), which subsumes many of
the known notions of non-interference based on tree-like computations and au-
tomata. Abstract interpretation plays a key role in this generalization: The ab-
straction represents here both what an attacker may observe about a computa-
tion (as in abstract non-interference) and which aspects of the computation are
relevant for checking non-interference, aspects determined by the specific notion
of non-interference that we have to enforce on the system. Non-interference cor-
responds to asking that relevant (confidential) aspects of the computation have
no effects on what an attacker observes of the computation. Moreover, what an
attacker may observe is indeed composed by two aspects: what the particular
notion of non-interference allows to observe, and what effectively the attacker
can observe. In the following, we consider computational systems S modeled by
their tree semantics {|S|}, i.e., the set of all the trees of computations of S. The
corresponding trace and I/O denotational semantics are, respectively, denoted
by 〈|S|〉 and �S�.

We define generalized non-interference by means of three abstractions in the
standard framework of abstract interpretation, i.e., additive functions, each one
with a specific and precise meaning, depending on the given notion of non-
interference, and depending on the attacker model. The chosen policy of non-
interference decides two of these abstractions:

αOBS: The first abstraction αOBS abstracts the tree semantics in the model used
in the notion of non-interference that has to be enforced. Note that, the ab-
straction level chosen for defining non-interference corresponds to delegating
particular parts (i.e., aspects) of the system to release information [24]. For
instance, if we want to check standard non-interference for imperative pro-
gramming languages, then αOBS corresponds to the denotational semantics ab-
straction of the computational tree. We call this abstraction the observation
abstraction. Such an abstraction extracts always an observational property
from semantic trees, e.g., all the computational traces, the I/O relations,
etc.;

αINT: The second abstraction αINT characterizes the maximal amount of informa-
tion that an attacker should observe, in the chosen policy. This abstraction
regulate what information may be released [24]. For example, if we have to
check non-interference in Spa [10], then we want the computations where pri-
vate actions are hidden to be equivalent to the computations where private
actions are avoided. Namely the set of all the computations where private
actions are avoided is the maximal information that the attacker is allowed
to observe. In this case αINT selects only those computations where private
actions are not executed. This abstraction, called interference abstraction,
forgets about all information which should not be observed by an attacker.
Such an abstraction always selects the subset of the possible computations
that we allow the attacker to observe, namely it is such that for each X in
its domain, αINT(X) ⊆ X .
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These two abstractions tells us that, in general, non-interference holds whenever
the amount of information that an attacker can grasp from a computation is
precisely what, for the given notion of non-interference, that attacker is allowed
to observe about it.

Finally, we have to model the observational capability of the passive attacker
observing the system, and we consider a further abstraction αATT, called attacker
abstraction, which characterizes the model of the attacker, namely what it can
observe of the system behavior. In this case the attacker is passive since it cannot
interfere with the execution of the program, and it cannot control the inputs of
the system. By using these three abstractions we define generalized abstract
non-interference for the system S as

αATT◦αOBS({|S|}) = αATT◦αINT◦αOBS({|S|})
This equation says that, in the
model chosen by αOBS, the maximal
amount of information that the at-
tacker is allowed to observe, deter-
mined by αATT◦αINT, is exactly what
the attacker does observe, deter-
mined by αATT. In other words, this
definition of non-interference says
that the attacker, modelled by the
abstraction αATT, cannot distinguish
between the observable computa-
tions (αOBS) and the set of only
those computations that the at-
tacker should observe (αINT◦αOBS).

αOBS

αINT
({|S|})

{|S|}

αATT

=

αATT

αOBS ({|S|})αOBSαINT

αOBSαATT αINTαATT αOBS({|S|}) ({|S|})

The Generalized Non-Interference Policy. It is worth noting that this definition
of GANI in general is characterized by a possibilistic interpretation of equality
and doesn’t provide an explicit notion of non-interference. Indeed, in ANI [14],
the non-interference policy states that all the computations with the same public
input has to provide the same public outputs. We can think of generalizing the
notion of non-interference by checking the equality of public observations of the
outputs for all the computations sharing a common maximal partial execution,
instead of sharing only the public input. Consider the tree semantics {|S|} of the
system S.

A system S is secure if ∀σ ∈ αINT◦αOBS({|S|}), ∀δ ∈ αOBS({|S|}) .
δ �max σ ⇒ αATT(δ) = αATT(σ)

where the relation �max, specifies the maximal subtree which δ shares with an el-
ement in αOBS({|S|}). The definition above clearly, depends on the subtree relation
�. Consider σ ∈ αINT◦αOBS({|S|}) and consider δ ∈ αOBS({|S|}): δ �max σ if

∃π � δ . π � σ ∧ ∀π′ �= π . π � π′ � δ, ∀σ′ ∈ αOBS({|S|}) then π′ �� σ′
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The definition above is based on the observation that if a computation has a
maximal partial computation in common with what can be surely observed by
the attacker, then it is in those points, where the common partial computations
end, that some private action has interfered in the computation.

Example 1. Let A be a system, if αOBS({|A|}) = {1 → 2 → 3, 1 → 2 → 4, 1 → 3 → 2}
and αINT◦αOBS({|A|}) = {1 → 2 → 3, 1 → 3 → 2} then 1 → 2 → 3 �max 1 → 2 → 3,
1 → 2 → 4 �max 1 → 2 → 3 and 1 → 3 → 2 �max 1 → 3 → 2.

3.1 Abstract Non-interference as GANI

In this section, we show that abstract non-interference [14], which general-
izes standard non-interference [5,15], is an instance of GANI. For determinis-
tic programs the standard denotational semantics is given as the abstraction
approximating traces with input/output relations (functions for deterministic
programs) [6]3. Let X be a set of traces, the denotational semantics is defined:
αD(X) = λσ
.

{
σ�
∣∣σ ∈ X, |σ| < ω

}∪{ ⊥ ∣∣ |σ| = ω
}
, where σ
 and σ� denote

respectively the initial and the final states of the trace σ. Given two closures
φ ∈ uco(VH) and η ∈ uco(VL), we define the abstraction αη

φ : (Σ → Σ) −→
℘(℘(Σ)× ℘(Σ)) such that for any f : Σ −→ Σ:

αη
φ(f) =

{ 〈S
, S�〉
∣∣S
 = 〈φ(h), η(l)〉, h ∈ VH, l ∈ VLS� = f(φ(h), η(l))

}
The idea is to abstract denotational input/output semantics to the set of all the
possible associations between the corresponding input/output abstract states. In
this way, we model the observation made by the attacker, which consists precisely
in the ability to observe input/output abstract values. Consider the function
CH : ℘(VH) −→ VH that uniquely chooses an element in the domain of values VH.
Note that the equation ∀h1, h2. ρ(�P �(〈φ(h1), η(l)〉)L) = ρ(�P �(〈φ(h2), η(l)〉)L) is
equivalent to the equation ∀h. ρ(�P �(〈φ(h), η(l)〉)L) = ρ(�P �(〈φ(CH(VH)), η(l)〉)L).
Therefore abstract non-interference can be formulated as follows:

∀h ∈ VH . ρ(�P �(φ(h), η(l))L) = ρ(�P �(φ(CH(VH)), η(l))L)

At this point, we can define the interference abstraction αANI : ℘(℘(Σ) × ℘(Σ))
−→ ℘(℘(Σ) × ℘(Σ)), which selects only the observation with the fixed private
input, hence for any F ∈ ℘(℘(Σ)× ℘(Σ)):

αANI(F) =
{ 〈S
, S�〉 ∈ F

∣∣∃l ∈ VL . S
 = 〈φ(CH(VH)), η(l)〉 }
In order to obtain abstract non-interference, we assume that the attacker may
observe only the ρ abstraction of the low output. This process is encoded by
the attacker abstraction, which depends upon the input/output abstractions
η, ρ ∈ uco(℘(VL)), i.e., αρη

ATT
: ℘(℘(Σ)× ℘(Σ)) −→ ℘(℘(VL)× ℘(VL)) where

αρη
ATT

(F) =
{ 〈η(XL), ρ(YL)〉

∣∣ 〈〈XH, XL〉, 〈YH, YL〉〉 ∈ F
}

Then, we can specify abstract non-interference in the following theorem.
3 For deterministic systems the trace semantics coincides with the tree semantics.
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Theorem 1. αρη
ATT

◦αη
φ(�P �) = αρη

ATT
◦αANI◦αη

φ(�P �) iff (η)P (φ �[]ρ).

Note here that the observation abstraction is the composition αη
φ◦αD.

As far as the narrow case is concerned, we have to check if the possible
executions with the high variable ranging on the whole concrete domain VH and
the low variables ranging on the set of values with the same property η are equal
to the interference abstraction obtained by setting the high variable to CH(VH)
and the low one to any fixed value in the given property of low variables. This
means that we have to change the interference abstraction given above as follows,
where CL : ℘(VL) −→ VL is a function that uniquely selects an element from sets
of values: αNANI : ℘(℘(Σ)× ℘(Σ)) −→ ℘(℘(Σ)× ℘(Σ))

αNANI(F) =
{

f

∣∣∣∣∃l ∈ VL . f = 〈〈CH(VH), η(l)〉, S�〉〈〈CH(VH), l′〉, S�〉 ∈ F
l′ = CL(

{
y ∈ VL

∣∣η(y) = η(l)
}
)

}
Therefore, we can rewrite also narrow abstract non-interference (NANI).

Theorem 2. αρη
ATT

◦αid

id
(�P �) = αρη

ATT
◦αNANI◦αid

id
(�P �) iff [η]P (ρ).

3.2 GANI in Concurrency

In [10], the authors introduced a classification of security properties for security
process algebras . Since process algebras can be modeled by computational trees,
we show how different security properties defined in [10] can be re-interpreted
as instances of the generalized abstract non-interference. In the following we
consider the process algebra Spa introduced in [10]. We only remind the reader
that, if L ⊆ Act, then P\L can execute all the actions P is able to do, provided
that they do not belong to L, P\IL can execute all the actions P is able to do,
provided that they do not belong to L ∩ I, and P/L hides the actions in L.

Consider a process P ∈ Spa, whose computational tree is {|P |}. We start by
considering NNI (non-deterministic non-interference) which is defined by using
the trace equivalence ≈T in the following way: (P\IH)/H ≈T P/H, where P/H
means that all the action in H (high) are hidden, i.e., they are substituted by
the internal action ε, while P\IH means that all the actions in H which are
input actions cannot be executed by P . Then, we can translate this definition as
GANI. It is clear that the definition of NNI considers the concrete system P , this
means that αOBS

def= id. On the other hand, we have that what an external user
can observe is the system having the high actions hidden. Therefore, we have
to define the attacker abstraction that hides high-level actions. In the following
let TAct be the set of all the semantic trees on the set of actions Act, while let
TL be the set of all the semantic trees where the private actions are hidden.
Let τ ∈ TAct and consider the following function: low : TAct −→ TL such that
low(τ) is the tree where any label σ ∈ H in τ is substituted by ε. Let {|P |}
the semantics of P specified as a computational tree. We define the function
αlow as follows: αlow({|P |}) =

{
low(τ)

∣∣ τ ∈ {|P |} }. This specifies the attacker
abstraction in GANI and it is such that: {|P/H|} = αlow({|P |}). Moreover, we
can note that NNI is defined by using trace equivalence, this means that the



Generalized Abstract Non-interference 229

attacker can analyze traces of computations only. By definition two systems are
trace equivalent if they accept the same language, therefore we have to make
equal the αT abstraction of the result, namely αATT

def= αT◦αlow. Finally, consider
the operation P\IH which avoids high-level inputs. Let I be the set of input
actions, then we can define the abstraction: αI

L : ℘(TAct) −→ ℘(TAct) such
that for any T ⊆ TAct: αI

L(T ) =
{

τ ∈ T
∣∣∀σ ∈ τ . σ /∈ H ∩ I

}
, where σ ∈ τ

is a shorthand notation for σ being an action (node) in τ . Then we have that
{|P\IH|} = αI

L({|P |}). At this point, we can derive the NNI as:

αT◦αlow({|P |}) = (αT◦αlow)◦αI
L({|P |})

Consider now the notion of Strong Non-deterministic Non-Interference (SNNI)
defined in [10]: P satisfies SNNI iff P/H ≈T P\H. In order to define SNNI as
an instance of the generalized abstract non-interference, we have to define the
operator P/H, that hides all the high-level actions. Let αL : ℘(TAct) −→ ℘(TAct)
be the map such that ∀T ⊆ TAct :αL(T ) =

{
τ ∈ T

∣∣∀σ ∈ τ . σ ∈ L
}
. This defines

the interference abstraction in GANI and it is such that {|P\H|} = αL({|P |}) .
The standard notion of SNNI introduced in [10] can be defined as

αT◦αlow({|P |}) = αT◦αlow◦αL({|P |}).
At this point, since bisimulations are equivalence relations [21], they can be
viewed as abstractions of computational trees, i.e., a tree is abstracted into
the equivalence class of all the trees bisimilar to it, then we can model both
BNNI and BSNNI. In this context, we obtain this by substituting to αT, the
abstraction αB, corresponding to the given chosen bisimulation, which associates
with a computation the set of all the computations bisimilar to the given one.

Consider now non-deducibility on compositions (NDC) and the bisimulation-
based NDC (BNDC) notions of non-interference. NDC is: ∀Π .P/H ≈T (P ||Π)\H,
where Π is a process that can execute only high-level actions. In [10] it is
proved that NDC=SNNI, therefore also NDC can be modeled as a generalized
abstract non-interference. The situation is different when we consider BNDC,
i.e., ∀Π .P/H ≈B (P ||Π)\H, for the bisimulation relation B. In this case, we have
that BNDC �=BSNNI, and therefore we have to explicitly model it as general-
ized abstract non-interference. In [10] the authors also prove that BNDC can be
equivalently formalized as: ∀Π .P\H ≈B (P ||Π)\H. At this point, we note that we
have to consider αB◦αL as αATT, since in this definition it is only observable what a
low-level user (i.e., a user that can execute only low level actions) can see, which
is only the computation without high-level actions. Moreover, we have that αOBS

is the identity, since, in this case, non-interference is defined on computational
trees. Finally, we define αINT noting that the semantics (computational tree) of
P ||Π contains the semantics of P.Π (which doesn’t execute synchronizations),
therefore we can define αINT({|P ||Π |}) = {|P.Π |}, modeling BNDC as follows:

∀Π.(αB◦αL)◦αINT({|P ||Π |}) = αB◦αL({|P ||Π |}).
This is BNDC since in the right side of the equality αL is applied to the semantics
of P.Π , and therefore executes only the high-level actions of P .
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Theorem 3. Given a system P then:
• P satisfies SNNI iff αT◦αlow({|P |}) = αT◦αlow◦αL({|P |});
• P satisfies BNDC iff ∀Π.(αB◦αL)◦αINT({|P ||Π |}) = αB◦αL({|P ||Π |}).

3.3 GANI in Real-Time Systems

Let A be a timed automaton [1], {|A|} the corresponding computational tree
semantics, and L def= αT({|A|}) the corresponding timed accepted language, i.e.,
the sequence of all the computational traces of states 〈σ, t〉, where σ is an action
executed at the time t. In [2] a notion of non-interference for timed automata is
introduced. Given a natural number n, the authors say that high-level actions
do not interfere with the system, by considering minimum delay n, if the system
behaviour in absence of high-level actions is equivalent to the system behaviour,
observed on low-level actions only, when high-level actions can occur with a
delay between them greater than n. Let Σ be the alphabet of actions of A. We
suppose that Σ is partitioned into two disjoint sets of actions H and L: H is the
set of the high-level actions, while L is the set of the low-level ones. Consider the
following languages:

L|L def=
{
〈σ, t〉 ∈ L ∣∣∀〈σi, ti〉 ∈ 〈σ, t〉 . σi ∈ L

}
L/H

def=
{

w

∣∣∣∣∃〈σ, t〉 ∈ Lsuch that w is the projection of〈σ, t〉
on the pairs

{ 〈σ, t〉 ∣∣σ ∈ L
} }

Ln
H

def=
{
〈σ, t〉 ∈ L

∣∣∣∣∀〈σi, ti〉, 〈σj , tj〉 ∈ 〈σ, t〉 . i �= j,
σi, σj ∈ H ⇒ |ti − tj | ≥ n

}
So, L|L avoids high-level actions, i.e., it takes only the traces of the system that
make only low-level actions. On the other hand, L/H hides all the high-level
actions, i.e., it executes them and then it hides them. Finally, Ln

H selects only
those traces where the high-level actions are distant at least n. Then in [2] a
system is said to be n-non-interfering iff Ln

H /H = L|L.
Consider the example below [2]. This timed automaton have L = {begin-c,end-c}
and H = {cloche,reset}. There is only one possible trace of only low-level actions:

〈begin-c, 2〉〈end-c, 4〉 . . . 〈begin-c, 2 + 4i〉〈end-c, 4 + 4i〉 . . .
If more than one cloche
action is executed and
the time elapsed between
them is less than 1, then
it is possible to execute
the action reset, which
can change the moment
of the execution of begin-
c, and therefore in this
case we have an interfer-
ence.

x0 = 1,cloche,{x1}

x1 < 1,cloche,{x1}

x1 < 1,cloche,{x1}

x0 ≤ 2

x0 = 2,begin-c,{}

x0 > 2

s0s1 s2

s3

x0 = 4,end-c,{x0} x1 = 1, ε, {}

ε, {}
reset,{x0}
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In particular, for example, we can have the trace

〈begin-c, 2〉〈end-c, 4〉〈cloche, 5〉〈cloche, 5.6〉〈cloche, 6.3〉〈begin-c, 8.3〉 . . .

whose projection 〈begin-c, 2〉〈end-c, 4〉〈begin-c, 6.3〉〈end-c, 8.3〉, on the low-level
actions, is not the one described above. This means that in this system there is
interference.

Consider the attacker abstraction αlow, defined in Sec. 3.2, the interference
abstraction αL and the language Ln

H . We define the family of abstractions αn,
with n ∈ N, as follows:

αn(L) =
{

τ ∈ L ∣∣∀〈σi, ti〉, 〈σj , tj〉 ∈ τ . i �= j, σi, σj ∈ H ⇒ |ti − tj| ≥ n
}

where each map αn is additive and Ln
H = αn(L). Then the notion of non-

interference introduced in [2] for timed automata can be specified as follows:

αlow◦αn(L) = αlow◦αL◦αn(L),

where αL◦αn = αL. Note that, in this case, αOBS = αn◦αT.

Theorem 4. A timed automaton, with timed language L, satisfies n-non inter-
ference iff αlow◦αn(L) = αlow◦αL◦αn(L).

4 Deriving GANI Attackers

In this section, we generalize the construction to GANI of the most powerful
attacker [14]. Let A be a system and let αOBS and αINT be abstractions defining
the chosen notion of non-interference for which A results insecure whenever
observed by the attacker modeled by αATT. As we said, αOBS and αINT depend on the
definition of non-interference that we chose, while αATT depends on what we decide
to observe about the computation. Therefore if non-interference is not satisfied,
i.e., the system is not secure as regards the chosen notion of non-interference,
we can think of further abstracting the attacker abstraction in order to achieve
security. The resulting abstraction provides a certificate of the security level of
the system A with respect to the fixed observation and private abstractions. In
order to find an abstraction that makes equal the sets αATT◦αOBS and αATT◦αINT◦αOBS

we have to merge elements in both sets in order to make them contain the
same new abstract objects. Hence, given a security policy determined by what
is observable (αOBS), and what at most the attacker should observe (αINT◦αOBS), we
derive from the program the most concrete harmless attacker αATT for the given
policy. Namely, we derive the minimal abstraction necessary in order to make
GANI hold. Note that, in abstract non-interference [14] there is a clear criterion
for collecting elements in order to build the abstraction: abstracting to the same
object all the elements resulting from computations that differ only for private
inputs. The corresponding construction for GANI is provided by the relation
�max defined in the previous section. Hence, we use �max for defining the sets
of objects that need to have the same abstraction in order to achieve secrecy.
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Hence, ∀σ ∈ αINT◦αOBS({|A|}) the following set collects all the trees that have to
be indistinguishable from the tree σ:

Υ (σ) = [σ] def=
{

δ ∈ αOBS({|A|})
∣∣ δ �max σ

}
Example 2. Consider a system A, if we have αOBS({|A|}) = {1 → 2 → 3, 1 → 2 → 4,

1 → 3 → 2} and αINT◦αOBS({|A|}) = {1 → 2 → 3, 1 → 3 → 2} then [1 → 2 → 3] =
{1 → 2 → 3, 1 → 2 → 4}, [1 → 3 → 2] = {1 → 3 → 2}. While, if we have αOBS({|A|}) =
{1 → 2 → 4, 1 → 2 → 3, 1 → 5 → 3, 3 → 5 → 4, 1 → 2 → 5, 1 → 3 → 2, 3 → 2 → 1}
and αINT◦αOBS({|A|}) = {1 → 2 → 3, 1 → 3 → 2, 3 → 2 → 1} then [1 → 2 → 3] =
{1 → 5 → 3, 1 → 2 → 3, 1 → 2 → 4}, [1 → 3 → 2] = {1 → 5 → 3, 1 → 3 → 2} and,
finally, [3 → 2 → 1] = {3 → 2 → 1, 3 → 5 → 4}.
Similarly to [14], we define the set D{|A|} collecting all computations that may fail
secrecy, and Irr{|A|} collecting all computations for which secrecy cannot fail.

D{|A|} =
{

[σ]
∣∣σ ∈ αINT◦αOBS({|A|})

}
Irr{|A|} =

{
X
∣∣∀σ ∈ αINT◦αOBS({|A|}) . X /∈ ↑([σ])

}
The predicate Secr{|A|}, which characterizes all the elements that should be con-
tained in the abstraction modeling the most concrete harmless attacker, is de-
fined as

Secr{|A|}(X) iff ∀σ ∈ αINT◦αOBS({|A|}) . (∃Z ∈ [σ] . Z ⊆ X ⇒ ∀W ∈ [σ] . W ⊆ X)

Following the construction in [14], we can prove that S{|A|} def=
{

X
∣∣Secr{|A|}(X)

}
is the most concrete abstraction that enforces the notion of GANI to hold, w.r.t.
the relation �max.

Theorem 5. Let A be a system. S{|A|} is the most concrete abstraction such
that ∀σ ∈ αINT◦αOBS({|A|}), ∀δ ∈ αOBS({|A|}) . δ �max σ ⇒ S{|A|}(δ) = S{|A|}(σ).

Proposition 1. S({|A|}) = S(↑(D{|A|})) ∪ Irr{|A|}.

5 Conclusion

We introduced GANI as a generalization of abstract non-interference for au-
tomata and concurrent systems. We believe that the combination of abstract
interpretation and non-interference may provide advanced techniques for an-
alyzing, in a modular way, how sub-components of complex systems interact
during computation and how, analyses at different levels of abstraction can be
combined in a useful way. On one side, abstract interpretation has been proved
to be the most appropriate framework for reasoning about properties of compu-
tations at different levels of abstraction. On the other side, strong-dependency,
and in particular non-interference, is the most appropriate notion to disclose
information-flows among sub-components of a system, when a variation of some
of them can be conveyed to the others. GANI is intended to bridge these two
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notions in order to provide adequate methods for studying properties of com-
plex systems by analyzing the properties of computations that are conveyed
among system sub-components. In this sense, GANI may provide a framework
for studying the relation between different and interacting entities which may be
reciprocally influenced by the action of computing, giving advanced techniques
for systematically classifying the information leakage in the lattice of abstrac-
tions. Moreover, the advantage of specifying different notions of non-interference
for sequential, concurrent and timed systems as GANI relies upon the possibil-
ity offered by abstract interpretation to systematically derive abstractions. This
paper does not contain any tool support for the analysis, clearly such a tool
would provide an evidence on how the framework can be used, and indeed this
problem deserves further work. However, the definition of a general schema for
defining security properties allows to study relationship among different prop-
erties. Moreover, by using a unique model and unique schema, parametric on
the security policy and on the computational system, it is possible to develop
more general theories which could then be applied to a number of definitions by
simply instantiating them, in the same spirit as [12].
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Abstract. Several types of statistical covert channels that break the in-
formational system security policy ensuring a reliable information trans-
fer between hostile agents can be detected by a competent warden. We
introduce1 the basic detection technique and analyze the conditions un-
der which the warden with limited resources can perform his task suc-
cessfully.

1 Introduction

Since [4] many papers dealing with statistical profiles of normal behavior in in-
trusion detection techniques have been published. Some methods proposed can
be used as well for analysis of steganography methods or covert channels. We
investigate the means to detect covert channels build up by hostile agents within
an informational system. We assume that such covert channels will exploit for
secure transmission a manipulation of the probability distribution parameters
of the sent message sequence. We think that the most difficult problem here is
to establish the proper correspondence between the reliability of analysis results
and adequacy the chosen model of the message sequence probability distribu-
tion. In many cases a probabilistic description of informational system extremely
simplifies the system behavior. Natural dependencies in message sequences are
eliminated by the necessity to calculate probabilities.

The problem of mathematical exposure of data hiding was discussed in [1].
This work also pointed to existence of problem of adequate mathematical model
choice. In [1] reasons were presented in the terms of Shannon entropies which
suppose memoryless channels or channels with restricted memory. Usage of such
models is a serious simplification of real command flow structure from one com-
puter to another computer, for example from task manager of GRID to the com-
puter where problems are solved. The main point of our paper is the research
of data sequence from task control computer to the computer where tasks are
solved. Adversary chances to manipulate this data sequence seem to be very lim-
ited. Adversary can use different dependencies. But he tries to use them without
1 This work was supported by the Russian Foundation for Basic Research, grant 04-

01-00089.
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a define knowledge about the existence of such dependencies at the moment of
transmission. It produces very complex probability models.

We use the term ”system” in several senses. We think that the context deter-
mines the sense of the term ”system” everywhere in the paper. The main sense of
the term ”system” means that there is a generator of data sequence from the task
control computer to the computer where tasks are solved. This data sequence
is unidirectional. Sometimes we say about computer systems to point that data
generator in the task control computer is a complex system where independent
hardware/software adversary agent can function besides task computation. The
same can be said about the computer where tasks are solved.

We analyze the system with infinite sequences of messages and show that
the final results of analysis are almost independent of the probability model.
The word ”almost” means that we need to have a probability measure of normal
behavior being perpendicular to the probability measure of a covert channel.
This assumption seems to be quite natural when we are dealing with the usage
of statistical methods in signal detection. We prove also that under certain con-
ditions the warden can construct consistent tests for covert channel detection. If
the warden’s capacities are limited we examine the possibilities for the warden
to detect a covert transmission when a method of data hiding is known.

Likewise ideas were investigated in intrusion detection models, for example in
[2,5]. But intrusion detection demands the quickest reaction to an attack. That
means that the decision should be based on the shortest trace of entrance data.
There are a lot of traces that should be considered as input of intrusion detection
automaton. There is no decision rule that produces good detection of intrusion
and a few false alarms. This fact is well known in mathematical statistics as
the problem of large amount of short samples and also as detection of rare
events in the sequence of homogeneous samples [3]. The best interpretation of
this problem for intrusion detection systems is presented in [2]. We consider the
problem which is likewise but different from intrusion detection. Warden can
permit covert transmission to get enough information for proving covert channel
existence (data hiding). Warden’s problem consists of knowledge absence about
a data hiding method. That means that he knows hypothesis H0 but doesn’t
know alternatives. Our work solves theoretical problems and helps to understand
weaknesses of statistical covert channels. It uses probability models and methods.
That is why we cannot simultaneously consider construction of the practical tools
for the warden. Nevertheless the proof of the existence of the consistent test is
constructive. The hardness of the problem is to be researched.

The paper is structured as follows. In section 2 the proof of existence of a
consistent test for hidden transfer detection is presented. Section 3 specifies con-
ditions for the warden with the limited resources to detect a covert transmission.
Section 4 presents the conclusions.

2 Existence of Consistent Tests

In the paper we analyze the simplest case of the system which consists of two
computers connected by the only unidirectional link S.



Detection of Illegal Information Flow 237

Consider two computer systems KA and KB connected by link S. Let
X , X < ∞, be a set of all possible messages, which can be sent from KA
to KB through S. We describe the informational stream from KA to KB
with a random infinite sequence of messages taken from X . Elements of any
sequence are numbered with natural numbers N . Denote a sequence space:
{α = (xi1 , xi2 , ..., xin , ...), xin ∈ X} = X∞. Let In(xi1 , xi2 , ..., xin , ...) be an
elementary cylindrical set in X∞ and A be a minimal σ-algebra, which is gen-
erated by all cylindrical sets. Let

{P0,t1,...tn(xt1 , xt2 , ..., xtn)} − (1)

be a consistent family of probability distributions on cylindrical sets. Then there
is the only probability measure P0 on measurable space (X∞,A), generated by
(1) which describes the normal behavior of the system. Imagine that adversary
hardware/software agent KA′ functions independently in computer system KA
and tries to send illegally a message to his partner KB′ in KB through the link
S. It is not allowed and they need a covert channel [7] on the base of the legal
transmission from KA to KB. We characterize the existence of transmission
from KA′ in legal traffic with a consistent family of probability distributions on
cylindrical sets of X∞

{P1,t1,...tn(xt1 , xt2 , ..., xtn)}, (2)

which generates the only probability measure P1 on measurable space (X∞,A).
When seeing the traffic from KA to KB to detect the signal from KA′ agent KB′

should test a hypothesis H0 : {P0,t1,...tn} versus an alternative H1 : {P1,t1,...tn}.
Definition 1. There is a statistical covert channel from KA′ to KB′ in S
if and only if measures P0 and P1 are mutually perpendicular [6]. That is
∃A0, ∃A1, A0, A1 ∈ A, A0 ∩A1 = ∅,

P0(X∞ \A0) = 0, P1(X∞ \A1) = 0.

If P0 and P1 are mutually perpendicular then there exists a consistent testing
of H0 versus alternative H1.

Considering Warden existence define a set of alternatives H11 instead of
the single alternative H1. It consists of all probability measures {P1θ, θ ∈ Θ}
where each P1θ is perpendicular to P0 (Θ is an arbitrary parameterization of
alternatives in H11). Let examine an existence of a consistent testing of H0

versus alternatives H11.
To prove an existence of the consistent tests we should consider more compli-

cated model. It is convenient to see the finite set X as a topological space where
every point is an open set and a closed set simultaneously. Then every subset of
X is an open set and a closed set. Topological space X∞ is a Tychonoff product
[6], if its basis of open sets consists of cylindrical sets of X∞. The topological
space X is a separable space and compactum. Then the space X∞ is compactum
and Baire σ-algebra [6] on X∞ equals to σ-algebra A [6]. Let us define a Borel
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σ-algebra A on topological space X∞. If P0 and {P1θ, θ ∈ Θ} are Baire mea-
sures [6] on compactum X∞ then for each of them exists the only continuation
[6] of the probability measure on (X∞,A). As a result we can consider P0 and
{P1θ, θ ∈ Θ} to be defined on (X∞,A). From perpendicularity for every θ ∈ Θ

∃A0(θ), ∃A1(θ), A0(θ), A1(θ) ∈ A, A0(θ) ∩A1(θ) = ∅,

P0(X∞ \A0(θ)) = 0, P1(X∞ \A1(θ)) = 0.

It is easy to see that perpendicular measures on (X∞,A) are perpendicular
on (X∞,A).

If we suppose that for every θ ∈ Θ the set A0(θ) ∈ A and A0(θ) is a closed
set in Tychonoff product then the set

A0 =
⋂
θ∈Θ

A0(θ)

is closed. Consequently, the set A0 and X∞ \A0 are measurable sets in A.
Tychonoff product X∞ is a topological space with countable basis. Then [8] a

support S of the measure P0 on (X∞,A) exists, i.e. S =
⋂

F , where intersection
of sets is such that every F is closed, P0(F ) = 1 and P0(S) = 1. As for every
θ ∈ Θ we have P0(A0(θ)) = 1 and A0(θ) is closed, then

A0 =
⋂
θ∈Θ

A0(θ) ⊇
⋂

F = S.

As a result P0(A0)) = 1.
As every subset in X is closed then every cylindrical set is also closed.
We have already proved that if P0 is perpendicular in (X∞,A) to all P1θ,

A0(θ) is closed for θ ∈ Θ, then there is a measurable A0 of A that for every
θ ∈ Θ A0 ∩A1(θ) = ∅ and P0(X∞ \A0) = 0.

Let B1, B2, ... be a decreasing sequence of cylindrical sets in which Bn is
defined by all possible vectors from Xn, standing on as the first n elements of
the sequences of A0. Then

lim
n→∞Bn = B.

It is clear that A0 ⊆ B. We prove that B ⊆ A0. Let ω ∈ B. Then for every n
the set A(n), A(n) ⊆ A0, is defined as a set of all sequences in A0 for which
their first n elements coincide with the first n elements of ω. One can see that
A(n) �= ∅ and A(n), n = 1, 2, ..., is a decreasing sequence.

Projection πn of the sequences of A0 to the first n elements of the sequences
is continuous as the inverse image of any open set Dn of Xn is the set (Dn ×
X∞) ∩ A0. This set is open in topological space A0 and closed in Tychonoff
product X∞. Then the inverse image of any closed set is closed in X∞ and
π−1

n (ωn) = A(n) - is a closed set in X∞, where πn(ω) = ωn. Then

A =
∞⋂

n=1

A(n)
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is closed set in X∞ and ω is a limiting point of A in X∞. It follows ω ∈ A. We
proved B ⊆ A0. Then B = A0. It follows that X∞ \A0 and A0 are elements of
A. We use that P0 is continuous. Then

lim
n→∞P0(Bn) = 1.

We choose Bn and P0(X∞ \Bn) = 0, so X∞ \Bn can be taken as the set where
we refuse to accept H0. We have A0 ∩A1(θ) = ∅ and

lim
n→∞(X∞ \Bn) = X∞ \A0.

Then for every θ ∈ Θ

lim
n→∞P1θ(X∞ \Bn) = P1θ(X∞ \A0) = 1.

We proved the following lemma.

Lemma 1. If probability measures. P0 and P1θ, θ ∈ Θ are perpendicular on
the measurable space (X∞,A) and A0(θ) are closed for all θ ∈ Θ in Tychonoff
product, then exist consistent tests of H0 versus alternatives H11.

It can be proved that an arbitrary closed set can be represented as a limit of
a decreasing sequence of cylindrical sets.

Lemma 1’. If Probability Measures. P0 and P1θ, θ ∈ Θ are perpendicular on
the measurable space (X∞,A) and every A0(θ) can be represented as a limit of
a decreasing sequence of cylindrical sets, then exist consistent tests of H0 versus
alternatives H11.

3 Wardens with Limited Resources

Assume that the link S possesses an additional interface F for the warden U
who can see either the whole sequence of messages in S or a part of it, depending
on the properties of the new channel from KA to U which we denote S(F ). U
has the task to find out whether a covert transmission from agent KA′ to agent
KB′ takes place or not. Both U and KB′ know P0 . KB′ knows P1θ as well, but
U does not know P1θ. If U sees all messages in S, then lemma 1 shows when U
can see the covert transmission from KA′ to KB′.

Let us consider S(F ) that does not transmit to U the whole traffic of S, e.g.
low level protocol messages are omitted in S(F ). Choose the set X1, X1 ⊆ X
and messages of X1 are unseen to U . We have X0 ∪X1 = X, X0 ∩X1 = ∅. We
have that messages of X1 are taken away from the sequence of messages in S.
As a result U sees the reduced sequence and draw his conclusions from it. Let
A1 be σ-algebra which is generated by cylindrical sets of X∞

0 .
Let γ ∈ X∞. Denote by γ → α, β, γ ∈ X∞ the unique decomposition, where

α is the subsequence of all elements of X0 in γ, and β is the subsequence of all
elements of X1 in γ. One of the sequences α or β may be empty.
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Denote X̃ = {γ : γ → α, β, α ∈ X∞
0 , β ∈ X∞

1 }. Then % = {X̃ ∩ A, A ∈ A}
is σ-algebra on X̃.

We can assume that only sequences from X̃ are transmitted through S. Oth-
erwise the warden sees too little or almost everything (this case has been dis-
cussed above in lemma 1). Then S(F ) defines a function F : X̃ → X∞

0 the
following way. If γ ∈ X̃ and γ → α, β, then F (γ) = α. Let KA′ sends a covert
message to KB′ if it generates γ ∈ X̃ using probability measure P1 on (X̃,%)
which is perpendicular to P0. If F is (%,A1) - measurable function then it defines
two probability measures on (X∞

0 ,A1):

∀B ∈ A1, P ′
0(B) = P0(F−1(B)), P ′

1(B) = P1(F−1(B)).

Here P ′
0 is known to U and P ′

1 is unknown to U . But if P ′
0 and P ′

1 are perpen-
dicular then since conditions of lemma 1 are satisfied, a consistent test to find
the hidden message may exist. The fact is reflected in the next definition.

Definition 2. Statistical covert channel from KA′ to KB′ can be identified in
S(F ) by U if and only if F is (%,A1) - measurable and P ′

0 and P ′
1 are perpen-

dicular.
To prove that F is (%,A1) - measurable we investigate sets F−1(C), C ∈ A1.

Definition 3. For α ∈ X∞
0 , β ∈ X∞

1 , we define an interleaved product of α and
β as

α⊗ β = {γ : γ → α, β, γ ∈ X∞}.

Definition 4. For α ∈ X∞
0 an interleaved product of α and X∞

1 is

α⊗X∞
1 =

⋃
β∈X∞

1

{α⊗ β}.

Definition 5. For ∈ A1 an interleaved product of and X∞
1 is

C ⊗X∞
1 =

⋃
α∈C

{α⊗X∞
1 }, C �= ∅, or C ⊗X∞

1 = ∅, if C = ∅.

The usefulness of the interleaved product is demonstrated by the following
lemma.

Lemma 2. ∀C ∈ A1, F−1(C) = C ⊗X∞
1 .

Proof. If C �= ∅ and γ ∈ F−1(C), then γ ∈ X̃. Then there are the only α ∈
X∞

0 , β ∈ X∞
1 that γ → α, β, and F (γ) = α. That means α ∈ C. Then α⊗ β ⊆

C ⊗X∞
1 and F−1(C) ⊆ C ⊗X∞

1 . If C �= ∅ and γ ∈ C ⊗X∞
1 , C ∈ A1, then by

definitions 4 and 5 there are α ∈ C and β ∈ X∞
1 , that γ ∈ α⊗β. Then γ → α, β,

and F (γ) = α. That means F−1(C) ⊇ C ⊗X∞
1 . That completes the proof.

Now we take an advantage from the fact that if the inverse image of any
elementary cylindrical set of A1 belongs to %, then the inverse image of any
set of A∞ belongs to %. Let Cn = (xi1 , ...xin) × X∞

0 , xij ∈ X0, j = 1, ..., n,
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be an elementary cylindrical set of A1. Denote Vk,n, k ≥ n, a set of all vectors
(z1, ..., zk) ∈ Xk, where xi1 , ...xin is the sequence of all elements of X0. It is clear
that Vk,n ×X∞ is a cylindrical set of A.

Lemma 3. If Cn = (xi1 , ...xin) ×X∞
0 , xij ∈ X0, j = 1, ..., n, is an elementary

cylindrical set of A1, then

Cn ⊗X∞
1 =

⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃.

Proof. By definition Cn⊗X∞
1 ⊆ X̃. Let γ ∈ Cn⊗X∞

1 , γ → α, β, α ∈ X∞
0 , β ∈

X∞
1 }, and α is represented as α = xi1 , ...xin , α′, where α′ is a sequence of X∞

0 .
Let (z1, ..., zk), k ≥ n, are the first k elements of γ, where xi1 , ...xin is the
sequence of all elements of X0. Then (z1, ..., zk) ∈ Vk,n, and γ ∈ Vk,n × X∞.
That is why

γ ∈
⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃.

This is proof of
Cn ⊗X∞

1 ⊆
⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃.

Prove the inverse implication of events. If γ ∈ X̃ and

γ ∈
⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃,

then there is a set Vk,n, that the first k elements (z1, ..., zk) of γ are in Vk,n and
all elements of X0 in (z1, ..., zk) are from the vector xi1 , ...xin . If γ ∈ X̃, then
γ → α, β, α ∈ X∞

0 , β ∈ X∞
1 and the first n elements of α form the vector

xi1 , ...xin . Then α ∈ Cn, and γ ∈ Cn ⊗X∞
1 . Here we proved

Cn ⊗X∞
1 ⊇

⋃
k≥n

{Vk,n ⊗X∞} ∩ X̃,

and lemma is proved.

Corollary 1. Cn ⊗X∞
1 = A ∩ X̃, A ∈ A.

Proof. As Vk,n ⊗X∞ is a cylindrical set of A then

A =
⋃
k≥n

{Vk,n ⊗X∞} ∈ A.

Corollary 2. ∀C ∈ A1, C ⊗X∞
1 ∈ %.

Theorem 1. Function F is (%,A1) - measurable.

Proof. The proof follows from lemmas 2 and 3 and corollary 2.
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Let σ-algebra & be generated by F . From lemma 2 we get that & = {C ⊗
X∞

1 , C ∈ A1}.
The next theorem shows how to use such a presentation of &. Let σ-algebra

& be generated by an arbitrary (%,A1) - measurable function F , & ⊆ %.

Theorem 2. Probability measures P ′
0 and P ′

1, which are generated by an arbitrary
(%,A1) - measurable function F , are perpendicular if and only if there are A0

and A1 of &, that A0 ∩A1 = ∅,

P0(X̃ \A0) = 0, P1(X̃ \A1) = 0.

Proof. 1) Sufficiency. If A0 and A1 of &, then there are B0 ∈ A1 and B1 ∈ A1,
that A0 = F−1(B0), A1 = F−1(B1). Then

P ′
0(X

∞
0 \B0) = P0(F−1(X∞

0 \B0)) = P0(X̃ \ F−1(B0)) =

= P0(X̃ \A0) = 0, P ′
1(X

∞
1 \B1) = P1(X̃ \A1) = 0.

It follows by definition A0 = F−1(B0), A1 = F−1(B1), A0 ∩ A1 = ∅. Then
B0 ∩B1 = ∅. The sufficiency is proved.

2) Necessity. If a statistical covert channel exists, then B0, B1 ∈ A1, B0∩B1 =
∅, P ′

0(X∞
0 \B0) = 0, P ′

1(X∞
0 \B1) = 0. Denote F−1(B0) = A0, F−1(B1) = A1.

By definition

P0(F−1(X∞
0 \B0)) = P0(X̃ \ F−1(B0)) = 0,

P1(F−1(X∞
0 \B1)) = P1(X̃ \ F−1(B1)) = 0.

As far as B0 ∩ B1 = ∅, then F−1(B0) ∩ F−1(B1) = ∅. Consequently, there
are A0, A1 of &, that A0 ∩ A1 = ∅ and P0(X∞ \ A0) = 0, P1(X∞ \ A1) = 0.
Theorem is proved.

According to definition 2 the theorem 2 states that U can detect the statistical
covert channel from KA′ to KB′.

Let us consider another case of S(F ), when the possibility of U to control
the traffic in S is limited due to shortage of the computational resources or/and
memory space available. As a result U has to draw his conclusions from some
subsequences of messages.

Let μ be a binary sequence with an infinite number of 1 and an infinite
number of 0, γ is the sequence of messages from KA to KB. U uses μ to make
sampling in γ. Every element in γ is taken away if it is in the position, where 0 is
in the sequence μ. Then U sees the sequence δ = Fμ(γ), where Fμ : X∞ → X∞.

Lemma 4. For arbitrary sequence function Fμ is (A,A) - measurable.

Proof. Let Bn = (δ1, ..., δn)×X∞ be an elementary cylindrical set of A. Then
F−1

μ (Bn) is a cylindrical set of A, where Xs there is between δi and δi+1. Here
s denotes the number of binary zeros between i-th and (i + 1)-th binary one
position in μ. Lemma is proved.
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Then for every μ the function Fμ generates probability measures P ′
0 and P ′

1

on (X∞,A).

Theorem 3. Measures P ′
0 and P ′

1 are perpendicular then ∃A0, ∃A1, A0, A1 ∈
A, A0 ∩A1 = ∅,

P0(X∞ \A0) = 0, P1(X∞ \A1) = 0,

and Fμ(A0) ∩ Fμ(A1) = ∅.
Proof. The proof follows from the proof of the theorem 2.

Example. If P ′
0 and P ′

1 are not perpendicular then the warden U cannot de-
tect a covert transmission reliably. Let μ be an arbitrary binary sequence and
P0(ω) = 1, P1(ω′) = 1, ω �= ω′ . Assume Fμ(ω) = Fμ(ω′). Despite P0 and P1

are perpendicular there is no consistent test for U to identify a hidden mes-
sage from KA′ to KB′. That means U can discover the hidden message if
the agents do not use such P1, that ∀A0, ∀A1, A0, A1 ∈ A, A0 ∩ A1 = ∅, if
P0(X∞ \A0) = 0, P1(X∞ \A1) = 0, then Fμ(A0) ∩ Fμ(A1) �= ∅.

4 Conclusions

The obtained results show that the manipulation of the probability distribution
of the messages in communicational link in order to send hidden messages can
be revealed. The warden should know well enough the normal properties of the
communication link and its probabilistic characteristics, e.g. in lemma 1’. Then it
is possible to construct a consistent test for detection of hidden message. That is
why it is a problem to make a statistical covert channel invisible for the warden.
Even if the warden’s resources are limited the detection of a hidden message
most often can be done reliable enough.

We plan to research the necessary conditions to detect hidden transmission
by the warden.

We didn’t touch the problem whether the construction of a consistent test is
a hard task. Most probably it is.
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Abstract. Delegation is essential to the flexibility and scalability of trust man-
agement systems. But unrestricted delegation may result in privilege prolifera-
tion and breach the privacy of information systems. The delegation models of 
existing trust management systems can not avoid privilege transition, and being 
lack of effective constraints on delegation propagation, which may easily lead 
to privilege proliferation. In this paper, we propose a generalized constrained 
delegation model (GCDM), which uses typed privileges to control potential 
privilege transition, and restricts the propagation scope of delegation trees by a 
novel delegation constraint mechanism named spacial constraints. This paper 
also designs a rule-based trust management language named REAL05 to ex-
press the policies and semantics for GCDM. REAL05 supports flexible delega-
tion policies while can control the potential privilege proliferation in subsequent 
delegations. Comprehensive samples and simulation results show that our ap-
proach is more controllable and practical. 

1   Introduction 

Trust management (TM) is a promising approach to access control in environments 
where entities in different administrative domains want to share resources. Delegation 
is the core mechanism for transferring trust and authorization in TM systems, which 
greatly improves the flexibility and scalability of distributed access control. However, 
delegation may also easily lead to “privilege proliferation” and breach the privacy of 
information systems. 

One important reason for privilege proliferation in TM systems is the transition be-
tween management-type permissions (MTP) and access-type permissions (ATP) 
during delegation process. B. S. Firozabadi etc have pointed out that privileges of 
these two types of privileges are essentially different [3], and use “authority” and 
“permission” to denote them respectively. In most TM systems however, delegation 
of MTP and ATP are expressed by the same sort of policy items, such as “condition” 
field in Keynote [8], “authorization tag” in SPKI [4], “base-atom” in DL [11], etc. For 
example, “read(file1)” and “isMember(?S, orgA)” are base-atoms in DL and used to 
express ATP and MTP respectively. Entities in these systems entitled with MTP may 
obtain the corresponding ATP simply by self-authorization; and the entities holding 
ATP are often allowed to re-delegate the ATP to others, which means they have been 
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inherently entitled with the corresponding MTP, and may lead to more speedy prolif-
eration of privileges. This kind of privilege model also leads to inefficiency in speci-
fying policies of more “pure” delegation of MTP or ATP, such as security administra-
tion policies in decentralized authorization and delegation of access capabilities in 
proxy-based authentication systems [2, 6, 17]. 

The other reason for privilege proliferation in TM systems is inefficient control on 
privilege propagation. Two typical constraints on delegation in existing TM systems 
are boolean control and integer control. Boolean control includes two policies: no 
further delegation or unrestricted delegation. SPKI [4] and RT [12] support this kind 
of constraint. DL [11] supports integer control over delegation depth. Integer control 
provides more flexibility than boolean control, but it supposes that the trust relation-
ships are transitive within the upper-bound of delegation depth, which is too optimis-
tic and may lead to undesired propagation of privileges. DL also supports constraints 
on delegation width, but it has to use a temp key to sign the assistant policies to en-
force such constraint.  

In this paper, we propose a more controllable and practical delegation model 
named GCDM (Generalized Constrained Delegation Model) to restrict the potential 
proliferation of privileges during delegation while at the same time keep the inherent 
strengths of delegation policies. GCDM uses typed privileges to control potential 
privilege transition, and restricts the propagation scope of delegation trees by a novel 
delegation constraint structure named spacial constraint. A rule-based policy language 
is also introduced to specify the core policies and semantic rules for GCDM. The rest 
of this paper is organized as follows. Section 2 defines the main components of 
GCDM including a basic model, typed privileges and typed delegations, spacial con-
straint model and its control granularity. In section 3, we describe the syntax and 
semantics of a rule-based specification language designed for GCDM. Implement 
issues and simulation results are discussed in section 4. Section 5 give further discus-
sion of related work and section 6 concludes this paper. 

2   Generalized Constrained Delegation 

In this section, we firstly define the basic and generalized part of our model. Then we 
extend its privilege model and constraint model to support more controllable and 
practical delegation and authorization policies.  

2.1   Basic Model 

The basic idea of delegation is that one entity delegates its privilege to another entity 
to perform functions controlled by the privilege on behalf of the former. The core 
components of GCDM are defined as follows. 

Definition 1 (Authorization System). An authorization system (AS) is a 5-tuple (E, 
P, F, ∋, ∝), where E, P and F are sets of all entities, privileges and functions in the 
system respectively; ∋ and ⊃ are relations where ∋ ⊆ E×P, ∝ ⊆ P×F. Given e∈E, p∈P 
and f∈F, e∋p means e is entitled with p; p∝f means p controls f; e can perform the 
function f iff ∃p∈P (e∋p and p∝f). 
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Definition 2 (Delegation Tree and Delegation Path). A delegation tree is a 5-tuple 
(p, dr, de, MD, DT), where p∈P, dr∈E, de∈E, MD⊆E, DT⊆E. p, dr, de, MD, DT are 
called delegated privilege, delegator, direct delegatee, set of mediate delegatees and 
set of delegation targets respectively. A delegation path in delegation tree (p, dr, de, 
MD, DT) is denoted as: [dr de[0..n] dt]p, where n≥0, de0=de, de[0..n]

 = de0 de1 … 
den, dei∈MD(i=1...n), dt∈DT. Here n is called delegation depth (n plus 1 is equal 

to the value of delegation depth defined in some TM systems such as DL [11]). 

Fig.1 illustrates a sample delegation tree. When dr initiates a delegation by delegat-
ing p to de, de may re-delegate p to entities in MD, such as de1, de2, …, de5. de and 
the entities in MD may perform the functions controlled by p on the target entity in 
DT, such as dt1 and dt2. “dr de de1 de3 dt” is a delegation path whose delega-
tion depth is 2. 

 
 
 
 
 
 
 
 
 
 

Fig. 1. A Sample Delegation Tree 

Definition 3 (Constraint Structure). A constraint structure is a 4-tuple (DP, DC, ⊃, 
), where DP and DC are sets of delegation paths and delegation constraints respec-

tively, ⊃ and  are relations where ⊃ ⊆ DC×DC,  ⊆ DP×DC. Given c1, c2∈DC, 
c1⊃c2 means c1 dominates c2. Given dp∈DP and c∈DC, dp c means dp satisfies c. 

 is monotonic: Given c1, c2∈DC and c1⊃c2, if dp c1 then dp c2. 

Given dp=[dr de[0..n] dt]p∈DP and ci∈DC(i=0...n), we say dp is a valid delega-
tion path iff dpi ci(i=0...n), where dpi=dri de[i..n] dt (i=0...n), dr0 = dr, dri = dei-

1(i=1...n), ci is the delegation constraint specified by dri. If dp=[dr de[0..n] dt]p is a 
valid delegation path and dr∋p, then den∋p and den can perform function f, where f∈F 
and p∝f. 

2.2   Typed Privileges 

The privilege of the authorization system defined in section 2.1 is abstract and has no 
practical meaning. In this section, we reify it into two typical MTP and ATP, i.e., 
authority and capability, to express more specific authorization policies. The two 
types of privileges are strongly connected with one basic type of privilege named 
permission. 

Definition 4 (Permission, Authority and Capability). PM is the set of all permis-
sions, which are the privileges of accessing resources, such as read/write a file, in-

mediate delegatees delegation targets 
initial delegation 

between dr and de 

de5

dt2 
p 

p p 
p

p 

p f

f

f

f

de2

de1 dt1 

de3

de dr de4



248 G. Yin et al. 

 

vokes the functions of an object, etc. A is the set of all authorities, which are the privi-
leges of managing the authorization of permissions in PM. C is the set if all capabili-
ties, which are the privileges of exercising the activated permissions in PM. An entity 
must log on a server to activate some permission before it can obtain its capability.  

Two more practical authorization systems (see def. 1) can be derived from above 
typed privilege model: (1) Management-level AS is a 5-tuple (E, A, E×PM, ∋, ∝), 
where A and E×PM are instances for P and F in AS. Given e∈E, a∈A, p∈PM, f=(e’, 
pm)∈E×PM=F, if e∋a and a∝f=(e’, pm), then e can perform f, i.e., e can perform the 
authorization of pm to entity e’; (2) Access-level AS is a 5-tuple (E, C, E×PM, ∋, ∝), 
where C and E×PM are instances for P and F in AS. Given e∈E, c∈C, p∈PM, f=(e’, 
pm)∈E×PM=F, if e∋c and c∝f=(e’, pm), then e can perform f, i.e., e can perform the 
access to resources identified by pm on entity e’. 

 
 
 
 
 
 
 
 

Fig. 2. Access Control Model based-on Typed Delegation 

Delegation of authorities (DoA) and delegation of capabilities (DoC) can be used 
to construct access control models for widely distributed systems, as shown in fig. 2. 
S is a resource owner and wants to share resources with entity U across several ad-
ministrative domains. In above access control model, S can make distributed 
authorization to U by DoA ( ) and direct authorization ( ). S can also enable 
proxy-based authentication for U by DoC ( ) and direct access request ( ). The 
path of DoA and the path of DoC are isolated by the process of permission activation 
( ) on S requested by U. The policies for above scenarios will be further discussed 
and specified in section 3.3. 

Permission activation is a basic mechanism for least privilege principles [9]. Here 
this mechanism is used to prevent the privilege transition: (1) before an entity can 
delegate its access permission (ATP) to another entity, it must activate the permission 
to obtain the capability from the server who is the source of the authority controlling 
the permission. Thus the privilege transition from ATP to MTP can be controlled by 
the server during activation. (2) on the other hand, if an entity entitled with some 
authority (MTP) authorizes a permission to an entity discretionally, then when the 
authorized entity activates the permission from the server, the server can check 
whether such activation should be allowed (so the transition from MTP to ATP can be 
controlled by the server).  

In the paradigms of policy-based distributed systems management, privileges may 
be extended to responsibilities and obligations. Delegation of responsibilities and 
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obligations are still hot problems in this area. One may reify GCDM to enforce the 
delegation policies for these paradigms. We will test these ideas in the future. 

2.3   Spacial Constraint on Delegation 

To restrict the privilege propagation in a delegation tree, the delegator can specify 
constraints from following aspects: (1) the scope of mediate delegatees in delegation 
tree; (2) the scope of delegation targets in delegation tree; (3) the valid time interval 
of all the delegation chains in the tree. The first two aspects care about the propaga-
tion scope of current delegation and called spacial constraints. The third aspect is 
called temporal constraint. This paper uses spacial constraints to enforce control on 
delegation. 

Definition 5 (Spacial Constraint). The spacial constraint is a structure SC(ds, dd, ts), 
where SC is the type of the structure, and also denotes the set of all spacial con-
straints, ds ⊆ E, dd ≥ 0 and ts ⊆ E are attributes of the structure, and denotes the scope 
of mediate delegatees, upper-bound of delegation depth and the scope of delegation 
targets respectively. ds and ts are also called trust scope in our previous work [18]. 
Here the delegation depth is mainly used to avoid infinite delegation loops. The 
spacial constraint defines a kind of unitary control on delegation, as shown in fig.3-II. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

I. step-by-step control                                   II. unitary control 

Fig. 3. Two Typical Delegation Control Model 

The constraint structure defined in section 2.1 can be reified as (DP, SC, ⊃, ). 
Here we can give more precise definition of the semantics for the relation ⊃ and : 

⊃: Given sc1, sc2∈SC, then sc1⊃sc2 iff (sc1.ds ⊆ sc2.ds) ∧ (sc1.dd ≤ sc2.dd) ∧  (sc1.ts 
⊆ sc2.ts). 

: Given dp=[dr de[0..n] dt]p∈DP, sc∈SC, then dp sc iff (dei ∈ sc.ds) ∧ (n ≤ 
sc.dd) ∧ (dt ∈ sc.ts), where sc is specified by dr and i=1…n. 
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The delegator dr can specify spacial constraint when it begins a delegation to direct 
delegatee de, as shown in fig.3. In fact, dr can also specify constraints on each step of 
delegation, which is called step-by-step control, see fig.3-I. O. Bandmann etc adopted 
this kind of control in their delegation model [14]. The step-by-step control seems too 
detailed to be useful in practical systems and may raise much difficulty in construct-
ing computation models [14].  

According to the semantics of the relation  defined above, we can see that the 
spacial constraint adopts the unitary control model, as shown in fig.3-II. The unitary 
control model unifies the one-step constraint into more intuitionistic constraint and 
overcomes the deficiencies of step-by-step control, while still provides enough flexi-
bility. Spacial constraint can be used both on DoA and DoC. Samples in section 4 will 
illustrate the advantages of such constraint model. The semantics of valid delegation 
path and relations of ⊃ and  will be defined by logic rules in section 3. 

3   Rule-Based Policy Language 

To validate the feasibility of our model, we design a policy specification language for 
GCDM named REAL05 (Role-based Extensible Authorization Language, 2005 Ver-
sion). REAL05 is a declarative language based on DatalogC [15], which can be used 
to specify policies as well as semantics. 

Definition 6 (Rule). A rule in REAL05 takes the form of the following:  

A.H  A1.B1, A2.B2, … , An.Bn, , 

where H, B1…Bn are predicates with one or more parameters, A, A1,…An are entities. 
H is the rule head, Ai.Bi (i=1…n) and  constitute the rule body.  is the constraint. 
If n=0, the rule is called a constraint fact. The entity before each predicate is called 
the principle of the predicate, which means the predicate is asserted by its principal. 
The principle of the rule head is called the issuer of the rule. The rule can be read as: 
to deduce A says H, we must deduce “A1 says B1”, “A2 says B2”, …, “An says Bn” 
and . The rules often need to be transferred across open networks and need to be 
signed by its issuer. The signed rules are often called credentials. 

3.1   Syntax 

REAL05 can specify authorization, delegation and constrained delegation policies. 
Table 1 shows the simplified syntax of REAL05. The undefined items such as user-
defined-predicate , entity , name , natural-number  constant  and var  are user 
defined predicate name, entity, name of permission or role, natural number and vari-
ables respectively.  

Privileges. The privileges in REAL05 include permission (5) and roles (6). Permis-
sions have the same meaning as permissions defined in section 2.2. For example, 
pm(read, file-a) may represent the privilege to read the file named “file-a”. The roles 
group related permissions together and can express more scalable policies. There are 
three types of roles in REAL05: dR, aR and sR. 
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Table 1. Core Syntax of REAL05 

(1)  Predicate Name pn  ::= canRequest | canHold | canActivate | hasActivated |canAdmin | canUse |  
user-defined-predicate  

(2)  Predicate p  ::= entity . pn ( list of v ) 
(3)  Rule rule  ::= p . | p   c . | p   list of p . |  p   list of p , c . 
(4)  Query Query  ::= ?  p . 
(5)  Permission pm  ::= pm( name , list of var ) 
(6)  Role role  ::= dR( rv ) | aR( rv ) | sR( rv ) 
(7)  Role Variable rv  ::= entity , name  
(8)  Parameter Vector v  ::= constant  | var  | entity  | permission  | role  | dc  
(9)  List (macro) list of X  ::= X  |  list of X , list of X  
(10)  Delegation Constraint dc  ::= sc( scope , depth , scope ) | ∅ | * 
(11)  Trust Scope scope  ::= role  | scope  ∩ scope  | {list of entity } | {} | * 
(12)  Delegation Depth depth  ::= natural-number  | 0 | * 
(14)  Constraint c  ::= e  = e  | e   e  | e   e  | e   e  | e ⊃ e  | e ⊆ e  | c , c  
(15)  Expression e  ::= constant  | var  | dc  | f( list of var ) | e  - e  | e  + e  | e  ∪ e  

 dR is a distributed role, e.g. dR(org, member) represents all the members in org. 
In the rest of this paper, roles denote distributed roles by default.  

 aR is an administrative role, representing the authority defined in section 2.2, 
e.g. aR(org, member) is the administrative role for dR(org, member). Given a 
role dr, its administrative role is denoted as aR(dr).  

 sR is a session role, representing the capability defined in section 2.2, e.g. 
sR(org, sid012) is the capability holding by the session identified by session ID 
“sid012”. A user has to log on the server successfully before he can get a session 
role. 

Delegation Constraint. The delegation constraint (10) is a logical term and defines 
the spacial constraint in section 2.3. Spacial constraint acts as parameters in predicates 
when specifying policies. scope  and depth  can be “*”, which means no constraint. 
dc  can be ∅, which is equivalent to the constant sc({}, 0, *). 

Constraint. The constraints (14) are composed of constraint expressions (15) and 
constraint predicates. The type of constants and variables in (15) can be integer, float, 
entity and set of entities. Constraint expression can also be delegation constraints and 
return values of functions. Constraint predicates include “=”, “ ”, “ ”, “ ”, “⊆” and 
“⊃”, where “⊆” and “⊃” are binary predicates on entity sets and dc  respectively.  

Predicates. The predicates (2) are the policy items used to express authorization and 
delegation policies. REAL05 has six reserved predicates:  

 x.canRequest(y, pm) means that x allows entity y to access the resources con-
trolled by permission pm.  

 x.canHold(dr, pm) means that x assigns role dr with permission pm.  

 x.canActivate(y, dr) means that x allows entity y to activate the role dr, and y 
will be assigned with all the permissions hold by dr.  

 x.hasActivated(y, dr) means that entity y has logged on x and activated the role 
dr successfully.  
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 x.canAdmin(y, ar, sc) means that x delegates the administrative role ar to entity 
y, where the delegation constraint sc is used to specify the special constraint on 
succeeding delegations initiated by y. The default value of sc is “∅”. The predi-
cate canAdmin is specifying DoA policies.  

 x.canUse(y, sr, sc) means that x delegates the session role sr to entity y, where 
the delegation constraint sc is used to specify the special constraint on succeed-
ing delegations initiated by y. The default value of sc is “∅”. The predicate 
canUse is specifying DoC policies.  

REAL05 also supports user defined predicates, which can be used to specify appli-
cation dependent policies and constraints. 

Rules. There are three kinds of rules in REAL05: policy rules, session rules and meta 
rules. (a) policy rules is the rules specified according to security requirements; (b) 
session rules are temporary rules within the context of a specific session. When the 
session is closed, its session rules are deleted; (c) meta rules are used to describe the 
general semantics that can not be expressed by policy rules and sessions rules.  

3.2   Semantics 

The semantics of REAL05 is defined by meta rules, as shown in Table 2. Meta-rules 
are used to describe rules with general purpose, such as the semantics of relations “⊃” 
and “ ” defined in section 2.3. 

Table 2. Meta Rules for REAL05 Semantics 

[Meta Rules for Role-based Authorization] 
?x.canRequest(?y, ?pm)  ?x.canActivate(?y, dR(?x, ?n)), ?x.canHold(dR(?x, ?n), ?pm). 

[Meta Rules for Delegation of Authority] 
?x.doa(?y, ?ar, ?sc)  ?x.canAdmin(?y, ?ar, ?sc’), ?sc ⊃ ?sc’. 
?x.doa(?z, aR(?x,?n), ?sc)  ?y.canAdmin(?z, aR(?x, ?n), ?sc’), ?sc ⊃ ?sc’,   
?x.doa(?y, aR(?x,?n), sc({?z}∪?sc.ds, ?sc.dd+1, ?sc.ts)). 
?x.isMember(?z, dR(?x, ?n))  ?x.canActivate(?z, dR(?x, ?n)). 
?x.isMember(?z, dR(?x, ?n))  ?y.canActivate(?z,dR(?x, ?n)), ?x.doa(?y, aR(?x, ?n), sc({},0,{?z})). 

[Meta Rules for Delegation of Capability] 
?x.doc(?y, ?sr, ?sc)  ?x.canUse(?y, ?sr, ?sc’), ?sc ⊃ ?sc’. 
?x.doc(?z, sR(?x, ?s), ?sc)  ?y.canUse(?z, sR(?x, ?s), ?sc’), ?sc ⊃ ?sc’,  
?x.doc(?y, sR(?x, ?s), sc({?z}∪?sc.ds, ?sc.dd+1, ?sc.ts)). 
?x.allowAccess(?y, ?pm)  ?x.canRequest(?x, ?pm), doc(?x, ?y, sR(?x, ?s), sc({}, 0, {?x})). 

[Meta Rules for Delegation Constraint Computation] 

?sc ⊃ ?sc’  ?sc.ds ⊆ ?sc’.ds, ?sc.dd  ?sc’.dd, ?sc.ts ⊆ ?sc’.ts. 

REAL05 introduces four semantic predicates in meta rules: isMember, doa, doc 
and allowAccess, which are delegation-based extensions of predicates canActivate, 
canAdmin, canUse and canRequest respectively. The predicates doa and doc keep the 
status of delegation path within the delegation constraint structure of the last parame-
ter, as shown by rules . The rule  expresses the semantics for constraint 
relation “⊃”. The predicate “⊆” is used to check whether each entity in the left-side-
parameter is belongs to the trust scope specified by right-side-parameter (also see its 
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Prolog implementation in section 4). During semantic inference, the left-side-
parameter will be instantiated into a set of constant entities. The meaning of other 
meta rules in table 2 is easily read based on the introduction of predicates in section 
3.1. 

There are two kinds of queries need to be answered by the semantics of REAL05. 
The predicates in queries are isMember and allowAccess respectively. The query 
containing isMember will be raised when an entity tries to activate a role, and the 
query containing allowAccess will be raised when an entity tries to access resources. 

Given a REAL05 rule set P, the computational complexity of P denotes the time 
needed to answer a given query Q based on P, i.e. P Q or P Q. REAL05 is a subset 
of DatalogC, its computational complexity lies on DatalogC. The computational com-
plexity of DatalogC is closely connected with constraint domain it contains. The con-
straint domains that can be evaluated with safe Datalog in polynomial data complex-
ity (PTIME) include: (1) equality constraints, order and inequality constraints over 
dense linear order domains [15], (2) linearly decomposable domain [13]. It’s clear 
that REAL05 only contains these two constraint domains, and each rule in REAL05 
has finite variables. Therefore we get the following result: 

Proposition 1. Given a set of REAL05 rules P, its computational complexity is 
PTIME on size(P), where size(P) = |P|*V, |P| is the number of the rules in P, V is the 
upper-bound of the sum of the variables in a rule. 

3.3   Samples 

A comprehensive example is introduced in this section to illustrate how REAL05 can 
be used to express more controllable delegation policies, both for DoA and DoC. The 
sample shares the same entity names and delegation paths in fig. 2.   

Suppose S is an online digital library and wants to give 20% discount to the stu-
dents of its cooperative universities. But these students must have papers indexed by 
S and can only download the discounted papers through the proxy servers of his/her 
certifying university. M1 is a cooperative university of S. S only trusts M1 and its 
branch campus to certify a student of M1. Mn is one of the branch campuses of M1. P1 
is a proxy server of M1. U is a student of M1 and studying at Mn. One of U’s papers 
has been indexed by S. The above policies can be specified in REAL05 as follows. 

(1) S.canHold(dR(S, discount) , pm(download, 20%)). 
(2) S.canActivate(M1, dR(S, co-university)). 
(3) S.canActivate(?x, dR(S, contributor))  S.author-of-indexed-papers(?x). 

The rules (1, 2, 3) are basic authorization policies defined by S. The predicate “au-
thor-of-indexed-papers” is a user-defined-predicate, which will query database to 
answer whether S has indexed papers of an entity. The policies for ~  in fig. 2 are 
specified with following rules. 

: The rules (4, 5) specify constrained DoA policies from S to M1. The rules 
(6, 7) specify constrained DoA policies from M1 to Mn. The rules (8, 9, 10, 11) define 
the authorization policies of M1 and Mn. The rule (10) shows that Mn makes authori-
zation based on the authority originated from S.  
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(4) S.canAdmin(?x, aR(S, trusted-proxy))  S.canActivate(?x, dR(S, co-
university)). 

(5) S.canAdmin(M1, aR(S, discount), sc(dR(M1, branch-campus), 1, 
dR(S,contributor)∩dR(M1,student))). 

(6) M1.canAdmin(?x, aR(S, discount))  M1.canActivate(?x, dR(M1, branch-
campus)). 

(7) M1.canAdmin(?x, aR(M1, student))  M1.canActivate(?x, dR(M1, branch-
campus)). 

(8) M1.canActivate(Mn, dR(M1, branch-campus)). 
(9) M1.canActivate(P1, dR(S, trusted-proxy)). 

(10) Mn.canActivate(?x, dR(S, discount))  Mn.canActivate(?x, dR(M1, stu-
dent)). 

(11) Mn.canActivate(U, dR(M1, student)). 

: When U wants to log on S with the role dR(S, discount), S transfers the login 
request to a query: “?  S.isMember(U, dR(S, discount))”. According to the seman-
tics of REAL05, S will allow U to activate the role dR(S, discount) and create a ses-
sion with an identity “sid001”. The rule (12) defines the constrained DoC policy from 
S to the entity that has activated the discount role (here the entity is U). The function 
curr-sid() returns the current session id (now it is sid001). The rules (13, 14) are ses-
sion rules. The rule (13) indicates that U has activated the discount role, and the rule 
(14) defines the permissions for the session “sid001”. 

(12) S.canUse(?x, sR(S, curr-sid()), sc(dR(S, trusted-proxy), 1, {S}))  
S.hasActivated(?x, dR(S,discount)). 

(13) S.hasActivated(U, dR(S, discount)). 
(14) S.canRequest(sid001, ?pm)  S.canHold(dR(S, discount), ?pm)). 

: Now U logs on P1 and begins to download papers from S. The rule (15) is 
session rule and defines the constrained DoC from U to P1. Then P1 makes a request 
to S to download the paper (here Pm is omitted in the sample). 

(15) U.canUse(P1, sR(S, sid001), sc({}, 0, {S})). 

S will transfer the request from P1 to another query: “?  S.allowAccess(P1, 
pm(download, 20%))”. According to the policies rules and semantics of REAL05, the 
query can be deduced and S will allow this request.  

REAL05 can be used to express more sophisticated policies. But the discretional 
specification of policies may contain unrestricted delegations. For example, the rule 
“A.canActivate(?x, dR(A, r1))  B.canActivate(?x, dR(B, r2))” will implicitly de-
fines the delegation of authority of  dR(A, r1) to from A to B, and there is no control 
over this delegation. This kind of policy is also called distributed attributes inference 
[12], which may result in an unrestricted delegation chain. We can add some restric-
tions on the REAL05 rules (see def. 6) to avoid such delegation: A=A1=A2=…=An. 
We can omit the entities (i.e. A1, A2, …, An) in the rule body because they are same to 
the issuer (i.e. A) of the rule, and denote a REAL05 rule with the form: A.H  B1, 
B2, …, Bn, . Note that the restriction will be enforced only when defining policy 
rules and session rules. The semantic rules (such as the meta rules in table 2) need not 
be controlled by this restriction. 
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4   Implementation 

We use SICStus Prolog (SICSP) [5] as the inference engine of REAL05. The com-
pound terms in SICSP are very suitable for expressing permissions, roles and spacial 
constraints in REAL05. List structures are suitable for expressing entity sets and trust 
scopes. The predicate symbols in REAL05 can be translated into SICSP predicates. 
For example, the predicate symbol “⊆” in rule (see table 2) can be implemented as 
predicate “subspt”, which is defined by following ~  SICSP predicates, where 
“isMember(E, X, dR(E, N))” is equivalent to “?y.canActivate(?x, dR(?e, ?n))” in 
REAL05.  

 subspt(_, *).  subspt(_, []). subspt([], []).  subspt([], _).  subspt([X], [X]). 
 subspt([X|ES], [dR(E, N)|TS]) :- isMember(E, X, dR(E, N)), subspt([X], TS), 
subspt(ES, [Y|TS]). 

SICSP also provides a mapping mechanism between predicates and external func-
tions. This mechanism allows the inference engine to make distributed query during 
local inference. When the predicate being evaluated is not asserted by local entity, the 
local inference engine will send a query containing this predicate to its principle. Each 
entity stores the delegation policies of the delegation trees that originated from it. The 
authorization policies are stored with subjects and will be submitted to server during 
login process. Note that the number of authorization policies is usually much more 
than that of delegation policies in the system. Therefore our policy distribution 
scheme is more attractive considering the efficiency of both policy retrieval and pol-
icy discovery. We have embedded such distributed inference mechanism into a mid-
dleware access control management (MACM) architecture, which is the central part 
of the security service in StarBus [16]. MACM covers multiple administrative do-
main, different domains exchange credentials and queries through a domain manger 
overlay network (DMON). DMON ensures the consistency and completeness of po-
lices among all the domains participating in the overlay network. DMON also pro-
vides a new approach to realize negation policies within a specified domain, while 
enforcing negation policies in open decentralized systems is still very difficult and 
waits for more feasible solutions [11]. 

Our simulation system is the extension of the samples in section 3.3. There are 10 
M1 entities (treated as administrative domains), each M1 has 10 P1 and 10 Mn as its 
domain members, and each Mn has 100 U as domain members. The name of each 
entity is generated by a string randomizer. There are 1000 sessions on the server S. 
The system distributes over 10 PCs (CPU-2.0GHz, RAM-256M, LAN-100M) and the 
communication is protected by SSL. There are more than 10,000 rules (without signa-
ture yet) in the system. The average overhead of login is 0.26 seconds; the average 
overhead of each request is 0.12 seconds. This performance is acceptable for most 
large-scale distributed systems. 

5   Related Work 

The concept of trust management was firstly introduced by M. Blaze et al with Poli-
cyMaker [7]. A large amount of work has been done on trust management, such as 
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Keynote [8], SPKI [4], DL [11], RT [12] and Cassandra [10]. In the introduction 
section, we have briefly reviewed some of the related work. Now we give further 
comparison of our work with some highly related work.  

PolicyMaker allows arbitrary programs to be used in credentials and policies. Key-
note uses a special assertion language to define delegation policies. However, both 
PolicyMaker and Keynote do not provide mechanisms to control the privilege prolif-
eration during delegation. RT [12] is a family of role-based trust management lan-
guages whose semantics are built upon Datalog rules. RT supports boolean control 
over delegation of role authorities. The role intersections in RT can be viewed as a 
kind of constraint on the scope of delegation targets. However, RT can only enforce 
these delegation constraints for management-level AS. REAL05 supports the delega-
tion constraints on the scope of mediate delegatees, upper-bound of delegation depth 
and the scope of delegation targets for both management-level AS and access-level 
AS.  

RTC [13] is a constrained version of RT for fine-grained control of structured re-
sources, which adopts DatalogC as the logical foundation. RTC does not introduce new 
delegation constraints into existing RT framework. RTC only supports equality and 
range constraints on role parameters. REAL05 supports inequality constraints as well 
as equality and range constraints on both role parameters and predicate parameters. 
The semantics of RTC follows the approach in RT0, which translates each credential 
into a DatalogC rule. REAL05 uses meta rules to capture the general semantics of 
policies, which can be extended to express more general constraints from the perspec-
tive of the whole system. Although the meta-rule approach will be a little more time-
consuming than credential-rule-translating approach, our simulation results show that 
the performance is practically acceptable. 

Cassandra [10] expresses policies in a language based on DatalogC [15], which 
bears some similarities to our system. The expressiveness of Cassandra (and its com-
putational complexity) can be tuned by choosing an appropriate constraint domain. 
The rules in Cassandra can refer to remote policies (for automatic credential retrieval 
and trust negotiation). However, Cassandra does not embed any delegation control 
mechanism in its reserved semantics. For example, the integer control on delegation is 
totally managed by security administrators in Cassandra, which will easily lead to 
mistakes in security management. 

B. C. Neumann uses restricted proxy model [1] to support a variety of restrictions 
on authorization and delegation, including grantee, for-use-by-group, issued-for, 
quota, authorized, group-membership, accept-once. But the restricted proxy model 
does not provide restriction specification and semantics computation. Some of these 
restrictions can be expressed by REAL05. For example, the authorized restriction can 
be viewed as an access-level constraint on delegation targets. To support other restric-
tions such as accept-once, REAL05 need to be extended and collaborate with other 
security mechanisms such as session management facilities. 

REAL05 can be viewed as a successor of REAL04 [18], a role-based extensible 
authorization framework proposed by the authors in 2004. REAL05 extends REAL04 
to support many new features: (a) three types of roles to express the collections of 
permissions, authorities and session capabilities; (b) constraints on delegation targets 
and delegation depth; (c) using rules to define policies. The approaches to define the 
semantics of REAL04 and REAL05 are also different: REAL04 adopts the credential-
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rule-translating approach while REAL05 adopts the meta-rule approach. REAL05 is 
also powered by a clearly defined constrained delegation model named GCDM. 
Compared with REAL04, REAL05 are more flexible and extensible on both syntax 
and semantics. 

6   Conclusion 

“Trust can not be trusted.” We aim to provide a more controllable and practical dele-
gation model for TM systems, which could be used to specify delegation policies not 
only between entities that trust each other, but also between entities that (often have 
to) cooperate according to application requirements or security policies. 

Contributions of this paper includes: (1) proposing a generalized constrained dele-
gation model, giving clear definition of authorization system, delegation tree, delega-
tion depth, delegation constraint, and the semantic model of constrained delegation. 
(2) proposing a typed privilege model based on permission activation mechanism, 
uncovering the essential difference between MTP and ATP, and provides means to 
avid undesired privilege transition. (3) using spacial constraint to restrict the shape of 
delegation trees, including mediate delegatees, delegation targets and upper-bound of 
delegation depth. (4) deigning a rule-based policy specification language, using meta 
rules to express general policy semantics, which provides a means to enforce more 
general policies (such as setting the upper-bound of the delegation depth for all the 
delegations in the whole system). 

Future work includes: (i) extending GCDM with temporal constraints; (ii) integrat-
ing GCDM model with existing role-based TM systems such as RT [12] and Cassan-
dra [10] to control the potential privilege proliferation in distributed attributes infer-
ence policies [12]; (iii) searching for more efficient credential distribution and distrib-
uted inference algorithms. 
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Abstract. Policy-based network management is intended to provide a 
system-wide and unified view of the network and its services and applications. 
This includes the combined management of network services as different as 
security, QoS or routing. However, while for IPsec and QoS there are clear 
models to define the semantics that a policy specification or language should 
implement, this is not equally true in the case of routing policies. This paper is 
intended to provide some results on the definition, modelling and deployment 
of routing policies using the Common Information Model (CIM). We also 
present the most relevant details of the implementation of our policy-driven 
routing management system, which has been successfully tested and used for 
the configuration of several relevant IPv6 IXes deployed as part of the three 
years Euro6IX (European IPv6 Internet Exchanges Backbone) EU IST research 
and deployment project. 

1   Introduction and Motivation 

One of the main goals of policy-based management is to enable network, service and 
application control and management at a high abstraction layer. Using a policy 
language, the administrator specifies rules that describe domain-wide policies which 
are independent of the implementation of the particular network node, service and/or 
application. It is, then, the policy management architecture that provides support to 
transform and distribute the policies to each node and thus enforce a consistent 
configuration in all the elements involved. This is a prerequisite for achieving a mean 
to dynamically constrain and regulate the behaviour of a system without the human 
cooperation.  

Researchers have proposed multiple approaches for task-specific policy 
representation. They range from formal policy languages that a computer can easily 
and directly process and interpret, to rule-based policy notation using an if-then-else 
format. 

The IETF provides information models for specifying policies that are independent 
of any implementation or encoding. In this sense, the IPsec Configuration Policy 
Information Model [1] presents an object-oriented information model for IP Security 
(IPsec) policies and the QoS Policy Information Model (QPIM) [2] presents a similar 
model for QoS policies. Both information models are based on the core policy classes 
defined in the Policy Core Information Model (PCIM) [3] and in the Policy Core 
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Information Model Extensions (PCIMe) [4]. Both, PCIM and PCIMe derive from and 
use classes defined in the DMTF Common Information Model (CIM) [5]. Moreover, 
the IPsec Model and QPIM define the semantics of IPsec policy and QoS policy, 
respectively. In fact, these models define the semantics that a policy specification or 
language should implement according to the IETF. 

However, IETF lacks an information model for routing. Although it defines the 
Routing Policy Specification Language (RPSL) [6] which is a language to specify 
routing policies, is not based on any particular model and, moreover, there is no 
definition of a model to be used over it. 

Thus, the definition, modeling and deployment of a model for routing policies 
based on a well-recognized standard, such as CIM, will enable the intra- and 
inter-domain management of different network services (such as, IPsec, QoS and 
routing) in a uniform manner.  

This paper is intended to provide the results of modeling routing policies using 
CIM. It also describes how to take advantage of the Policy-based Network 
Management (PBNM) paradigm to develop such modeling. The last part of the paper 
is devoted to report on the development of the proposed modeling using for this some 
components deployed as part of the Euro6IX (European IPv6 Internet Exchanges 
Backbone) EU-funded IST project [8]. 

2   Representing Routing Policies in CIM 

The Common Information Model (CIM) is an approach from the DMTF (Distributed 
Management Task Force) that applies the basic structuring and conceptualization 
techniques of the object-oriented paradigm to provide a common definition of 
management-related information for systems, networks, users, and services. The 
major benefit of specifying routing policy rules in this way is that an organization can 
utilize a common model that can be shared amongst all network nodes. 

Policy model provides a framework for specifying configuration and operational 
information in a scalable way using rules composed of conditions and actions. It 
includes, among other elements, policy rules, policy groups, and policy conditions 
and actions, both in generic and vendor-specific form. 

We propose a set of classes and associations to extend the CIM Policy Scheme to 
express routing policies (see Figure 1 for their representation in UML). Our proposal 
is based on the reposition of the class RoutingPolicy of CIM Network Scheme in CIM 
Policy Scheme. 

RoutingRule is used to implement routing policies. It defines a common connection 
point for associating conditions such as PacketFilterCondition and 
PolicyTimePeriodCondition, and network actions (RoutingAction). One of the most 
important uses of this class is to change the routing policy by changing values of 
various attributes in a consistent manner.  

RoutingAction is the base class for the various types of network actions. There are 
essentially three types of actions: forward the traffic unmodified, forward the traffic 
but modify either the attributes describing the route and/or other attributes that define 
how to adapt the traffic (e.g., its ToS –Type of Service– byte settings), or prevent the 
traffic from being forwarded. The class properties of RoutingAction correspond with 
the class properties of RoutingPolicy. 
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BGPRouteMapsInRoutingPolicy defines the BGPRouteMaps that are used by a 
particular RoutingRule object. BGPRoutingPolicy is a specialization of the 
Dependency association, and defines the relationship between a BGPService and the 
RoutingRule that control it. FilteredBGPAttributes is a specialization of the 
Component aggregation, which is used to define the set of BGP Attributes that are 
used by a particular RoutingAction. 

(See Policy Model )
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Fig. 1. UML Diagram of Routing policy 

3   Mapping CIM to XML 

The CIM schema is independent of any implementation. However, for an information 
model to be useful, it has to be mapped into some implementation. Thus, as Figure 2 
shows, CIM can be mapped to (or represented as) several structured specifications. 
According to our approach, the CIM schema can be mapped to structured 
specifications such as XML, which can then be used to take advantage of XML 
technology and related tools. Other specifications such as MOF/CIM (Managed 
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Object Format/Common Information Model) for WBEM (Web-Based Enterprise 
Management), MIB (Management Information Block) for SNMP (Simple Network 
Management Protocol) and PIB (Policy Information Block) for COPS (Common 
Open Policy Service) are not considered because they do not use XML, which is a 
key requirement in the design of the overall routing policy management framework.  

However, although policies are defined and managed initially in XML, they can be 
finally implemented and enforced in real devices using any of the other proposed 
formats, as the XML specification can be transformed to an equivalent MIB or PIB, 
for example, without loosing any semantics. This is because of the use of an 
information model that provides the semantics and basic conceptualization regardless 
the specific syntax in use. 

CIM Meta Model
(class, property , association ,…)

CIM Models
(core, common, extensions )

Meta Model 
Level

Models Level

WBEM
Implementation 

Level XMLPIBMIB
 

Fig. 2. CIM modeling levels 

There are two main different models for mapping CIM into XML: schema 
mapping and metaschema mapping. DMTF defines a metaschema mapping for the 
representation of CIM elements and messages in XML [7]. This mapping defines a 
XML scheme that is used to describe the CIM metaschema, where both CIM classes 
and instances are valid XML documents for that schema. In other words the XML 
schema is used to describe in a generic fashion the notion of a CIM class or instance. 
In fact, in this approach CIM element names are mapped to XML attribute or element 
values, rather than XML element names. 

The second approach, schema mapping, defines an XML Schema to describe the CIM 
classes; in this approach CIM Instances are mapped to valid XML documents for that 
schema. Essentially this means that each CIM class generates its own XSD fragment 
whose XML element names are the same that the corresponding CIM element names.  

The metaschema mapping was mainly adopted by the DMTF, as it only requires one 
standardized DTD for the whole CIM regardless the version of this information model 
used in one particular implementation. However, our research identified several 
benefits related to the use of the schema mapping rather than the metaschema. The 
most important ones were more validation power and a more intuitive representation. 

To build automatically such XML schema from any CIM version we designed an 
XML transformation using XSL Transformations (XSLT) [18]. XSLT is a language 
for transforming XML documents into other XML documents.  

For our purpose, the main design principles identified as part of this mapping 
process were:  
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- Every CIM class generates a new XML element. 
- Every CIM generalization (inheritance) generates the declaration of a new 

XML extension element. 
- Every CIM key property generates a new XML <key> (or <unique>) element, 

which allows the unique identification of each XML element (i.e., CIM 
instance). 

- Every CIM association is expressed in XML as entry references; this is the 
most suitable general-purpose mechanism currently available. 

- A single XML database will host no more than one CIM implementation, and 
therefore the namespace is the same for all CIM instances stored in this 
database. 

An example of the output of the mapping for a routing policy is presented in 
section 5.  

4   Policy-Driven Routing Management System 

We propose a policy-based routing management as depicted in Figure 3. This 
architecture was designed as an evolution of the IETF approach to policies, but 
providing some new features, as the complete use of XML-related technologies and 
tools in the policy life cycle. 

PEP

Policy
Console

Border Router CIM-based Route Server

PDP

Policy Repository

PMT

Access

Access

Definition

Distribution

Notification and 
monitoring

 

Fig. 3.  CIM modeling levels 

This architecture is composed by these four main functional elements: 

- Policy Management Tool (PMT) that allows the administrator to develop 
routing policies making use of the Policy Console. 

- Policy Repository that is used by the management tool (PMT) to store the 
policies and by the decision points (PDPs) to get them. The IETF suggests the 
use of a Lightweight Directory Access Protocol (LDAP). Due to our proposal 
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of use XML technologies, a more appropriate solution is to store routing 
policies in an XML native database, as such we will describe at section 6. 

- Policy Decision Point (PDP) in charge of interpreting the policies stored in the 
policy repository, recuperating the set of rules for a particular PEP, 
transforming them into a format that can be understood by the PEP, and 
distributing them to the PEP.  

- Policy Enforcement Point (PEP) is a component running on a border router that 
can apply and execute the different policies received from the PDP. 

The proposed architecture is independent of any particular policy, so it could be 
used in the provision of security policies, QoS policies, or any other kind of policies. 

5   Example of Routing Policy 

The following example shows the mapping of the RoutingAction class of CIM 
Schema into XML Schema (which follows the general steps explained in section 3): 

<xs:complexType name="CIM_RoutingAction" > 
<xs:complexContent> 
<xs:extension base="CIM_PolicyAction" > 
<xs:sequence> 
<xs:element name="Action" type="xs:string"/ > 
<xs:element name="AttributeAction" type="xs:uint16" /> 
<xs:element name="BGPAction" type= xs:uint16" /> 
<xs:element name="BGPValue" type="xs:string" /> 
<xs:element name="RemarkAction" type="xs:uint16" /> 
<xs:element name="RemarkValue" type="xs:string" /> 
<xs:element name="ConditioningAction" type="xs:uint16" /> 
<xs:element name="OtherConditioningAction" type="xs:string" /> 
<xs:element name="ConditioningValue" type="xs:string" /> 
</xs:sequence> 
</xs:extension> 
</xs:complexContent> 
</xs:complexType> 

As it is shown, the CIM class is mapped in a XS type extending the type 
CIM_PolicyAction, and each class property is mapped into a different XS element. 
The CIM_PolicyAction and basic types (i.e., string and uint16) are defined in other 
XS documents. 

A practical example of policy combining both routing concepts and QoS concepts 
is the following one: 

If (IP source address = 155.0.0.0/8) and (IP source Port = 80) 
then changing the DSCP value = 40 

Differentiated Services Code Point (DSCP) value is related with differentiation of 
services in IPv4 and IPv6 network, as quality of services aspects. Therefore this rule 
implies that all web traffic (port 80) from the A class 155.0.0.0/8 network will be 
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established to DSCP value equals to 40. Here the value 40 is just provided as a basic 
example, and there is no intention to mean any high-level business objective. 

Since the routing policy is very verbose, we only present a fragment of the 
mapping.  

<CIM_IPHeadersFilter> 
<HdrIPVersion>4</HdrIPVersion> 
<HdrSrcAddres>155.0.0.0</HdrSrcAddres> 
<HdrSrcMask>255.0.0.0</HdrSrcMask> 
<HdrSrcPortStart>80</HdrSrcPortStart> 
<HdrSrcPortEnd>80</HdrSrcPortEnd> 
</CIM_IPHeadersFilter> 
<CIM_RoutingAction> 
<RemarkAction>1</RemarkAction> 
<RemarkValue>40</RemarkValue> 
</CIM_RoutingAction> 

The RemarkAction equals 1 identifies the value “Change DSCP” and the 
RemarkValue identifies the new value for the DSCP. 

6   Deployment of a PBNM Framework for Routing Purpose 

The design and implementation of the policy-based network management (PBNM) 
system now presented have been developed by the University of Murcia as part of the 
EU IST Euro6IX project [7]. The main objective of the project is to support the rapid 
introduction of IPv6 in Europe. In this sense, one of the UMU contributions to the 
project has been the development of a general PBNM functional architecture [8] (with 
IPv6 support) which allows the management of various kinds of network aspects, like 
VPN-IPsec, QoS and multihoming. The last contribution has been the integration of 
the routing model presented as part of this paper.  

Figure 4 shows the general architecture and the elements which made up the 
implementation. The management architecture is composed of 5 main elements 
(Policy Console, PMT, Policy Repository, PDP and PEP) which are described as 
follows. 

6.1   Policy Console 

The policy console represents the entry point to the architecture. Our proposal is using 
a simple internet browser to access (i.e. Firefox, Netscape Navigator or Internet 
Explorer).  

In order to protect the communication between the Policy Console and the Policy 
Management Tool, a secure connection is required, which provides confidentiality, 
data integrity, and a mutual authentication between the policy administrator using the 
Policy Console and the PMT server. HTTP protocol combined with SSL (i.e., HTTPS 
protocol) using X.509 certificates is a good approach to obtain these objectives and 
therefore PBNM system uses them for securing this communication. 
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Fig. 4.  PBNM deployment architecture 

The policy administrator must present an X.509 certificate to gain access to the 
policy management tools. His private key and/or certificate could be stored in an 
encrypted file in his PC or in his smart card. This cryptographic information is issued 
previously by a valid Certificate Authority (CA). A Public Key Infrastructure (PKI) is 
necessary to provide support for it. The PBNM framework uses the UMU-PKI [10], 
although any other PKI software can be used. 

6.2   Policy Repository 

For storing XML policies, we have chosen to use a XML native database. The benefit 
of a native solution is that we do not need to worry about mapping XML policies to 
some other data structure (e.g., SQL). We also gain in flexibility through the semi-
structured nature of XML and the schema independent model used by these databases. 
This is especially valuable when we have very complex XML structures (i.e., 
complex policies) that would be difficult to map to a more structured database. 

Specifically, the UMU-PBNM uses Apache Xindice 1.1 database [11]. This 
version could be downloaded as a Tomcat Web Server Application (WAR) and 
therefore we have utilized the actual PMT infrastructure (Tomcat) for its installation. 

One of the main advantages of Xindice according to our research is that it 
implements the concept of collections. Policies are stored in collections that can be 
queried as a whole, which increase the extensibility of the policy management as part 
of the DB. 

Xindice uses XPath notation for its query language and XUpdate for its update 
language. Both PMT and PDP servers store/retrieve policies in/from the database 
using an interface based on XML-RPC and Java. 
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6.3   Policy Management Tool (PMT) 

The PMT provides to the administrator the mechanisms for creating, modifying or 
deleting CIM policy documents. It is done by means of a high-level language or a 
graphical interface. In our case, we have developed a complete graphical web 
application that is accessible from the Policy Console Terminal. It has been 
implemented using JavaServer Pages (JSP), JavaBeans and Java Servlets technologies 
and it runs over Tomcat web server, which is IPv6-enabled and works well from its 
version 5 (previous versions have some problems when dealing with different IPv6 
security realms). 

Inside the PMT server, authorized network administrator can create, modify, 
and/or delete different types of CIM policies, and monitor how network end nodes are 
behaving.  

Routing policies (in the same manner as IPsec, QoS and multihoming policies) 
could be created from the routing templates. The template concept represents a high-
level representation and grouping of predefined policy values so the creation of new 
policies is easy.  

Other interesting concept is the role. A role represents a logical group of network 
nodes that are managed in a similar way. PMT allows the network administrator to 
create, edit and/or delete network roles. Moreover allows the assignment of these 
roles to the current policies. 

Clearly the main objective of PMT is the policies creation. With this objective in 
mind, PMT have been implemented by two main components as it is showed in 
Figure 5. 
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Fig. 5. PMT components 
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6.4   Communication Between PDP and PEP 

Various alternatives have been analysed for the communication between the PDP and 
any PEP. A first approach is based on the use of Simple Network Management 
Protocol (SNMP). SNMP is an application layer protocol that facilitates the exchange 
of management information between network devices. In this case, our network 
components are the PDP and PEP elements. Although SNMP is a good protocol for 
implementing the outsourcing model and also for monitoring purposes, it lacks of 
appropriate mechanisms for implementing the provisioning model. 

COPS-PR is the protocol recommended by the IETF to transport provisioning 
policy data between PDP servers and PEP clients. Therefore, as part of PBNM design 
and implementation, we have developed a complete COPS provisioning 
implementation, called UMU-jCOPS (University of Murcia Java COPS). It has been 
completely developed in Java, allowing the use of any operating system to run an 
implementation of PDP or PEP. Furthermore it is IPv6 enabled, so any operation can 
be performed using this new network protocol. Both the PDP and PEP contains 
UMU-jCOPS core libraries integrated inside. 

6.5   Policy Decision Point (PDP) 

The Policy Decision Point (PDP) is the PBNM component that applies the policy 
documents to the network nodes. It retrieves the CIM routing policies from the Policy 
Repository and uses them to generate the low-level policy decisions to be sent to PEPs.  

PDP has been implemented using Java 1.4.x and XML technology. Figure 6 shows 
the internal PDP components.  

Config File 
<XML>

PDP Config

PDP Server

COPS Agent MONITOR DB Manager

Policy 
Validator

 

Fig. 6.  Internal PDP components 

The PDP obtains its configuration (i.e., type of policies, database path, digital 
certificate path, etc.) from an XML file. This file is store in memory by the PDP 
Config component. PDP Server launches the PDP Monitor and the COPS PDP Agent. 
The PDP Monitor component maintains a list of PEPs connected to a given PDP, 
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whereas COPS PDP Agent, that is the integrated UMU-jCOPS implementation, 
performs communication with the set of PEP connected to it. The PDP monitor also 
takes decision about the specific policies to distribute to the PEP nodes. For that 
purpose, the PDP monitor component uses the DB Manager component allowing to 
access the Xindice policy database through XML-RPC requests. This components 
uses XML:DB API [12] for Java to access to Policy Repository.  

The Policy validator module uses the XML schemas, which have been created 
previously, to validate a high-level policy after the PDP retrieves it from the XML 
policy database and starts generating policy decisions. 

6.6   Policy Enforcement Point (PEP) 

PEP clients enforce the policy decisions taken by the PDP to the policy-managed 
network nodes like PC Routers o CISCO Routers. The PEP Component could be 
integrated itself inside the Router or It could be placed outside of the router (playing 
the role of a PEP Proxy). In this case, a communication protocol between the PEP 
proxy and the router, such as SSH or Telnet is necessary to enforce the policy.   

In the same way as the PDP server, PEPs controlling the Routing devices has been 
implemented using Java 1.4.x and XML technologies. Figure 7 shows the internal 
components of the PEP. 
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Fig. 7.  Internal PEP components 

The PEP (the IP Routing-based device) obtains its configuration (i.e., PEP role, 
PDP IP address, digital certificate path, etc.) from a XML file. This file is stored in 
memory by the PEP Config component. PEP Server, that is the core internal 
component, launches the PEP Monitor and the COPS PEP Agent. COPS PEP Agent, 
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that is the integrated UMU-jCOPS implementation, performs communication with the 
PDP and obtains its Routing Policy.  

PEP Monitor checks the current policy’s validity. If policy is valid (TimePeriod 
Checker is the component to do it), then PEP Monitor launches the suitable PEP 
Transformer that it has to convert it to the specific configuration format used by the 
device that it is controlling. (CISCO Routing or Quagga Routing implementation 
[13]). PEP Transformer uses a set of XSL Transformation which has been developed 
to do the XML transformation to suitable configuration files. In this manner, every 
XSL (Extensible Stylesheet Language) contains a particular technology 
transformation for particular operating system architectures.  

So far, we have created XSLT transformations for CISCO IOS Routers [14], 
Quagga BGP-4 protocol and Quagga Route Server model. Quagga implementation 
has been tested in PC Routers with Linux 2.6.x operating system and FreeBSD 5.x. 

Quagga is a routing software suite, providing implementations of OSPFv2, 
OSPFv3, RIPv1, RIPv2, RIPv3 and BGPv4 [15][16] for Unix platforms, particularly 
FreeBSD, Linux, Solaris and NetBSD Routing Software Suite. The release tested is 
0.98.0, although the latest releases can also be used. 

If the PEP is not integrated inside the Router element (as it is the case of the 
CISCO Router) then Router Agent module takes care of communication with router 
using SSHv2 protocol (if router supports it) or through a telnet session. 

7   Conclusions and Future Work 

Policy-based network management (PBNM) is an emerging technology addressing 
open issues that are crucial for the deployment and evolution of network services and 
applications. For this the definition of common models indicating the semantics that a 
policy specification or language should implement regarding a network service is 
quite relevant. In the case of IPsec or QoS, for example, this issue has been mostly 
addressed during the last years, but in the case of routing policies just a few models 
have been defined. This paper provides a modelling for routing policies based on the 
CIM information model as well as the details of how it has been applied in a 
particular PBNM architecture. 
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Abstract. The article discusses an approach to the construction of secure data 
processing systems based on the hybrid operating system technology, making it 
possible to use several different operating systems simultaneously on the same 
computer and arrange for an interaction between those. The Fenix secure 
operating system developed at the Software Security Laboratory(SSL) of the St. 
Petersburg State Polytechnical University (SPSPU) is proposed to be used as a 
host operating system, while the popular Linux OS — as a guest operating 
system, to ensure compatibility with commonly used applications. 

1   The Problem of Integration Between the Facilities of 
Information Protection and Processing 

In the course of their development information technologies infiltrate the areas where 
the most crucial demand to information processing is that of security. In order to 
entrust the information system with processing of confidential information whose 
protection is vital for the security of the country, a guarantee that the security features 
will function properly should be provided. And the only way of guaranteeing this is to 
make use of proprietary security features developed in-house, because it is only in this 
case that the full In this situation a problem emerges on the borderline between the 
information technologies and security features, both undergoing continuous 
development — the problem of integration between the domestically produced 
facilities for information protection and the imported facilities for information 
processing. This problem is of special importance for the software because the latter 
is developing at a very high rate — the operating systems serving as the environment 
for applications to function in, change every couple of years. 

In this situation a problem emerges on the borderline between the information 
technologies and security features, both undergoing continuous development — the 
problem of integration between the domestically produced facilities for information 
protection and the imported facilities for information processing. This problem is of 
special importance for the software because the latter is developing at a very high 
rate — the operating systems serving as the environment for applications to function 
in, change every couple of years. 

In order to deal with this problem the following contradictory requirements should 
be met: 
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1. in order that the security features could successfully function, performing the tasks 
assigned to them, it is imperative that they should have control over all information 
interactions in the system, with no exception; 

2. in order that the information system could be successfully operated, it should both 
have the required functionality and meet the requirements to the modern IT 
products, i.e. it should be compatible with the solutions offered by other 
manufacturers, it should be user-friendly, it should be able to provide access to the 
resources of the World Wide Web etc.; 

3. security features should not lag behind the data processing functions in the extent 
of their development, however, it is impractical to develop new protective 
measures for each novel information technology, since it will tie up enormous 
resources. 

The solution for the outlined problem should be sought in the development of the 
system architecture which could combine various system and application components 
with security features in such a way that all the requirements formulated above would 
be met. 

2   Security of Information Technologies Through Secure 
Operating Systems 

For the modern computer systems the only way to ensure total control is to introduce 
security features at the operating system level. This method of solving the problem 
uses the systemic approach to the issue and guarantees results, though it involves 
certain expenses. However, in this case the funds will be spent directly on protective 
functions and not on the alterations made to the applications, which will inevitably 
reduce their functionalities, the applications themselves becoming obsolete in the 
process. On the contrary, the secure OS will be up-to-date as long as the problem of 
IT security persists, and the ready availability of the source codes and of the full set of 
design and operation documents will make it possible to monitor the security of 
software codes. 

This approach has been implemented in the Fenix secure operating system[1] 
developed at the SSL of the SPSPU, making use of an original technology which 
allows both to eliminate the setbacks of existing systems and obtain a comprehensive 
mechanism of access control. The main objective of the project was to develop an 
original secure OS to meet the domestic requirements and information security 
standards, which could serve as the foundation for building a broad class of 
information systems for critical purposes. 

The production of a secure OS is an indispensable precondition for the solution of 
the problem of IT security, however, it is not a final solution. The principal problem 
which all new OS face (and the secure ones in particular) when introduced, is the lack 
of a sufficient choice of user-defined application software which could be used in 
working with the protected resources. Writing new applications for such OS or 
importing the existing ones is a practically impossible task, in view of the time, funds, 
and intellectual resources needed. 

This is why the only way out of this deadlock is the creation of a secure operating 
system to provide for the security of the processed information in conformity with the 
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strictest requirements of domestic and international standards, at the same time 
designed for use together with the existing systems and applications in the way they 
are, without any changes or alterations. This approach alone will make it possible to 
deal with both special problems of protecting individual data processing complexes 
and to obtain a radical solution to the problem in the shape of a comprehensive secure 
OS serving as a basis for the construction of secure systems of various degrees of 
complexity. 

3   Methods to Ensure Compatibility of the Secure OS with Popular 
Applications 

There are several approaches to the problem of building a secure operating system 
capable of running applications of the commonly used OS, at the same time providing 
the required protection of the information resources used by these applications. Let us 
discuss these approaches, their advantages and disadvantages. 

1. Attainment of a full binary compatibility of the secure OS and the popular OS at 
the level of the application code and the application programming interface (API). 
This is a task of ultimate complexity, because such compatibility cannot be found 
even among the products by well-known manufacturers, who have immense 
resources and capacities at their disposal. For example, no one has yet succeeded 
(despite numerous efforts) in achieving full compatibility of OS of UNIX and 
Windows families on the level of the binary code and the API. If such 
compatibility is ever attained, it will be only at the expense of reproducing the 
architecture of popular systems down to the minute details, inevitably receiving as 
the legacy all inherent problems and bottlenecks connected with the security issues, 
making it impossible to solve the problem in question — to create a secure system. 

2. Emulation of the application programming interfaces of commonly used OS by the 
software of the secure OS. In this case re-compilation of applications for the new 
environment will be needed. If emulation is performed correctly, the application 
should not be able to notice that it is running in a foreign environment, since it will 
interact with the same API. Taking into account the sophisticated APIs of modern 
OS, this solution looks rather complicated and labor-intensive. 

3. Embedding the security features in an open-source OS. This road looks very 
tempting because the results can be obtained quickly, but it will demand 
continuous reworking of the modified product, which will always stay behind the 
original version, losing in compatibility. In case the architecture of the original 
product is changed radically, there will be a stage when it will be impossible to 
introduce the required alterations. This is why this approach ultimately does not 
show much promise. 

4. Hybrid OS. If the source codes of the OS are open, a much simpler and less labor-
intensive solution, besides, allowing to achieve a better degree of compatibility, 
will be to modify the source code of the OS in such a way that it could be run as a 
common user process within the secure OS. This approach will provide for a full 
compatibility with the popular OS, because it will be used “as is”, wholly with its 
architecture and APIs, and it will not involve extra expenses — what we need is to 
modify an open system in such a way that it could became operable in the process 
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environment of the secure OS. Since the popular OS now becomes an ordinary 
process within the framework of the secure OS, then from the standpoint of 
security this option looks like the preferred one. 

Let us discuss what the hybrid OS technology consists in, and how it can be used 
for the construction of secure systems compatible with the applications of popular OS. 

4   The Technology of Hybrid Operating Systems 

The essence of the hybrid operating systems technology consists in the fact that 
within the framework of one operating system (called “host”) an environment is 
created where another operating system (called “guest”) can function, which makes it 
possible to start several different operating systems on the computer simultaneously 
and switch between them without rebooting the computer. The essence of the hybrid 
system technology is that there are one or several virtual machines set up on the 
computer running under the control of the basic (‘host”) operating system, and each 
of those makes it possible to run a (“guest”) system of its own. 

The virtual machine(VM) includes all the devices required for the operation of the 
guest OS: the processor, RAM, disc drives, network devices, I/O devices. These 
devices are emulated by the VM using the resources of the actual computer system 
through addressing the services offered by the host OS. The resources to be used by 
the VM are either delivered for the monopolist use by the VM and excluded from the 
main pool of resources (like RAM), or used by the host and the guest systems 
together — like it is with the processor, drives and the network. It is obvious that 
these opportunities can be offered at the expense of sharing the resources of the actual 
computer, so the requirements to the hardware will be higher.  

In the hybrid system the host OS controls the hardware of the computer system, 
while the guest OS has no access to the hardware, interacting only with the VM. This 
way the host OS will be in full control of the operation of the guest OS, at the same 
time remaining fully transparent for the user of the guest OS. 

The main purpose of the VM is to isolate the guest OS from the hardware and to 
create for it an appropriate computing environment on the basis of the application 
programming interface of the host OS. At that the VM will be able to set up various 
hardware configurations — for instance, it can be predetermined how much of RAM 
this or that VM will get and whether it will have access to the network. 

5   Related Works 

The central mechanism in our work is the VM, which allows secure OS to take 
control over the common OS and its applications. Extensive discussion of VMs and 
their properties is found in seminal work by Goldberg [2, 3] and more contemporary 
work on Disco [4] and VMware [5, 6]. More recently, Chen [7] argues for routine and 
extensive use of VMs for security purposes. 

A more general argument about the inherently limiting nature of committing to a 
single OS abstraction has been made by the extensible OS community, perhaps most 
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concisely in arguing for exokernels [8]. Exokernels and VMs are in many ways quite 
similar. 

Grizzard in [9] proposes a Trusted Immutable Kernel Extension (TIKE) by way of 
a VM. Using a host operating system as a trusted platform, a self-healing system uses 
existing intrusion detection systems and corresponding self-healing mechanisms to 
automatically heal the guest operating system once a compromise has occurred. 

Garfinkel presents a closed-box abstraction for trusted computing through the use 
of a VM monitor(Terra) for isolation and security [10]. 

Recently, the idea of isolated environments has become available in the form of 
commodity platforms implementing TCPA. [11], which related to our conception of 
combining trusted and untrusted components in one hybrid system. But TCPA is only 
a hardware mechanism for trusted computing, lacking a vision for support of trusted 
computing in operating systems. 

In recognition of the need for OS support for trusted computing, Microsoft began 
development of its NGSCB (formerly Palladium) architecture [12, 13]. This work is 
the most similar to ours in that it provides a “whole system” solution to the problem 
of trusted computing. NGSCB works by partitioning the platform into two parts 
(“trusted” and “untrusted”) each of which runs a different operating system. It 
achieves this through what can be seen as a very special purpose hybrid system that 
only supports two VMs. The untrusted(guest) is one of today’s commodity operating 
systems (e.g. Windows) while the trusted(host) part is a dedicated trusted operating 
system (the “nexus” in NGSCB parlance). 

NGSCB differs from Linux over Fenix most prominently in its security 
architecture. Linux over Fenix is a combination two full-power operating systems, in 
contrast, the trusted part of NGSCB is a dedicated operating system designed to run 
small, high-assurance programs called “agents.” Agents work in conjunction with 
code on the untrusted side of the system, providing all of the security-critical 
functionality that programs on the untrusted side need (e.g. sensitive key storage). 

6   “Linux over Fenix” Hybrid OS 

The hybrid OS technology can be used for the construction of a secure operating 
system where the secure host OS would provide for the security, and the guest OS — 
for compatibility with applications and the user interface. What is required for this 
purpose is, first, the possibility of starting the guest OS as a common user process 
within the secure OS, and, second, the possibility of access by the applications of the 
guest OS to the resources of the secure OS under control of the embedded security 
features. Thus the multitude of applications of the secure OS is further expanded by 
both existing applications of the guest OS and those under development.  

An example of a secure hybrid system is furnished by the solution developed by 
the Department of Information Security of the SPSPU School of Technical 
Cybernetics, which received the name “Linux over Fenix” secure hybrid system. The 
secure Fenix OS, having a special architecture and implementing a flexible model of 
access control to the information resources, plays the part of the secure OS. Within 
the environment provided by this OS, copies of the modified “Linux” kernel are run, 
adapted for operation in the user mode in the Fenix OS environment. Each user has at 
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his disposal a personal copy of the Linux environment, fully isolated from the others. 
To access the information resources of the secure Fenix OS the driver of the file 
system of the modified Linux kernel is used, it redirects the calls for the resources of 
the Fenix secure OS, remaining under control of the Fenix security features. 

Linux over Fenix
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Linux Virtual Machine for Fenix Environment
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processor

Midnight
commander

(file manager)

Adapted Linux Kernel
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Virtual Network
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Fig. 1. The Structure of the ”Linux over Fenix” Hybrid System 

This solution makes it possible to expand the multitude of applications to be run 
under the Fenix with a vast multitude of applications for the popular Linux OS. This 
is how the problem of creating a secure system compatible with commonly used 
applications finds its solution, because all security functions are implemented with the 
Fenix, while all the Linux functionalities are open for application processes. The 
Linux OS functioning under continuous control of the Fenix security features, having 
no access to the hardware, and the security of the Fenix OS does not sustain any 
damage because the code of the Fenix security features was never changed. 

6.1   “Fenix for Linux” Virtual Machine 

Linux OS, functioning in the Fenix environment, is an ordinary Fenix OS process, 
which includes the “Fenix for Linux” VM, a modified Linux kernel and the Linux 
user processes (see Fig. 2). The Fenix VM for Linux includes: 

1. A memory control module which makes it possible to map the required physical 
page to the required virtual address. 

2. An exception and interrupt control module which can handle processor exceptions 
and interrupts in the user mode of the Linux VM. 

At every particular moment of time in the virtual address space of the VM there are 
pages of the Linux OS kernel and the pages of the current Linux user process. For 
each Linux OS process a list of pages in use is kept, which is modified as the memory 
is allocated/freed. As soon as the time slice allocated for the current Linux process 
expires, the Linux kernel removes the pages belonging to the process being phased 
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out from the virtual address space, and maps the pages which belong to the new 
process being switched over to, to the same addresses.  
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Fig. 2. The Architecture of the “Linux over Fenix” Secure Hybrid Operating System 

The VM should handle certain processor exceptions and interrupts — for instance, 
timer interrupts or paging errors. When an exception or an interrupt related to the VM 
process occurs, the Fenix kernel transfers control to the VM, to handle the situation. 
In the case when the VM handles the interrupt or the exception incorrectly, the 
integrity and stability of the Fenix OS will not be damaged — the process of this VM 
will be terminated. 

6.2   Security 

Security features of the hybrid operating system should be dealing with the two main 
issues: they should protect the components of the operating systems (both kernels and 
processes) from interfering with each other, and control the access to the host system 
resources by the guest system applications. 

In the Fenix environment Linux functions in the user mode as an ordinary user 
process. This means that Linux cannot disturb the operation of the Fenix OS kernel 
and of other applications run in the Fenix environment.  

More than that, the Fenix VM for Linux using the mechanisms of segment 
boundaries, privileges and virtual memory can isolate the Linux kernel from the 
Linux user processes and the Linux user processes from one another. To deal with this 
problem the full scope of potentialities offered by the processors of IA-32 architecture 
is used for memory protection.  

1. Protection of the Fenix kernel from the Linux kernel. The Fenix kernel is protected 
from the Linux kernel by the paged memory (the Fenix kernel is executed in 
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privileged pages, the Linux kernel — in user pages). The Linux VM is an ordinary 
process of the Fenix OS and does not have access to the internal structures of the 
Fenix OS kernel. 

2. Protection of the Linux VM from the Linux processes. The Linux VM is protected 
from the Linux processes by memory segmentation and segments privileges.  

3. Protection of the Linux processes from one another. The lower three gigabytes of 
the virtual address space of the VM are used to run Linux processes. Before 
switching from one process to another the memory used by the first process is 
removed from the virtual address space of the VM. The memory used by the new 
process is mapped to the same virtual address space, and only after that the control 
can go over to the new process. Thus, the Linux OS processes can have access only 
to their address space, without any access to the virtual address spaces of other 
Linux OS processes and, therefore, cannot interfere with their execution. 

4. Protection of the Fenix kernel from Linux processes. The Linux OS processes are 
run at the third privilege level in the segment limited to three gigabytes, and have 
no access to the internal structures of the Fenix kernel; therefore, they cannot 
interfere with its operation or affect other Fenix processes.  

5. Protection of applications of the secure Fenix OS from the Linux VM. Protection 
of the applications of the secure Fenix OS from both the Linux VM and Linux 
kernel is provided by the secure Fenix OS kernel, which isolates the address spaces 
of Fenix tasks and, respectively, the Linux VMs using segment and page protection 
of address spaces. 
 
Thus, the components of the hybrid system form a hierarchy: “Fenix kernel” — 

“Linux VM” — “Linux process”, where every component is in full control of the 
lower level components and protected from their interference. 

The architecture of the secure Fenix OS, based on the concept of universal 
information resources and total control of interactions between all system 
components, makes it possible to deal with the problem of control over the access of 
Linux applications to all kinds of protected information resources under control of the 
secure Fenix OS using the built-in security features. 

1. Control of the access to the terminals of the secure Fenix OS. The terminal which 
can display confidential information and accept commands from the user to 
process it, is one of the protected information resources controlled by the security 
features of the secure Fenix OS. The guest Linux OS does not have direct access to 
the secure Fenix OS terminal. The only way for Linux OS applications to display 
information or to receive a command from the user console is to access the 
programmable interface of the secure Fenix OS. Every such time the secure Fenix 
OS, after the appropriate authorization procedures, will make a decision on 
whether the access to the terminal for the Linux process will be granted or denied. 

2. Control of the access to the information resources of the secure Fenix OS by the 
Linux OS and its applications. The file system driver of the modified Linux OS 
kernel is used as a gateway for the access to the information resources of the secure 
Fenix OS, it maps their file system in Linux and translates the events to the secure 
Fenix OS. Since from the standpoint of the secure Fenix OS architecture the Linux 
VM represents an ordinary user process, so, when these resources are accessed, a 
usual Fenix access control procedure takes place according to the security pattern 
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in operation within the system. Thus, this gateway allows the applications to run 
within the framework of the Linux VM, to access directories, files and other 
information resources located in the total namespace of the secure Fenix OS under 
the control of its security features. 

3. Control of internetworking for the Linux OS and its applications. To ensure the 
computer system security it is essential to control not only the access to the local 
resources of the system, but also the internetworking. In Fig. 3 the architecture for 
a secure network of the hybrid “Linux over Fenix” OS is shown. 

Fenix common process Fenix common process Fenix applications

Fenix               Internal Virtual               Network

Linux network applications

Linux Virtual Machine

FTP-client WEB-
browser

Adapted Linux Kernel

Linux network protocols
stack

Gateway for real network access

Linux network applications

Linux Virtual Machine

FTP-server WEB-server

Adapted Linux Kernel

Linux network protocols
stack

Fenix network
protocols stack

Real
Network

Fenix Security
Mechanisms

 

Fig. 3. The Architecture for a Secure Network of the Hybrid “Linux over Fenix” OS 

The internal virtual network represents a hub combining network interfaces of 
Linux VMs and the network interface of the secure Fenix OS into a common virtual 
network which can be connected to the real external network via a special gateway 
performing all the functions of network security. Besides, network security features 
can be implemented on each virtual network interface connected to the internal 
network. Network security features include filtering the traffic at the level of TCP and 
IP; it is also possible to provide encryption and VPN facilities. Undesirable 
interactions both in the virtual network and with the external network can be 
prohibited. Thus, when Linux OS applications interact with a network, the security 
features of the secure Fenix OS will be in full control of all internetworking, both in 
the internal virtual network and in the external network. 
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Thus, the secure hybrid Linux over Fenix OS ensures both the security of all 
components of the host and the guest OS and the security of information resources 
under control of the secure host Fenix OS, as well as of internetworking of the guest 
Linux OS and its applications. 

6.3   Compatibility 

The Fenix for Linux VM has a high level of compatibility with the original Linux OS. 
This is achieved due to the fact that the Fenix for Linux VM does not attempt to 
emulate the Linux functionality, but represents a standard Linux 2.4 kernel, slightly 
modified to make it possible to run it as an ordinary secure Fenix OS process. These 
modifications involve a small number of modules and can be easily replicated in the 
later versions of the Linux kernel. 

6.4   Power 

Linux applications running in the Fenix for Linux VM demonstrate practically the 
same power level as they would if run in the original Linux OS. This is achieved 
because the responses to the system calls of the Linux kernel are not emulated, and 
they are executed in exactly the same way as when operating in the original Linux 
OS. The existing small overhead is associated only with the operation of the secure 
Fenix OS security mechanisms, but it becomes manifest only when an attempt to 
access protected resources is made, and not all the time while the Linux application is 
running. At that this overhead is not higher than in the case when this application is 
exported to the Fenix environment. 

7   The Model of Access Control of the Secure Hybrid Linux over 
Fenix System 

The access control mechanisms in the hybrid system are described by the following 
model: 

The secure hybrid system G is the set tuple: G = {S, R, AC, CR, Op, P}, where: 
S — the set of the subjects of the secure hybrid system. S = SF∪SL , where SF is the 

set of the subjects of the secure Fenix system, and SL - the set of the subjects of the 
Linux operating system.  

R is the set of the system resources. R = {RF, RL}, where RF are multiple resources 
of the secure Fenix system, and RL - the multiple resources of the Linux operating 
system. RL = {RiL, RoL}, where RiL are the nonshared resources with the secure Fenix 
OS – multiple resources of the Linux operating system, inaccessible for the subjects 
SF of the secure Fenix system, while RoL are the shared resources with the secure 
Fenix OS - multiple resources of the Linux operating system, accessible for the 
subjects SF of the secure Fenix system. The secure hybrid Linux over Fenix OS 
incorporates a uniform system of access control of the subjects to the resources. And 
it does not matter what type the resource is — the access control system interacts with 
all types of resources in a uniform manner. Thus, the  subjects are also resources SF∈RF 
and SL∈RL. 
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AC is the set of algorithms of access control of subjects S to resources R. AC = 
{ACF, ACL}, where ACF is the algorithm of access control to resources RF of the 
secure Fenix OS, and ACL — the algorithm of access control to resources RL of the 
Linux OS. 

The algorithms of access control in Linux over Fenix, in dependence of the types 
of objects and resources are shown in Fig 4. 

 RF RoL RiL 

SF ACF ACF  ACL – 

SL ACF ACL ACL 

Fig. 4. The Algorithms of Access Control in the Secure Hybrid Linux over Fenix OS in 
Dependence of the Types of Subjects and Resources 

Op is the set of operations of the system. Op = {OpF, OpL}, where OpF are multiple 
operations which can be performed by the subjects of the secure Fenix system SF over 
the resources of the secure Fenix system RF and the resources of the Linux operating 
system RoL, and OpL — multiple operations which can be performed by the subjects 
of the Linux operating system SL over the resources of the secure Fenix system RF 
and the resources of the Linux operating system RL. The set of operations OpF = 
{deallocation, reading, writing, acquisition of security attributes, setup of security 
attributes, generation, deletion}. The set of operations OpL = {deallocation, reading, 
writing, acquisition of security attributes, setup of security attributes, generation, 
deletion}. 

P is the set of permissions. P = {PF, PL}, where PF are multiple permissions which 
the subjects of the secure Fenix system SF may have in regard to the resources of the 
secure Fenix system RF and in regard to the resources of the Linux operating system 
RoL, while PL are multiple permissions which the subjects of the Linux operating 
system SL may have in regard to the resources of the secure Fenix system RF and in 
regard to the resources of the Linux operating system RL. PF = PdF  PmF, where PdF 
are discretionary permissions, and PmF — mandatory permissions. PdF = {reading, 
writing, addition, execution}, PmF = {reading, writing}. PL = {reading, writing, 
execution}. 

CR is the resource container. All resources RF and RoL are aggregated in resource 
containers. During authorization the access control algorithm interacts not with the 
resource directly, but with the container CRR, where the resource R is aggregated. 
Access control algorithms are abstracted from both the types of resources aggregated 
in the containers and from the client requesting access to the resources. This makes it 
possible to ensure isomorphism of access control both from the client requesting 
access (secure Fenix OS application, or Linux OS application) and from the resources 
(resources of the secure Fenix OS or resources of the Linux OS). 

This way the actions of the Linux VM are transformed into uniform requests to the 
resource containers controlled by the Fenix security features. All calls of the subjects 
SL of the Linux VM for resources RF of the secure Fenix OS, with no exception, are 
controlled by the access control algorithm ACF of the secure Fenix OS. Linux OS 
operates under control of the secure Fenix OS security pattern and cannot bypass it. 
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In the secure hybrid Linux over Fenix OS multiple permissions which subject S 
has in regard to resource R can be written down as follows: P = AC(S, R, Op) = ACF 
(SF, RF,OpF)  ACF (SL, RF,OpL)  ACL (SL, RL,OpL)  ACF (SF, RF,OpF)  ACL (SF, 
RF,OpF). As the access to the resources can take place only through resource 
containers CR, a necessary condition for the access of subjects S to resources R is ∃ 
CRR for the given type of resources R. 

8   Using the Hybrid Secure Linux over Fenix OS 

The hybrid secure Linux over Fenix OS can be employed as a platform for 
workstations and servers with several isolated environments for processing 
information of different confidentiality levels or gateways connecting information 
systems of different confidentiality levels. 

As an example, let us discuss how the hybrid Linux over Fenix system can be used 
to solve the problem of setting up a workstation to process information of different 
confidentiality levels and arrange for its connection to Internet(Fig. 5). Several 
isolated from one another Linux VMs can be run on behalf of different users. 
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Fig. 5. A Workstation Based on the Hybrid Secure Linux over Fenix OS for Processing 
Confidential Information and Work with the Local Area Network and the Internet 
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For instance, one VM can be started with the permissions of a highly privileged 
user, enjoying full rights to process confidential information, and work in it, making 
use of the whole range of data processing facilities incorporated in the popular Linux 
OS. At that, to avoid leaks of confidential information, this VM should be fully 
banned from the network access (both to the intranet and the Internet). 

Another VM could be run with the permissions of a not so highly privileged user, 
who will have limited access to the confidential information, and used for working 
with the resources of the local intranet — for example, for furnishing a restricted 
amount of information using Linux standard WWW- and FTP-services. 

Finally, the third VM could be started with the permissions of an unprivileged user 
without any access to the confidential information, who can, therefore, freely work in 
the Internet using standard Linux features (like the Web-browser and ftp-client). This 
VM is used for the activities which can lead to the system being compromised and 
infiltrated by viruses and “Trojans”. However, even in this situation only this VM will 
suffer damage, and the confidential information, inaccessible for this user, will remain 
intact. 

This way we have succeeded in the construction of a system wherein the user can 
process confidential information, share it over the local area network at his discretion, 
access the World Wide Web, at the same time being sure of the system security, 
because the VM distributing the information over the local area network has limited 
privileges, and the VM working with the Internet is fully isolated from the 
confidential information. 

9   Conclusion 

The advantages of using the hybrid operating system technology for building secure 
information systems on the basis of the secure Fenix OS and the popular open-source 
Linux OS makes it possible to implant the following properties in the system: 

1. Total control over all information interactions and information flows by the trusted 
security features from the secure Fenix OS range, thus providing a high level of 
security. 

2. No possibility to bypass or override the security features, because the Fenix 
security facilities directly interact with the hardware platform, while the Linux 
facilities, on the contrary, do not have access to it. 

3. The set of accessible applications can be expanded on the account of Linux 
applications, which makes it possible to use the Linux over Fenix hybrid system 
practically everywhere where Linux is used. 

4. Minimum overhead for security — the only code run in addition to the commonly 
used Linux is the code of the secure Fenix OS security features. 
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Abstract. The application of formal methods in secure operating sys-
tem experiences a procedure of development and maturity with the em-
inence and development of secure operating system itself. According to
Common Criteria and United States Department of Defenses Trusted
Computer System Evaluation Criteria (TCSEC), high security level se-
cure operating system should introduce formal methods in the process
development and evaluation. Security in Mind Operating System (SEC-
IMOS) is a customizable secure operating system developed by Institute
of Software, Chinese Academy of Science. In this work, we formally model
the security policies using Z specification language and informally proved
the correspondence between policies and top level functionalities. As a
result, we summarize the gist to choose a formal description language for
modeling a secure operating system and possibility of use Isabelle/HOL
as a formal tool.

1 Introduction

Formal methods have played a more and more important role in the develop-
ment of software and hardware systems. By describing some logic relations in a
system using strict mathematical language, one can prove the system conforms
to a given rule. Formal methods can also make reliability proofs on complex
software and hardware system so as to discover design faults that can not be
discovered by test and simulation previously. Formal methods can better control
software and hardware products’ development and provide a criterion for those
products [1] [2].

∗ This work is jointly supported by National Basic Research Program of China (973)
under Grant No. G1999035802, National Natural Science Foundation of China under
Grant No. 60373054 and National High-Tech Research and Development Program
of China (863) under Grant No. 2002AA141080.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 286–297, 2005.

c© Springer-Verlag Berlin Heidelberg 2005



A Formal Description of SECIMOS Operating System 287

The research of secure operating system begins in 1967’s Adept-50 project.
From that time on, the theories, technologies, and methods are established step
by step. Adept-50 is also the first attempt to implement multi-level military se-
cure mathematical model on running systems. A most influential result in the
infancy stage of secure operating system research is Bell&LaPadula model (BLP)
proposed by Bell and LaPadula in 1973. They give a formal description and an
informal notation of BLP and the interpretation of its implementation in Multics
system [3]. This is the beginning of application of formal methods in secure oper-
ating system. The UCLA Data Secure UNIX formally realizes BLP model later
and uses XIVUS’s theory prover to do formal proves. In the year 1985, United
States’ Department of Defense published the complete edition of Trusted Com-
puter System Evaluation Criteria (TCSEC)[4]. TCSEC have 7 different security
evaluation levels: D, C1, C2, B1, B2, B3 and A1. Each level corresponds to a set of
particular security characters and insurances. United States Army Secure Oper-
ating System [5] is a family of operating system developed according to TCSEC.
There are in fact two different systems: a TCSEC C2 level operating system and
a TCSEC A1 level operating system. ASOS A1 operating system constructs for-
mal specification and proofs in two levels: Abstract Security Model and Formal
Top-Level Description. ASOS developed a flow analysis tool working in Gypsy
Verification Environment to analysis convert channels in the system design. An-
other TCSEC A1 level secure operating system Logical Coprocessing Kernel
(LOCK) [6] is developed by United States National Security Agency (NSA) also
uses Gypsy specification language and GVE as its formal tool [7]. There is plenty
of other secure operating systems use formal method to insure design consistence,
but none of them has reached such a high security level as ASOS and LOCK do.

In the process of developing Security in Mind Operating System (SECIMOS),
we use Z specification language to formalize the secure policy models and use
ordinary English to describe top level security functionalities and informally
prove the correspondence between the policy model and top level security func-
tionalities. The rest of the paper is organized as follows, the basic architecture is
discussed in section 2, the Z specification of the secure policy models is discussed
in section 3, we compare several of formal tools and their potential for secure
operating system use in section 4, and we conclude our paper in section 5.

2 Basic Architecture of SECIMOS

Security in Mind Operating System (SECIMOS)[8] is a customizable secure op-
erating system developed by Institute of Software, Chinese Academy of Science
based on Linux 2.6 kernel which has already absorbs LSM (Linux Security Mod-
ule) framework as an indispensably part. This project makes uses of four secu-
rity policies each of which is implemented as a separate module Fig. 1. These
four modules are: module for Multilevel Security policy (MLS), module for Dis-
cretionary Access Control (DAC), module for Controlled Privilege Framework
(CPF) (This is used to control the behaviors of Trusted Process), module for
Privileged User (PUSER). To solve the policy conflicts, SECIMOS assign each
module an unsigned 16 bit “order” and an unsigned 8 bit “type”. The “order”
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field of each module indicates the module’s invoking order of the policy module
chain. The “type” field of each module has one of following value: null module
which means the module does not make decision, grant module which means
grant the access right even it is not allowed by the modules invoked later, con-
straint module which means the denial result be returned to the enforcement
part immediately, grant-constraint module which means immediately return the
decision to the enforcement part. SECIMOS enables runtime changing a mod-
ule’s type and order to resolve conflicts, and is an effective step towards the
adaptive secure operating system. This paper doesn’t discuss the principles of
LSM and module coordinator further. We will introduce four policy models used
SECIMOS rest of this section. In current implementation of SECIMOS all se-
curity policy modules are constraint modules. The system will deny an access
request if any one of four modules denies the request. This greatly alleviate the
job of formalization of SECIMOS as a whole because the security assurance is
distributed in series.

Fig. 1. Basic Architecture of SECIMOS

2.1 Mandatory Access Control (MAC) Policy Model

Our MAC policy model takes [9] approach which is a refinement of BLP model
for networks [10]. Below, the set of security properties associated with our model
are presented. Otherwise specially point out, the notions such as subjects set S,
objects set O, set of access modes A , security level mapping function level are the
same as in [10] or [3]. In our model, level function class f consists of four level
functions: level(O), level(S ), v-max(S ) and a-min(S ). Functions level(O) and
level(S ) are the same as before. However, the current-level(S ) function is replaced
by two new functions, v-max(S) and a-min(S). v-max(S) represents the maxi-
mum sensitivity at which a subject may view an object and a-min(S) represents
the minimus sensitivity at which a subject may alter an object. It is required that
for all subjects S : level(S ) ≥ v-max(S ) and v-max(S ) ≥ a-min(S ). The subset
of security levels defined by inclusive range between v-max(S ) and a-min(S ) is
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denoted by the set ran(S ). The set of trusted subjects are those subjects where
v-max(S ) �= a-min(S ) and the set of untrusted subjects are those subjects where
v-max(S ) = a-min(S ). The Tmach generalzation of the ∗-property is:

Definition 1. A State v = (b, M , f ) satisfies this generalization of the ∗-
property iff, for each triple (S, O, x) ∈ b:

1. x = r or w ⇒ v-max(S) ≥ level(O) and
2. x = a or w ⇒ level(O) ≥ a-min(S).

2.2 Discretionary Access Control (DAC)

Discretionary Access Control is based on identifier discrimination. The DAC
decide whether or not to grant access right to certain object like file and directory
etc to a subject according the object’s owner and subject’s identity. The DAC
secure policy module (Fig. 2) of SECIMOS is constructed over the traditional
DAC mechanism of Linux. It introduces Access Control List (ACL) to further
strengthen the DAC mechanism.

Fig. 2. Architecture of DAC Module

The ACL semantic rules are compatible with POSIX.1e+2c standard. Each
ACL is composed of a group of rules to store the one subject or a group of
subjects’ access rights to a given object.

2.3 Controlled Privilege Framework (CPF)

To make a secure operating system usable, there must have some processes
which is free of the control of Mandatory Access Control. These processes are
named trusted processes. To regulate the behavior of trusted process, SECIMOS
introduces a State-based trusted process restriction module: Controlled Privilege
Framework [11]. By analysis the source code, CPF module divides the lifetime
of the process into several so-called privilege states according to eight values:
uid, euid, suid, suid, gid, egid, sgid and fsgid. CPF assign each privilege state of
the process a set of capabilities and controlled system calls.
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Fig. 3. Privilege States Transition of Wuftpd (CPF)

In the system test, we select Washington University’s wuftpd as an example
(Fig. 3). At the beginning, wu-ftpd’s daemon process’s user ids’ are all 0 (root),
this corresponds to State1 in figure 3. When there is a connect request, a new
service process is established, after the user’s identity has been authenticated,
the new process’s effective user id (euid) is set to login in user’s id and the
process transits to State3 in figure 3. When root privilege is needed, process will
transit to State2. Finally State4 is sensitive state for execve system call. In this
state, also the process is assigned the privilege to call execve, but there will be
privilege parameters to constrain the programs it can execute.

2.4 Power User Security Module

In traditional Linux operating systems, there exist two kinds of users: the ordi-
nary user and the super user root. Ordinary user has limited privilege, while root
has sovereign power. Root can perform any operations on the objects in the sys-
tem; use any resource in the system. This contradicts the basic security principle:
the principle of minimal privilege. SECIMOS fine grain the root privilege into 10
privilege user roles. Each privilege role can only perform the allowed operation
in predefined scope. We do not formalize the Power User Security Module.

3 Formal Description of Secure Policy Models

We choose Z specification language [12] to descript our secure policy models:
MAC, DAC and CPF. Because the specification is very lengthy, we only describe
the most instructive parts.

3.1 Formal Description of MAC Secure Policy Model

As mentioned in section 2, our MAC secure policy model uses the TMACH
modification of original BLP model. According to TMACH, the set of subjects
is made up of unshared sets of trusted subjects and untrusted subjects:
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UnTSubject : PSubject
TSubject : P Subject

Subject = UnTSubject ∪ TSubject
UnTSubject ∩ TSubject = ∅

When a subject want to access a object, it must firstly get the access right
from the decision subsystem of the policy. If granted, the subject, object and
access type triple will add to current access set of system:

AddNewAccessTriple
ΔState
R? : Req1

b′ = b ∪ {new : AccessTriple |
new .S = R?.S ∧ new .O = R?.O ∧ new .x = R?.x}

f ′ = f
H ′ = H

According to our policy, the subject can get the read access right to the
object if and only if the subject’s security level vmax dominates the object’s
security level.

ReadPass
State
R? : Req1

R?.ra = get
R?.x = r
R?.S ∈ dom f
R?.O ∈ dom f
(f R?.S ).vmax dominate (f R?.O).vmax

As mentioned before, whenever a subject in system wants to access an object,
it must first request the access right from decision subsystem. After validated
the request, the decision subsystem will add the subject, object and access type
access-triple into current access set, otherwise, the State keeps invariant.

Rule GetRead =̂ (ReadPass ∧ AddNewAccessTriple ∧ Pass)
∨ (ReadDeny ∧ Invariant ∧ Deny)
∨ (¬ (ReadPass ∨ ReadDeny) ∧ Invariant ∧ Unknown)

In above definition, ReadDeny has the same structure as ReadPass while
ReadDeny represents the condition that the get read request should be rejected.
Invariant is a schema which indicating that the system state is kept unchanged.
Pass,Deny,Unknownare simply schemas representanswer to the get read request.

There are many other rules in our formal specification. Because the limitation
of space, we only list another rule ChangeObjectRange here. Under following
condition, a subject’s request of change a object’s security level can be granted:
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1. if the requesting subject is a trusted subject, or

2. the subject’s security level dominate the object’s security level and the goal
security level’s vmax equals amin (can not make the object a trusted subject)
and the new security level should not violate the ∗-property of current access
set and the new security level should keep the hierarchy rule that every
object’s security level should dominate its directory parent’s security level.

ChangePass
State
R? : Req3

R?.ra = change
R?.S ∈ dom f
R?.O ∈ dom f
R?.O /∈ Subject
(R?.range).vmax = (R?.range).amin
R?.S ∈ UnTSubject ⇒ (R?.range).vmax dominate (f R?.O).vmax
∀Triple : AccessTriple | Triple ∈ b ∧ Triple.O = R?.O •

(Triple.x = r ⇒ (f Triple.S ).vmax dominate (R?.range).vmax ) ∧
(Triple.x = a ⇒ (R?.range).amin dominate (f Triple.S ).amin) ∧
(Triple.x = w ⇒

( (f Triple.S ).vmax dominate (R?.range).vmax
∧ (R?.range).amin dominate (f Triple.S ).amin ) )

∀Opar : Object \ Subject | Opar ∈ dom f • R?.O ∈ H (Opar) ⇒
(R?.range).vmax dominate (f Opar).vmax

∀Ochd : Object \ Subject | Ochd ∈ dom f • Ochd ∈ H (R?.O) ⇒
(f Ochd).vmax dominate (R?.range).vmax

According to this rules, we can write security invariant and security theorems:
A system’s state is a secure state if and only if every access-triple in state’s access
set satisfy ∗-property:

SecureState
State

∀ p : AccessTriple | p ∈ b ∧ p.x = r •
(f (p.S )).vmax dominate (f (p.O)).vmax

∀ p : AccessTriple | p ∈ b ∧ p.x = a •
(f (p.O)).amin dominate (f (p.S )).amin

∀ p : AccessTriple | p ∈ b ∧ p.x = w •
(f (p.S )).vmax dominate (f (p.O)).vmax
∧ (f (p.O)).amin dominate (f (p.S )).amin
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Following theorem says that the rule ChangeObjectRangeSecure translate
secure state to secure state:

theorem ChangeObjectRangeSecure
Rule ChangeObjectRange ∧ SecureState ⇒ SecureState ′

The theorems like above in SECIMOS can all be proved using Z/EVES [13]
tools. The proof scripts are lengthy and proof time is long ( 20 minutes to prove
above theorem).

3.2 Formal Description of DAC Secure Policy Model

The state of DAC is made up of the current access set, a function ACL that
represent the access control list in the system, a function Owner that maps an
object to its owner.

State
b : P AccessTriple
ACL : OBJECT → (USER → PPERM )
Owner : OBJECT → USER

The decision subsystem of ACL security model grant access permission, if
and only if the request perm and the requestor: User is in the access control list
of the object to be accessed.

PermApprove
State
R? : Req1

R?.ReqPerm ∈ (ACL R?.O)(R?.User)

GetAccess operation add to current access set new access-triple.

GetAccess
ΔState
R? : Req1
D ! : Decision

ACL′ = ACL
Owner ′ = Owner
b′ = b ∪ {Triple : AccessTriple | Triple.User = R?.User ∧

Triple.O = R?.O ∧ Triple.x = R?.ReqPerm}
D ! = Approve

PermCheck is the state transition rule for DAC secure policy model.

PermCheck =̂ (PermApprove ∧ GetAccess) ∨ (¬ PermApprove ∧ AccessDeny)

GivePerm and RescindPerm describe the rule for add a entry to object’s
access control list and remove a entry from object’s access control list.
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GivePerm
ΔState
R? : Req2

R?.Caller ∈ PrivUser ∪ {Owner(R?.O)}
R?.ra = give
b′ = b
ACL′ = ACL⊕ {R?.O (→ {R?.User (→ (ACL R?.O)(R?.User) ∪ {R?.ReqPerm}}}
Owner ′ = Owner

RescindPerm
ΔState
R? : Req2

R?.Caller ∈ PrivUser ∪ {Owner(R?.O)}
R?.ra = rescind
b′ = b
ACL′ = ACL⊕ {R?.O (→ {R?.User (→ (ACL R?.O)(R?.User) \ {R?.ReqPerm}}}
Owner ′ = Owner

3.3 Formal Description of CPF Secure Policy Model

As mentioned in section 2, CPF is a state based trusted process control frame-
work. In the /etc/smos/cpf directory of SECIMOS operating system, there ex-
ists a configuration file prog.conf. In the file prog.conf, there will be a Prog-
PrivTableEntry for each privilege state of each trusted program. prog refers to
the disk program like “wuftpd”, pstate is the privilege state and priv info is
various of capabilities and operating parameters a process of program prog have
in privilege state pstate.

ProgPrivTableEntry
prog : Prog
pstate : PState
priv info : P(Priv × PParam)

On the other hand, the system state as a whole consists of the ProgPrivTable
made up from ProgPrivTableEntries, b: the current access set and several of
privilege mapping functions. For example, Proc PState maps one of the process
in system to the privilege state that process is current in.

State
ProgPrivTable : P ProgPrivTableEntry
User Priv : User → PPriv
Proc PState : Proc → PState
Proc User : Proc → User
Proc Prog : Proc → Prog
Proc Creds : Proc → P(Priv × P PParam)
b : P AccessTuple
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The description of secure state in CPF is lengthy, and we don’t discuss it
here. There are also many theorems about secure invariant of CPF secure policy
model which can be proved by Z tools for example Z/EVES [13].

4 Comparison of Formal Methods for Secure Operating
Systems

There are more than two hundred of formal tools existing today. According to
the verification approach taken, they can be divided into two categories: Model
Checking and Theory Proving. Model checking mainly depends on constructing
the finite state model of system and verifying the desired property of the model.
The verification of model checking is automatic and speedy. SPIN [14] and SMV
[15] are the most famous tools of model checking. The above two model checking
tools are used in NASA’s space craft projects to check software fault. Model
checking has the unconquerable shortcoming of combinatory exploding, and not
suitable for complicated state transformation systems such as secure operating
systems as a whole (model checking can apply the limited formalization on some
parts of secure operating system). A theorem proving system includes a set of
axioms and a set of induction rules, the verification produce is to prove given
property of system start from system axioms using the induction rules. Theorem
proving is usually human-machine interactive: people should give proof hints to
machine during the proving steps. Theorem proving methods can describe and
verify systems with infinite states. The most influential theorem proving tools
is Gypsy specification language and GVE (Gypsy Verification Environment) [7].
The high security level operating systems ASOS and LOCK all use Gypsy and
GVE as formal methods. The reason to choose Gypsy is that it clearly maps the
specification to implementation. But GVE has shortcomings in secure theorem
proving: GVE is not adaptable, after small change in specification, the proof
procedure as whole needs to be rewrite from beginning, and Gypsy is not suitable
for divide and conquer prove for large problem space. Z specification language
gives a clean and punctual specification to state based systems, the Z/EVES has
many nice features in proof management. On the other hand, Z/EVES’s proof
power is greatly impaired by its deficiency in handling of recursive date types and
recursive function proving. Another formal tool, Isabelle/Isar [2] used mainly in
protocol verification is a good candidate for formalizing secure operating systems.
It is an open source project written by ML. It supports many computational
logics such as HOL (High Order Logic) and FOL (classical and intuitionistic
first order logic). Its good qualities on recursive definition and theorem proving
reflect the characteristic of its underlining ML language. Following is a mutual
recursive definition of Tmach [9] based secure lookup:

constdefs
ReadDirJudgement :: "States => Objects => (’a,’b’,’c)env => uid ⇒ bool"
"ReadDirJudgement State1 AccessSubject file’ Accessuid ≡
(snd (GetRead State1 (|SubjectinTriple = AccessSubject, ObjectinTriple =
FileObject(attributes(file’)), AccessMode = Readable |) )) ∧
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( Accessuid = 0 ∨
Accessuid = owner (attributes(file’)) ∨
Readable ∈ others (attributes(file’))

)"

ReadDirJudgement is a isabelle description of function that judges if a sub-
ject is allowed to read a dir by MAC (Mandatory Access Control) and the usual
Unix file permission constraint.

consts
lookup_secure :: "States => Objects => uid ⇒ (’a,’b,’c)env => ’c list =>

(’a,’b,’c)env option × States"
lookup_secure_option :: "States => Objects => uid ⇒ (’a,’b,’c)env option

=> ’c list => (’a,’b,’c)env option × States"

primrec (lookup_secure)
"lookup_secure State1 AccessSubject AccessUid (Val a) xs = (if xs = [] then

(Some (Val a), State1) else (None, State1))"
"lookup_secure State1 AccessSubject AccessUid (Env b es) xs = (let State3

= (GetReadTran State1
AccessSubject (Env b es) ); judgement = (ReadDirJudgement State1

AccessSubject (Env b es) AccessUid) in
(case xs of
[] => (Some (Env b es), State1)

| y # ys =>
if (~judgement)

then
(None, State1)

else
lookup_secure_option State3

AccessSubject AccessUid (es y) ys
))"

The function lookup secure search recursively from the specified directory
until the operation is not permitted or the string of path name is exhausted and
the file is got. At the same time, the transition of system state is recorded.

Based on this definition, we can define many delicate theorems about recur-
sive properties of system and prove them.

5 Conclusions

During the formalization of SECIMOS, we strengthen the idea that formal works
is a indispensable part of developing secure operating systems. During the for-
malization procedure, we find some design faults in Linux Security Module and
report the bugs to corresponding mailing-list. We write more than 30 security
theorems and 40 auxiliary lemmas in order to prove them. The intermediate
proof results are more than 150’000 lines long. We encountered many difficul-
ties in theorem proofing; many of them are insurmountable using current Z
tools. This is not expected in the pre-design stage of SECIMOS when we are
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investigating existing formal methods. From that experience and long-time re-
investigation, we propose Isabelle/Isar as a good candidate in further developing
of Chinese secure operating systems.
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Abstract. The 0-delay is a mathematical model to evaluate the average
impact of attacks on a billing infrastructure, that is an infrastructure that
supports the billing of a set of users for some service. The model describes
the search for vulnerabilities as a competition between a set of attackers
and one of defenders, that are interested, respectively, in attacking and
patching the infrastructure. As implied by its name, the model assumes
that both the attack and the patching occur as soon as the vulnerability
is discovered. The model assumes that the impact increases with the size
of the vulnerability window, the time in between the discovery of the
vulnerability by an attacker and by a defender and it relates this size to
the numbers of attackers and of defenders. After describing the model,
we describe some applications and generalizations.

1 Introduction

A billing infrastructure is any networked system deployed to bill a set of users for
some service supplied either by the same system or by a distinct one. Well-known
examples are public utility infrastructures such as those for the distribution
of electric power or water, where a meter measures the amount of power or
water distributed to the user. Through the infrastructure, the meter sends the
running total to a database that is used to compute the user bill. The revenue
of the infrastructure owner is the overall amount of the bills. The lifetime of a
billing infrastructure is fairly long because most of its components are physically
distributed on a wide area so that their update is expensive.

We assume a proactive attitude of the infrastructure owner that does not
wait for someone else to find vulnerabilities and are interested in the defini-
tion of a mathematical model to drive the owner investment in the search and
the elimination of vulnerabilities after the infrastructures has been deployed
[1,2,3,5,7,12,13,14,15,17,19,25]. For these reasons, we are focused on vulnerabil-
ities that enables attacks [3,5,7,19] resulting in losses in the revenue and neglect
other impacts of attacks, such as denials of service. We assume that two sets
of people compete in the search of vulnerabilities: attackers and defenders. The
goal of a defender is to patch the infrastructure [10] to prevent an attack. In-
stead, attackers are interest in attacks to reduce the user bills. The number of

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 298–310, 2005.

c© Springer-Verlag Berlin Heidelberg 2005



A Theoretical Model for the Average Impact of Attacks 299

defenders depends upon the investment in security of the owner after the de-
ployment. In a billing infrastructure, the loss of revenues due to a vulnerability
V, i.e. the impacts of attacks exploiting V, depends upon the vulnerability win-
dow of V [8,26,27]. This window is the interval of time from when an attacker
discovers V till when a defender finds V as well. The proposed model, 0-delay
model, evaluates the loss in the revenue in terms of the window size and of the
numbers of attackers and of defenders. As implied by its name, the model as-
sumes that both the patching and the attacks are immediately executed as soon
as either the defenders or the attackers find a vulnerability. The model may be
integrated with game theory [21] to define an optimal allocation of attackers and
defenders to the search of vulnerabilities. The model also enables the owner to
determine whether to deploy the infrastructure even if some vulnerabilities have
not been removed because he/she is willing to accept the average impact of the
attacks enabled by the remaining vulnerabilities. Lastly, the model may be used
to evaluate the advantages of open source components vs. proprietary ones with
a ”security through obscurity” approach [5,6].

The importance of a quantitative evaluation of attack impacts has often
been stressed [5,17,18,23,25]. [25] presents a survey of current approaches and
introduces the notion of market price of vulnerability. This notion cannot be
immediately applied to a billing infrastructure where this price depends upon the
service billed rather than the infrastructure components. [16] applies game theory
to information warfare while [21] applies an insurance inspired methodology to
optimally allocation a set of defenders to minimize the impact of a terrorist
attack on a set of targets. The competition between defenders and attackers in
the search for vulnerabilities has previously been considered in [9,23] but these
works are focused on the disclosure policy rather than on attack impacts. Some of
our assumptions are similar to those of [23] to compute the probability of finding
a vulnerability. [9] considers the search for vulnerabilities and a social planner
that decide when a vulnerability is disclosed. Coherently with the evaluation
of disclosure policies, it assumes that a vulnerability is discovered by a benign
user, i.e. a defender, rather by an attacker. Furthermore, most of the works on
vulnerabilities and attacks considers general-purpose systems rather than billing
infrastructure.

Sect. 2 introduces the 0-delay model and shows how it defines the average
impact of an attack as a function of the numbers of attackers and defenders
as well as of the vulnerability window. For the sake of simplicity, at first a
simplified version of the model is introduced. Then, a more general version is
defined by relaxing some of the constraints. Sect. 3 briefly outlines some alter-
native developments of our work. At first, we consider an infrastructure with
several vulnerabilities and we show that, also in this case, the impact is always
a function of the numbers of attackers and defenders searching for distinct vul-
nerabilities. Lastly, we show how our model may contribute to the debate on
”security through obscurity” and on the adoption of open source components.
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2 The 0-Delay Model

After discussing its main underlying assumptions and constraints, we present
the 0-delay model in some details, Then, the model is generalized by removing
some of the initial constraints.

2.1 Underlying Assumptions

Besides the one implied by its name, the most important assumptions underlying
the 0-delay model concerns the existence of one vulnerability, denoted by V,
and that the billing infrastructure is deployed even if V has not been removed.
The former will be discussed in the next section. The latter, in general, it is
satisfied because it may be not cost effective to deploy the infrastructure only
after removing any vulnerability. Furthermore, the infrastructure owner has a
proactive attitude towards the search for vulnerabilities. Given the existence of
V and the proactive owner attitude, two sets of people are searching for V, the
attackers and the defenders. The attackers search for V to define and implement
an attack, the defenders, instead to patch the infrastructure.

In the 0-delay model, time is considered as a sequence of intervals with the
same size δt, in the following at time t means during the t-th interval. If a
defender finds V, in the same interval, the patch is defined and applied to the
infrastructure. We assume that the time to develop a patch is independent of the
number of defenders and that δt is larger than the time to start and complete the
patching process. If a defender finds V at time t, any attack implemented after
t fails. If, instead, an attacker finds V at time t before any defender, then at the
same time the attack occurs and the loss begins. The loss ends only when, and
if, the defender finds V and patches the infrastructure. Notice that δt depends
upon the considered infrastructure and that it cannot be reduced at pleasure
because it should suffice both to define and execute an attack and to define and
apply the patch. The probability of discovering V is the same for any interval,
although it may be different for an attacker and for a defender. This problem
will be detailed in the following.

A further assumption concerns the absence of information exchange between
the attackers and the defenders or within each set during the search. Hence, no
information from other people is available to speed up the search. However, as
soon as the attack has been discovered, it is immediately broadcast to anyone
that can implement it and all the attacks are immediately executed. This is a
worst-case for the defenders because any delay in the execution of attacks reduces
the loss. Furthermore, if the attacks are not simultaneous, the detection of one
attack may simplify the search of the defenders.

The model assumes that the impact of an attack is proportional to the size
of the vulnerability window and that lifetime of the infrastructure is unbounded,
i.e. the infrastructure is updated only to remove any vulnerability. The latter
is realistic only for the long-term components of the infrastructure, such as the
hardware of an ATM or a meter in the user house. Hence, the model should
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be applied to vulnerabilities of these components only. Notice that the two as-
sumptions jointly imply that, in principle, there is no bound on the impact of
a successful attack because this impact is proportional to the size of the vul-
nerability window but this size is unbounded if the defenders do not remove a
vulnerability discovered by an attacker.

2.2 The 0-Delay Model

Here and in the following, the terms impact of attacks and loss in the infrastruc-
ture revenue are considered as synonymous and will be freely interchanged, The
0-delay model makes it possible to compute I(na, nd), the impact of an attack
as a function of na and nd, the numbers of attackers and of defenders. I(na, nd)
is positive if and only if the size of the vulnerability window is positive and it is
proportional both to this size and to the number of successful attacks. This is
summed up in the relation:

I(na, nd) =
{

nsaA · U lossA · (td(nd) − ta(na)) if td(nd)− ta(na) ≥ 0
0 if 0 ≥ td(nd) − ta(na)

where:

– ta(na) is the time when one of the na attacker discovers both V and A, the
attack enabled by V;

– td(nd) is the time when one of the nd defenders finds V and patches the
infrastructure,

– td(nd) - ta(na)is the size of the vulnerability window,
– nsA is the number of instances of A that are successfully executed. nsA

is always larger than na, that is nsA = ψ · na, ψ ≥ 1. In turn, ψ is a
decreasing function of the resources and the skills to execute A and it reaches
its maximum if A can be fully automated by proper programming tools [29]

– U lossA is the loss in the infrastructure revenue for unit of time due to each
attack that is an instance of A.

The 0-delay model assumes that nsa · U lossA is a constant.

If Aver(R) denotes the average value of the random variable R, then

Aver(I(na, nd)) = nsA · U lossA ·Aver(td(nd) − ta(na))

In the following, we drop the dependency from the number of attackers or of
defenders from both ta(na) and td(nd) and replace td(nd)-ta(na) by either td-ta
or simply by vw. We are interested in the positive values of vw because these are
the only cases where A is successfully executed. Instead, anytime vw <0 there
is no loss, because the loss is zero.

Aver(vw), the average size of the vulnerability window depends upon P (vw =
i > 0|na, nd), the probability that vw = i if there are na attackers and nd
defenders. This probability is a function of both Pd(nd,t) and Pa(na, t) the
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probabilities that the attackers or the defenders find V exactly at time t i.e. that
td=t (or that ta=t). In turns, Pd(nd,t) and Pa(na, t) are a function of Pd(nd)
and Pa(na), the probabilities that, respectively, at least one of the nd defenders,
or one of the na attackers, finds V in a single time interval. Since both Pd(nd)
and Pa(na) are time independent, we have that:

Pd(nd, t) = (1− Pd(nd))t−1 · Pd(nd)

Pa(na, t) = (1− Pa(na))t−1 · Pa(na)

Taking into account that each attacker and each defender works in isolation,

Pd(nd) = 1− (1 − Pd(1))nd
Pa(na) = 1− (1− Pa(1))na (1)

where Pd(1) and Pa(1) are, respectively, the probabilities that a defender and
an attacker finds V in one interval of time. In the following,we assume that
Pd(1) = Pa(1) so that each attacker and each defender have the same probability
of finding the vulnerability in one interval.

This assumption neglects that a defender can access an amount of the infor-
mation on the infrastructure larger than the one of the attacker and that this
asymmetry should, at least in principle, simplify the search of the defender. To
model this asymmetry while preserving Pd(1) = Pa(1), the number of defend-
ers may be multiplied by a constant factor ϕ, ϕ ≥ 1 before applying the 0-delay
model. In the following, we assume that the number of defenders has already
been multiplied by ϕ and drop the dependency of the probabilities from Pd(1)
and Pa(1).

The previous consideration shows that the following relation holds:

P (vw= i|na, nd)= lim
N→∞

N−i∑
ta=1

(1−Pa(na))ta−1·Pa(na)·(1−Pd(nd))ta−1+i·Pd(nd)

This defines the probability that vw = i as the limit of the sum of the
probabilities of all the cases where:

1. an attacker finds V at ta,
2. the first defender find V at td=ta+i,
3. both ta and td belong to the range 1..N.

Under these condition ta is, at most, equal to N-i because td always belongs
to 1..N. Furthermore, we can consider the limit of the sum as N, the upper
bound on td goes to infinity because we have assumed an unbounded life of the
infrastructure. From a practical point of view, this introduce an error that is
acceptable anytime the life of the infrastructure will be much larger than δt.

It can be proved that:

P (vw = i > 0|na, nd) = Pa(na) · Pd(nd) · (1− Pd(nd))i

1− (1 − Pa(na))
· (1− Pd(nd))
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Starting from this result, we can compute P (vw = 0|na, nd), the probability
that the size of the window is zero because the defenders discover the vulnera-
bility before the attackers:

P (vw = 0|na, nd)=1−
∞∑
i=1

P (vw = i|na, nd)=
Pd(nd)

(1− (1− Pa(na))) · (1− Pd(nd))

Taking into account that a loss occurs if and only if vw ≥ 1, we have that

Av(I(na, nd)) = U lossA · nsA ·
∞∑

i=1

i · P (vw = i|na, nd)

that can be further simplified to

Av(I(na, nd))=U lossA ·nsA ·Pa(na)
1− Pd(nd)

Pd(nd) · (1− (1− Pa(na)) · (1 − Pd(nd)))

By replacing Pd(nd) and Pa(na), according to (1), and then both Pd(1) and
Pa(1) by p, we have that

Aver(I(na, nd)) = U lossA · nsA · (1− (1− p)na) · (1− p)nd

(1− (1− p)nd) · (1− (1− p)na+nd)

Taking into account that p is fairly small because δt is small, we can exploit
(1− q)n ≈ 1− q · n and rewrite the equation for the average impact as follows:

Aver(I(na, nd)) ≈ U lossA · 1− p · nd

p · nd · (1 + nd
na )

The approximation (1 − q)n ≈ 1 − q · n may be applied to the probability
that no loss occurs as well. In this way, we can deduce that:

P (vw = 0|na, nd) ≈ 1
1 + na

nd

Hence, the probability that no loss occurs

– depends upon the ratio between the number of attackers and of defenders
rather than upon both the number of attackers and the one of defenders

– is independent of the probability that an attacker or a defender finds V.

To increase the accuracy of the approximation, we can reduce δt so that p is
reduced too. However, δt cannot be arbitrary small because it has to be larger
than both the time to define and implement an attack and the one to patch the
infrastructure.

By deriving Aver(I(na, nd)) with respect to nd and na, we can verify that
lower number of defenders and/or larger number of attackers always result into
larger impacts because of larger vulnerability windows.
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2.3 Loss as a Function of the Time of the Discovery

The 0-delay model may be applied also to compute Aver(I(na, nd, t))the aver-
age loss as a function of the time t when a defender discovers V. This loss is
interesting because it defines an upper bound on the owner investment in the
checks to be executed to discover attacks that may have occurred before t, i.e.
before patching the infrastructure [22]. These checks are the first step to recover
the loss due to the attacks but, since they may be rather expensive, an estimate
of the loss enable the owner to choose whether it is more convenient to simply
accept any loss that may be occurred before t.

Because of the assumptions of the 0-delay model, we have that

Aver(I(na, nd, t)) = U lossA · nsA ·Aver(Svw(k|t, na, nd))

where U lossA and nsA have the usual meaning and Svw(k|t, na, nd) is the prob-
ability that the size of the vulnerability window is k provided that the defenders
have discovered V at time t.

Aver(Svw(k |t, na, nd)), the average size of the windows depends upon
P (vw = k > 0|td = t, na, nd), the probability that vw = k provided that there
are na attackers, nd defenders and td=t. Since td=t and vw=k jointly imply
ta=t-k, because if the attackers discover V at t-k and the size of the vulnera-
bility window is k, then the attackers have discovered V at time t-k, we have
that

P (vw = k|td = t, na, nd) = P (ta = t− k|td = t, na, nd) (2)

Since the probability that the attackers finds V is independent of the one
that the defenders finds V, the following equality holds:

P (ta = t− k|td = t, na, nd) = P (ta = t− k|na, nd) · P (td = t|na, nd)

By replacing the equality in the right hand size of (2), we have that

P (ta = t−k|td = t, na, nd) = (1−Pd(nd))t−1 ·Pd(nd)·(1−Pa(na))t−k−1Pa(na)

.
We apply now the 0-delay model to compute the average size of the vulner-

ability window. According to the model, Aver(Svw(k|t, na, nd)) is equal to

(1− Pa(na)) · (1− Pd(nd))t−1 · Pa(na) · Pd(nd) ·
t−1∑
k=1

k · 1
(1− Pa(na))k

To simplify this expression, we exploit the fact that an estimate of the impact
is important only when V has been discovered after a fairly long time from the
infrastructure deployment. In fact, if the infrastructure is patched shortly after
being deployed, the loss cannot be very large because the size of the window is
bounded by the time from the deployment. Hence, we are interested in the loss
if the value of ta is large and, in this case, the following approximation holds
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t−1∑
k=1

k

(1− Pa(na))k
≈ 1− Pa(na)

Pa(na)2

By applying this approximation, we have that

Aver(Svw(k|t, na, nd))≈((1−P (nd))·(1−P (na)))t−1 ·Pa(na)·Pd(nd)·1 − Pa(na)
Pa(na)2

Lastly, we exploit again (1) to replace the values of the probabilities that
an attacker or a defender finds a vulnerability as well as the approximation
(1− q)n ≈ (1− nq). In this way, the formula for Aver(Svw(k|t, na, nd)) may be
simplified as following

Aver(Svw(k|t, na, nd)) ≈ (nd · (t− 1) + na · t) · nd

na
≈ (nd + na) · nd

na
· t

Lastly, by exploiting the previous approximation, we have that

Aver(I(na, nd, t)) = U lossA · (nd + na) · nd · t

2.4 Generalization of the Model

This section generalizes the 0-delay model by removing some of the constraints
previously introduced.

At first, we consider the interval of time between discovering the vulnera-
bility and patching of the infrastructure. In most cases, the time to produce
and validate the patch or to update some components will be larger than zero.
The associated delay increases with the number of the infrastructure compo-
nents to be corrected. Consider, as an example, the vulnerabilities in the WEP
authentication scheme. Hence, the delay DP between the discovery of the vul-
nerability and the complete patching of the infrastructure may be fairly larger
than zero. We assume that DP is not fixed but that it does not depend upon
other parameters of the model. Let MDP be an upper bound on DP.

To take DP into account, we update the definition of the vulnerability window
and properly increase its size. Hence, if the defenders discover the vulnerability
at td and the infrastructure is patched at td + MDP then vw = td− ta + MDP .
Obviously, the average value of the new delay can be computed by adding MDP

to the previous one. Furthermore, any delay DA between the discovery of V and
the execution of the attacks exploiting V can be handled in the same way. If
MDA is the upper bound on the time to discover an attack, in the most general
case, we have that

vw = td− ta + MDP −MDA = td− ta− (MDA −MDP )

To compute the corresponding average loss, we consider that now the prob-
ability of a window with a size equal to td− ta− (MDA−MDP ) is the the same
of a window with a size (td− ta) in the 0-delay model.
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The previous discussion shows that the framework of the 0-delay model can
handle constant delays both in the patching and in the attack, provided that all
the attacks are executed simultaneously. Hence, constant delay may be a more
appropriate name for the model.

Let us consider now the constraint on the simultaneous execution of attacks.
As already mentioned, this is a worst case for the defenders because any delay in
the execution of attacks reduces the loss. By relieving this constraint, the overall
number of attacks does not change but attacks may occur at distinct times. As
an example, at each interval, someone could implement Att and then inform i
other people so that the number of attacks at t is i times that at t− 1. If V has
been discovered at ta and Natt(t) denotes the overall number of attacks executed
at t, t > ta we have that

NAtt(t) =
it−ta+1

i− 1
In the most general case, if fa(t) is the number of attacks executed at t, t > ta

NAtt(t) =
t−ta∑
tv=0

fa · (ta + tv)

δaa, the size of the interval to execute all the attacks, satisfies the following

NAtt(δaa + ta) = nsA

To compute the loss, we notice that two cases have to be considered if vw>0:

1. td > ta + δaa, if the defender discovers V after all the attacks have been
executed,

2. ta + δaa > td, if the defender discovers V before all the attacks have been
executed.

In case 1), the overall loss results from the sum of two components. The first
one is the loss due to attacks in in the interval (ta+δaa, td) that is equal to

U lossA · nsA · (td− ta− δaa)

The other component is the loss in the interval (ta, ta+stca) that is equal to

U lossA ·
δaa∑
t=0

fa(t) · (δaa− t)

because it is proportional to (δaa-t).
In case 2), the overall loss is

U lossA ·
td−ta∑
t=0

fa(t) · (td− ta− t)

This shows that, as in the 0-delay model, we can pair each size of the vulnerability
window with a loss. Then, the average impact can be computed if we take into
account that the probability of a loss is the same of the size of the window.
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In a further case, the overall number of attacks reaches nsA asymptotically.
As an example, the number of attacks in an interval of time sharply increases
after discovering V and then approaches zero in a few intervals of time after this
maximum. This behavior may be modeled by a Weibull distribution so that the
number of attacks executed at ta + δt, δt > 0, is nsA ∗W (δt) where

W (δt) = 1− e−( δt
α )γ

α and γ determine both the shape of W(t) and the standard deviation. The
latter goes to zero as γ increases. In this case, the overall loss in the revenues
may be approximated as

U lossA · nsA · vw · (1 − e−( vw
α )γ

)

Again, this value may be computed starting from the probability distribution of
the window size.

3 Future Developments

This section briefly outlines some developments of our work by discussing the
case of an infrastructure with several vulnerabilities. Then, we also how the 0-
delay model can contribute to the debates on ”security through obscurity” and
on the security advantages of open source components. A further, fundamental,
problem to be considered concerns the validation of the theoretical model results
against those of some real billing infrastructure. Access to real data is fairly
complex because it is well known that owners are not willing to reveal such data.

3.1 Infrastructure with Several Vulnerabilities

In an infrastructure with several vulnerabilities, the worst case for the defender
is when the vulnerabilities are independent, because the discovery of one vulner-
ability does not improve that of discovering the other ones. In the case of such
an infrastructure, we assume that attackers and defenders may be assigned to a
vulnerability. This is not a contradiction even if no a priori information on the
vulnerabilities is available, because we assume that each attacker and each de-
fender consider just one component of the infrastructure. Hence, two defenders
or two attackers are assigned to distinct vulnerabilities if they consider distinct
components. This assumption implies that each vulnerability is always paired
with exactly one component even if it arises because of the interactions among
several components. The component a vulnerability Vi is paired with determines
two important parameters namely the loss in the infrastructure revenue for unit
of time due to attacks enabled by Vi and the probability pi of finding Vi. If
these parameters are known, the 0-delay model, or the constant-delay one, can
be applied to compute the average loss due to Vi or the number of defenders to
be assigned to Vi to reduce such a loss under some predefined threshold.

However, the most interesting problem to be solved is the relation among
the loss due to each vulnerability and the overall allocation of attackers and
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defenders to the various vulnerabilities. Two cases have to be considered. In the
first one the number of attackers allocated to a vulnerability is known when
allocating the defenders to the same vulnerability, and the other way around. In
the other, more interesting, case the allocations of attackers and of defenders are
chosen simultaneously. In this case, the allocation of a resource, i.e. an attacker
or a defender, to the search for vulnerabilities can be modeled as a strategy
game with two players, the attacker and the defender. The attacker manages a
pool with na resources, the attackers, while the defender, i.e the infrastructure
owner, manages a pool with nd resources, the defenders. The move of each player
defines a tuple with n integers, one for each vulnerability and the i-th integer
of the tuple defines the resources allocated by the player to the corresponding
vulnerability.

The complete definition of the game requires those of utility functions of
both players. Both functions always depend upon the resources allocated to
each vulnerability, but alternative definitions are possible. As an example, the
utility of the attacker may be the average loss of the infrastructure, i.e. to the
sum of the average impacts of attacks enabled by the vulnerabilities, while that
of the defender may the inverse of this function. This defines is a zero sum game
where the loss of a player is the utility of the other one. In other cases, the utility
functions may be defined in terms of the probability that no loss occurs.

In all these cases, we can exploit the main results of game theory, starting
from the Nash equilibrium, to define an optimal strategy for each player [22].
It is worth noticing that a worst case for the defender arises anytime the de-
fender allocates a few resources to a vulnerability, say Vj and, simultaneously,
the attacker allocates a large number of resources to the same vulnerability. The
0-delay model shows that these allocations result into a large impact due to Vj

because of the large difference between the numbers of attackers and of defenders.

3.2 “Security Through Obscurity” and Open Source

The 0-delay model supports the introduction of some mathematical considera-
tions into the discussion of ”security through obscurity”. This philosophy favors
proprietary solutions with respect to open source ones, under the assumption
that the lack of information on the infrastructure obstacles the search for vulner-
abilities of the attacker. In this way, the attacker has to study a ”live” system,
which is much more dangerous. As discussed in the previous section. 0-delay
models the asymmetry between the attackers and the defenders through the
constant ϕ that multiplies the number of the resource of the defender so that
we may assume that the probability of finding a vulnerability is the same for
each resource. In a ”closed” solution, and if the number of the resources of the
attacker is constant, ϕ increases the number of the resources of the defender to
take into account the larger amount of information these resources can access.
As a consequence, in an infrastructure exploiting a proprietary solution, if the
technical skills of the attackers and of the defenders are comparable, ϕ will be
larger than one and inversely related to public information on the infrastructure
or on the considered component.



A Theoretical Model for the Average Impact of Attacks 309

Instead, the main advantage of the adoption of an open source, or at least
an off-the-shelf, component, is that the number of resources searching for a vul-
nerability may become much larger than the pool managed by the defender. In
fact. the search for the vulnerabilities may involve also other instances of the
component in distinct infrastructures. As a counterpart, the number of attack-
ers may increase as well, because other people may be interested in attacking
distinct instances of the component. However, if the open source component is
widely adopted, the defender is fairly sure that, independently of the strategy
to allocate his/her resources, all the vulnerabilities in all the components will be
covered because other people are searching for them. Hence, it is highly unlikely
that very few defenders are searching for a vulnerability and that it will not
arise the dangerous case considered at the end of Sect. 3.1 where a few defender
resources are allocated to a vulnerability. We stress that an open source com-
ponent cannot guarantee by itself the existence of a larger pool of resources for
either the attacker or the defender because the sizes of these pools depend upon
the adoption of the component in distinct systems, i.e. being open source is a
necessary but not sufficient condition for larger pools of resources.

When adopting an off-the-shelf component, the number of resources search-
ing for vulnerabilities may be actually so large that these numbers are almost
independent of the pools managed by, respectively, the attacker and the defender.
This may be a noticeable advantage with respect to a proprietary solution any-
time the number of defenders cannot be very large. Consider, as an example,
a small enterprise where the defenders may also have limited skills in this very
specific field. Instead, if the expected number of attackers is low and they are
low skilled, the adoption of an open source component may be a disadvantage.

Since it is defined in terms of ϕ, na and nd, i.e. the numbers of attackers
and defenders, the 0-delay model makes it possible to compare in a quantitative
way the advantages of a proprietary solution, i.e. a smaller number of attackers
and defenders, against those of a widely adopted open source component, i.e. a
larger numbers of both attackers and defenders. Even if the values of ϕ, na and
nd that are used are just a rough approximation of the real ones, some general
guidelines on the relative advantages of proprietary or open source components
may be deduced from the mathematical framework underlying the 0-delay model.
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Abstract. Vulnerability detection and security level estimation are actual tasks 
of protecting computer networks. The paper considers the models and architec-
tures of intelligent components intended for active analyzing computer network 
vulnerabilities and estimating its security level. The offered approach is based 
on simulation of computer attacks on different levels of detail and intended for 
implementation at various stages of computer network life cycle, including de-
sign and exploitation stages.  

1   Introduction  

According to CERT statistic [1] the quantity of attacks on computer networks, their 
complexity and extent of damage, caused by malefactor’s attacks in the Internet, 
grows each year. The reason is a low security level of majority of systems connected 
to the Internet. The most common failures exist in operating system (OS) and applica-
tions software configuration, software maintenance, user management and administra-
tion, including improperly configured OS and applications, incorrect password policy 
and improper access control settings, existence of vulnerable or easily exploited ser-
vices and malicious software (Trojans, worms, etc.). Therefore now vulnerability de-
tection and estimation of security level of computer networks are actual tasks of in-
formation assurance.  

A special class of systems exists for solution of these tasks − vulnerability assess-
ment or security analysis systems (SAS) [18, 26]. The contemporary SAS destine to 
fulfill checking the system defended against the specified system configuration and 
security policy for non-compliance and identifying technical vulnerabilities in order 
to correct them and mitigate any risk posed by these vulnerabilities. The main objec-
tive of SAS components is to identify and correct the system management process and 
security policy failures that produced the vulnerabilities detected. The other important 
functions are security level estimation, supporting effective interface for control of 
scanning process, creating reports and automatic updating vulnerability signatures. 
The SAS components should scan system, update the system configuration according 
to the specified security policy and system configuration and also send inquiries to 
modify the security policy if it is necessary. It is a cycle that must be repeated  
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continuously. Moreover, it is important to carry out vulnerability assessment and se-
curity analysis during the whole life cycle of computer networks, including initial 
stages of analysis and design.  

The paper is devoted to creating the models, architectures and prototypes of intel-
ligent components of vulnerability detection and security level estimation which allow 
expanding functional capabilities of existing SAS based on penetration testing and 
simulation. The main attention is devoted to design stage. We describe the architec-
ture of security analysis system offered and models implemented in this system, in-
cluding the models of attacks, analyzed computer network (estimating the attack re-
sults and the system’s responses to attacks) and security level assessment. The rest of 
the paper is structured as follows. Section 2 outlines the approach suggested and re-
lated work. Section 3 describes the architecture of security analysis system developed 
and its implementation issues. Section 4 gives an outline of generalized attack model 
used for vulnerability assessment and security level estimation. Section 5 describes 
the model of analyzed computer network. Section 6 presents the model of security 
level evaluation. Section 7 gives an overview of case study used for checking the ap-
proach suggested. Section 8 summarizes the main results and future research.  

2   Related Work  

In the paper we suggest the approach which is based on mechanism of automatic con-
struction and replaying of distributed attacks scripts by combining known attacks 
fragments taking into account various intentions and experience level of malefactors. 
The results of attacks allow to calculate different security metrics which can be used 
for defining as the common security level of computer network (system) as well as 
security levels of its components. This approach can be used at different stages of 
computer network life cycle, including design and exploitation stages.  

At the design stage, SAS should operate with the model of analyzed computer 
network generated from preliminary or detailed design specifications. The main ap-
proaches to vulnerability assessment and security analysis can be based on analytic 
calculation and imitation (simulation) experiments. Analytical approaches use as a 
rule different risk analysis methods [2, 11, 25, 28, 37, etc.]. Imitational approaches are 
based on modeling and simulation of network specifications, fault (attack) trees, 
graph models, etc. [9, 10, 11, 14, 17, 22, 32, 33, 34, 35, 38, etc.].  

There are a lot of papers which consider different techniques of attack modeling 
and simulation: Colored Petri Nets [16], state transition analysis technique [12, 15], 
simulating intrusions in sequential and parallelized forms [5], cause-effect model [6], 
conceptual models of computer penetration [36], descriptive models of the network 
and the attackers [40], structured “tree”-based description [7, 20], modeling surviv-
ability of networked systems [19], object-oriented discrete event simulation [3], re-
quires/provides model for computer attacks [39], situation calculus and goal-directed 
procedure invocation [8], using and building attack graphs for vulnerability analysis 
[13, 23, 29, 33, 38], etc.  
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As one can see from our review of relevant works, the field of imitational ap-
proaches for vulnerability assessment and security level evaluation has been deliver-
ing significant research results. [32] quantifies vulnerability by mapping known attack 
scenarios into trees. In [14] a system architecture injects intrusion events into a given 
network specification, and then visualizes the effects in scenario graphs. Using model 
checking, Bayesian analysis, and probabilistic analysis, a multifaceted network view 
of a desired service is provided. [17] suggests a game-theoretic method for analyzing 
the security of computer networks. The authors view the interactions between an at-
tacker and the administrator as a two-player stochastic game and construct a model 
for the game. The approach offered in [34] is intended for performing penetration 
testing of formal models of networked systems for estimating security metrics. The 
approach consists of constructing formal state/transition models of the networked sys-
tem. The authors build randomly constructed paths through the state-space of the 
model and estimate global security related metrics as a function of the observed paths. 
[38] analyzes risks to specific network assets and examines the possible consequences 
of a successful attack. As input, the analysis system requires a database of common 
attacks, specific network configuration and topology information, and an attacker pro-
file. Using graph methods they identify the attack paths with the highest probability of 
success. [10] suggests global metrics which can be used to analyze and proactively 
manage the effects of complex network faults and attacks, and recover accordingly.  

At the exploitation stage of computes systems two main groups of methods can be 
used: passive (by analyzing logs, configuration files, etc.) and active (based on pene-
tration testing) [4, 21]. There are a lot of different SAS components which operate on 
the stage of exploitation. Examples are NetRecon, bv-Control for Internet Security 
(HackerShield), Retina, Internet Scanner, CyberCop Scanner, Nessus Security Scan-
ner, etc. The basic lacks of existing SAS are as follows: (1) use of the scanner does 
not allow to answer to the main question concerning policy-based systems - “Whether 
what is revealed during scanning correspond to security policy?”; (2) the quality of 
obtained result essentially depends on the size and adequacy of vulnerability bases; 
(3) implementation of active vulnerability analysis on the computer system function-
ing in a regular mode can lead to failures in running applications. Therefore not all 
systems can be tested by active vulnerability analysis; (4) existing network security 
tools can essentially influence on the results generated by scanners. Quite often the 
protection level evaluated from the place where the scanner is located is wrongly con-
sidered as a protection level of the whole network from all types of threats.  

3   The Architecture of Security Analysis System  

The architecture of security analysis system offered contains the following compo-
nents (fig.1): (1) user interface; (2) module of malefactor’s model realization; (3) 
module of scriptset (attack scenarios) generation; (4) module of scenario execution; 
(5) data and knowledge repository; (6) module of data and knowledge repository up-
dating; (7) module of security level assessment; (8) report generation module; (9) 
network interface.  
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At the design stage, the SAS operates with the model of analyzed computer net-
work (system). This model is based on design specifications. At the maintenance 
stage, the SAS interacts with a real computer network (system).  

Let us describe the functions of basic modules.  
The module of malefactor’s model realization determines a malefactor’s skill 

level, a mode of actions and an attack goal.  
The data and knowledge repository consists of a knowledge base (KB) about ana-

lyzed system, a KB of operation (functionality) rules, and a database (DB) of attack 
tools (exploits). This repository contains data and knowledge which are as a rule used 
by malefactor when he is planning and realizing attacks.  

The knowledge base about analyzed system includes data about the architecture 
and particular parameters of computer network (for example, a type and a version of 
OS, a list of opened ports, etc) which are needed for scripts generation and attack exe-
cution. This data usually can be received by malefactor using reconnaissance actions 
and methods of social engineering.  

The knowledge base of operation (functionality) rules contains meta- and low- 
level rules of “IF-THEN” type determining SAS operation on different levels of de-
tail. Meta-level rules define attack scenarios on higher levels. Low level rules specify 
attack actions based on external vulnerability database. IF-part of each rule contains 
(meta-) action goal and (or) condition parts. The goal is chosen in accordance with a 
scenario type, an attack intention and a higher level goal (specified in a meta-rule of 
higher level). The condition is compared with the data from database about analyzed 
system. THEN-part contains the name of attack action which can be applied and (or) 
the link on exploit. An example of one of rules is “IF GOAL = “Denial of service” 
AND OS_TYPE = “Windows_NT” AND OS_VERSION =4 THEN ping_of_death 
(PoD)”. Each rule is marked with an identifier which allows us to determine the 
achieved malefactor’s goal. For example, the rule mentioned above defines a denial of 
service (DoS) attack “ping_of_death”.  
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Fig. 1. Generalized architecture of security analysis system  
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The low-level rules of this database are generated on the basis of Open Source 
Vulnerability Database (OSVDB) [24]. For example, OSVDB vulnerability with id 
6117 shown on fig.2 can be translated to the following rule: «IF GOAL = “Buffer 
Overflow” AND PRODUCT_BASE_NAME = MDaemon AND 
PRODUCT_VERSION_NAME = “2.71 SP1” THEN HELLOEXPL.C». This rule cor-
responds to the exploit helloexpl.c from the DB of attack tools (exploits).  

<vuln osvdb_id="6117" osvdb_create_date="2004-04-08 22:45:51" 
last_modified_date="2004-05-14 04:56:29"> 

 <osvdb_title>MDaemon Long HELO Overflow</osvdb_title> 
 <disclosure_date>1998-03-11 00:44:45</disclosure_date> 
 <discovery_date>0001-01-01 00:00:00</discovery_date> 
 <exploit_publish_date>1998-03-11 00:44:45</exploit_publish_date> 
 <location_remote>1</location_remote> 
 <attack_type_dos>1</attack_type_dos> 
 <impact_available>1</impact_available> 
 <exploit_available>1</exploit_available> 
 <vuln_verified>1</vuln_verified> 
 <products> 
  <product affected="Affected"> 
   <vendor_name>Alt-N Technologies</vendor_name> 
   <base_name>MDaemon</base_name> 
   <version_name>2.71 SP1</version_name> 
  </product> 
 </products> 
 <ext_refs> 
…. 
  <ext_ref type_name="Generic Exploit URL" indirect="0"> 

http://do wnloads.securityfo-
cus.com/vulnerabilities/exploits/heloexpl.c</ext_ref> 

 </ext_refs> 
… 
</vuln> 

Fig. 2. OSVDB vulnerability of the MDaemon Long HELO overflow 

The DB of attack tools (exploits) contains exploits and parameters of their execu-
tion. A choice of a parameter is determined by the data in KB about analyzed system. 
For example, the program of ftp brute force password cracking needs to know the ftp 
server port which can be determined by port scanning.  

The module of scriptset (attack scenarios) generation selects the data about ana-
lyzed system from the data and knowledge repository, generates attack scriptset based 
on using operation (functionality) rules, monitors scriptset execution and scriptset up-
dating at runtime, updates data about analyzed system.  

The module of scenario execution selects an attack action and exploits, prognoses 
a possible feedback from analyzed computer network, launches the exploit and recog-
nizes a response of analyzed computer network.  

In case of interaction with a computer network a real network traffic is generated. 
In case of operation with the model of analyzed system two levels of attack simula-
tion are provided: (1) at the first level each low-level action is represented by its label 
describing attack type and (or) used exploit, and also attack parameters; (2) at the sec-
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ond (lower) level each low-level action is specified by corresponding packets of the 
network, transport and applied level of the Internet protocols stack.  

Network interface provides: (1) in case of operation with the model of analyzed 
system − transferring identifiers and parameters of attacks (or network packets under 
more detailed modeling and simulation), and also receiving attacks results and system 
reactions; (2) in case of interaction with a computer network − transferring, capturing 
and the preliminary analysis of network traffic. The preliminary analysis includes: (1) 
parsing of packets according to connections and delivery of information about packets 
(including data on exposed flags, payload, etc.) and connections; (2) acquisition of 
data about attack results and system reactions, and also values of some statistics re-
flecting actions of SAS at the level of network packets and connections.  

The module of security level assessment is based on developed taxonomy of secu-
rity metrics. It is a main module which calculates security metrics based on results of 
attack actions.  

The module of database and knowledge repository update downloads the open 
vulnerability databases [30] (for example, OSVDB - open source vulnerability data-
base [24]) and translates them into KB of operation (functionality) rules of low level.  

4   Generalized Attack Model  

Functioning of SAS is specified by the attack model implemented in the module of 
malefactor’s model realization. The model is defined as hierarchical structure that 
consists of several levels (fig.3). Three higher levels of the attack model correspond to 
an attacks scriptset, a script and script stages. The scriptset level defines a set of gen-
eral malefactor’s intentions (high level goals). This level corresponds to realization of 
series of scenarios which can be implemented by a group of malefactors. The script 
level defines only one malefactor’s intention. The set of script stages can contain the 
following elements: reconnaissance, implantation (initial access to a host), gaining 
privileges, threat realization, covering tracks and backdoors creation. Lower levels 
serve for malefactor subgoals refinement. The lowest level describes the malefactor’s 
low level actions directly executing different exploits.  

Two main methods of malefactor’s goal achievement are used in the attack model: 
(1) forward and (2) backward inference. Both of these methods use database of function-
ality rules selecting an item in the hierarchy of a general attack model. Forward inference 
makes exhaustive or limited search of actions available on a current hierarchy level. Exe-
cuting this inference method, SAS realizes all or limited number of available malefac-
tor’s low level actions for every script stage beginning from the first stage. Backward in-
ference implies generation of optimized chain of actions based on definition of 
malefactor intention (goal) beginning from the last action in the line to the first action.  

After definition of one or set of malefactor’s intentions SAS goes to next level of 
generalized attack model and generates needed scenarios and attack actions.  

The malefactor behavior strategy is defined by his model. In this model the male-
factors are classified by knowledge and an experience level into three groups: (1) a 
low level (“novice”); (2) a middle level; (3) a high level (“professional”). “Novice” 
utilizes for goal achievement the exhaustive forward inference method, middle level 
malefactor − limited forward inference method and “professional” − the backward in-
ference method.  
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5   Model of Analyzed Computer Network  

The model of analyzed computer network (system) intends for evaluating attack re-
sults and defining system reaction. It contains the following basic components (fig.4): 
network interface; module of malefactor actions recognition; module of attack result 
evaluation; module of system response generation; database about analyzed system, 
database of attack signatures.  

Network interface provides: (1) receiving identifiers and parameters of attacks; (2) 
transferring attack results and system reactions.  

Module of malefactor actions recognition is necessary at realization of detailed at-
tack modeling and simulation, i.e. when malefactor actions are represented as network 
packets. Functioning of this module is based on a signature method – the data re-
ceived from the network interface are compared to signatures of attacks from data-
base of attack signatures. Outputs of the module are identifiers and parameters of  
attacks.  

The knowledge base about analyzed system is created from the specification of 
analyzed system and structurally coincides with KB about analyzed system described 
in section 3. The difference of these knowledge bases consist in the stored data: KB of 
the model of analyzed system contains the results of translating the specifications of 
analyzed system; KB related to the generalized architecture of SAS is initially empty 
and is filled during the execution of attack scripts.  

Formal representation of analyzed system includes the specification of computer 
network structure, hosts resources and functions. The structure of a computer network 
CN is determined as follows [9]: M

CN
 = < A, P, N, C >, where A is the network ad-

dress; P is a family of protocols used (e.g., TCP/IP, FDDI, ATM, IPX, etc.); N is a set 
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Fig. 3. Fragment of generalized attack model 
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{CNi} of sub-networks and/or a set {Hi} of hosts of the network CN; C is a set of 
connections between the sub-networks (hosts) established as a mapping matrix. Each 
host Hi is determined as a pair M

Hi
= <A, T>, where A is the host address, T is a host 

type (e.g., firewall, router, host, etc.). The network host resources and functionalities 
serve for representing the host characteristics that are important for attack simulation. 
These characteristics are represented as follows: MHi = < A, M, T, N, D, P, S, DP, 
ASP, RA, SP, SR, TH, etc.>, where A – IP-address, M – mask of the network address, 
T – type and version of OS, N – users' identifiers (IDs), D – domain names, P – host 
access passwords, S – users' security identifiers (SID), DP – domain parameters (do-
main, names of hosts in the domain, domain controller, related domains), ASP – ac-
tive TCP and UDP ports and services of the hosts, RA – running applications, SP – 
security parameters, SR – shared resources, TH – trusted hosts.  

The implemented algorithm for module of attack result evaluation is based on us-
ing a set of rules describing what kind of attacks, in what sort of conditions, and with 
what probability (possibility) do have success. The input for these rules is an attack 
identifier and a set of parameters defining current state of analyzed system. The out-
put is a probability (possibility) of the attack successfulness.  

If system description is sufficiently detailed, then the module of attack result 
evaluation can give as a rule univocal answer. But at the design stage the system de-
scription as a rule is incomplete. In this case we need to expand the model of attack 
result evaluation with meta-rules, or implement coefficients of probability (possibil-
ity) and evaluate the attack result utilizing these coefficients. For example, the rule 
which describes Ping of Death attack: “IF ATTACK = PoD AND OS_TYPE = Win-
dows_NT AND OS_VERSION = 4.0 AND ICMP_FILTERING = OFF THEN P= 0.8”, 
where PoD – an identifier of DoS-attack “Ping of Death”, P=0.8 means that attack 
has success with probability (degree of possibility) 0.8. The OS type, OS version and 
the filtering condition are verified using the database about analyzed system.  

Response of the information system model on malefactor attacks is a change of its 
state and (in some cases) a message directed to attacker (as a system reaction on at-
tack). Each state can be characterized by the attributes describing accessibility of a 
system (as a whole one and its certain services), data integrity, data confidentiality, 
users and their privileges, etc. The module of system response generation fulfills a set 
of rules of the system reaction: {RSR

j}, where RSR
j: Input -> Output & Post-Condition, 

DB of attack signatures 
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Input is the malefactor’s activity, Output is the system reaction, Post-Condition is a 
change of the system state, & is logic connective “AND”. Thus, the module produces 
the response of system to attack (for example, after successful attack on scanning 
ports the list of open ports is generated) and updates KB about analyzed system (for 
example, if a malefactor creates a new user in the group of administrators or starts a 
remote administration service, these changes are reflected in KB).  

6   Model of Security Level Evaluation  

The functionality of the module of security level evaluation is described by a corre-
sponding model which uses a multi-level hierarchy of security metrics.  

The taxonomy of security metrics is based on the attack model developed. The 
taxonomy contains as the notions of attack realization actions, as well as the notions 
of types and categories of assets (secured objects).  

There are four levels of security metrics sub-taxonomy based on attack realization 
actions (fig.5): (1) an integrated level; (2) a script level; (3) a level of the script 
stages; (4) a level of the threat realization. Each higher level contains all metrics of 
lower levels (arrow in fig.5 shows the direction of metrics calculation). Examples of 
security metrics for this taxonomy are as follows: number of total and successful at-
tack scenarios; number of total and successful stages of attack scenarios; number of 
total and successful malefactor attacks on the certain level of taxonomy hierarchy; 
number of attacks blocked by existing security facilities; number of discovered and 
used vulnerabilities; number of successful scenario implementation steps; number of 
different path of successful scenario implementation, etc.  

 

Security Level 

Integrated level 
 Security Metrics Examples:   number of total and successful attack scenarios.  

Script level 
 Security Metrics Examples:   number of total and successful stages of attack scenarios. 

Script stages 
 

 

Security Metrics Examples:   number of total and successful malefactor attacks on each script stage.  

Reconnaissance Implantation Backdoors Creation 

Attacks 
 
 
 

 Security Metrics Examples: Number of discovered and used vulnerabilities;  
Number of total and successful malefactor attacks. 

  OS determination
  Port scanning 
  … 

  Password Guessing
  Buffer overflow 
  … 

… 

Fig. 5. Security metrics sub-taxonomy based on attack realization actions 
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Second sub-taxonomy is formed taking into account types and categories of as-
sets. Assets are divided on the following types: (1) informational resources (confiden-
tial and critical information); (2) software resources (OS, DBMS, etc.); (3) physical 
resources (servers, workstations, etc.); (4) services (web, mail, ftp, etc). There are 
several approaches for assets categorizing. We use an approach which is based on di-
viding of assets into groups by confidentiality and criticality levels (fig.6). Examples 
of security metrics of this taxonomy are as follows: total score of confidentiality and 
criticality of assets that have been successfully attacked; number of confidential and 
critical assets that have been successfully attacked, etc.  

Evaluation of these metrics is based on attacks results and reaction of the analyzed 
system.  

 
 
 
 
 
 
 
 
 
 
 
 

7   Case Study  

For testing and evaluating our approach we specified, developed and deployed the 
computer network which configuration is shown in fig.7. The experiments were car-
ried out using “VMWare Workstation 5.0”, that allows to emulate the work of per-
sonal computers and to form a virtual computer networks. 

The network consists of the following three subnets: (1) Internet area including 
hosts Internet_host and ISP_DNS with IP-addresses 195.19.200.*; (2) demilitarized 
zone including two servers with IP-addresses 192.168.0.*; (3) local area network with 
IP-addresses 10.0.0.*. The basic elements of the network are: (1) Internet host with 
SAS; (2) Firewall 1 – a firewall between Internet and demilitarized subnet; (3) File 
Server and (4) Mail Server – servers, located in the demilitarized subnet; (5) Firewall 
2 – a firewall between local area network and demilitarized subnet; (6) DNS server – 
a local DNS server, which services the clients from LAN; (7) AAA Server – an au-
thentication, authorization and accounting server; (8) Workstation 1..4 – workstations.  

The generalized functional scheme of SAS prototype implemented is presented on 
fig.8.  

The model of analyzed system uses specification of security policy and system ar-
chitecture, defined on Security Policy Language (SPL) and System Description Lan-
guage (SDL) [27]. SDL and SPL are represented in Common Information Model 
(CIM) format. The Common Information Model (CIM) is an approach from the 
DMTF to the management of systems, applications, networks and services that  

Fig. 6. Security metrics sub-taxonomy based on assets’ categories 
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• Uncritical [0] 
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applies the basic structuring and conceptualization techniques of the object-oriented 
paradigm. SDL describes a computer network on the level of network topology and 
services. The network topology is described by the classes PhysicalElement, Physi-
calLink, and the ElementsLinked association. The network services are described by 
classes ComputerSystem, Service, ProtocolEndpoint, ServiceAccessPoint, 
ServiceAvailableToElement, ProvidesEndpoint, HostedAccessPoint, BindsTo. 

 

Fig. 7. The configuration of computer network for case study 
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Let us consider an example of using the SAS prototype for developed case study. 
Let we need to determine a security level of the file-server against attacks “denial of 
service” when the malefactor’s experience level is a “novice”. To do this we need to 
enumerate the necessary assets and its confidentiality and criticality levels (in brack-
ets): (1) Information resources: the information about open ports on file-server (5,2); 
the information about used services on file-server (5,2); the information about operat-
ing system of file-server (5,8); the information about users on file-server – names and 
groups (5,8); the password of the user “admin” (10, 10); (2) Software resources: oper-
ating system (5,10); physical resources: server (0,10); (3) Services: file-server (0,10).  

According to the malefactor’s model realization SAS creates one script consisting 
of the following two stages: (1) reconnaissance and (2) threat realization (denial of 
service). At a first stage all accessible groups of actions are executed: port scanning, 
OS determination, services identification, etc. Actions of each group are executed un-
til a positive result is reached, e.g. port scanning begins with “TCP SYN scan”, in 
case of negative result the “TCP connect scan” is executed, and so on. If port scan-
ning and identification of services are successfully completed by the first methods and 
three methods of OS determination and five methods of user logins enumeration are 
completed by failure, then the security metric of reconnaissance stage can be calcu-
lated as follows: PR=1 - NSA/NA=1 - 2/10=0.8, where NSA – the number of successful 
actions, NA– the common number of actions. If at the stage of threat realization the 
usage of tenth vulnerability is successful, then the metric of thread realization stage is 
PTR=1- NSA/NA=1 - 1/10=0.9. The security metric for the whole script is 
(0.8+0.9)/2=0.85. Taking into account that only one script has been generated, the in-
tegral metric is also equal 0.85. The value of security metric depends on the realiza-
tion of malefactor’s model. For example, in case of using backward inference method 
of malefactor goal achievement, the total number of actions is decreased; conse-
quently the value of security metric is reduced.  

Let us calculate a confidentiality and criticality levels of successfully attacked as-
sets. At reconnaissance stage, the malefactor has received the information which total 
level of confidentiality is 10 and total level of criticality is 4. For the information 
which the malefactor tried to receive the appropriate levels are (20, 20). After nor-
malization, the losses of confidentiality and criticality are (0.5, 0.2). At thread realiza-
tion stage, the file-server has been successfully attacked (0 points of confidentiality 
and 10 points of criticality have been lost), therefore the appropriate losses are (0, 1). 
At script level the losses of confidentiality and criticality are as follows: ((0.5+0)/2, 
(0.2+1)/2) = (0.25, 0.6). The total security metric can be calculated as difference 1 and 
average value of the given coefficients: 1-0.43=0.57.  

Let us select by expert evaluation the following security level scale: (1) “green” – 
if security level value in an interval [1, 0.8); (2) “yellow” – [0.8, 0.6); (3) “red” – [0.6, 
0]. Then the value 0.57 acts as “red” level. As guideline on increase of security level, 
the report with instructions about vulnerability elimination is generated. Procedure of 
security level evaluation is repeated after eliminating detected vulnerabilities.  

8   Conclusion  

The paper offered the approach to vulnerability analysis and security level assessment 
of computer networks, intended for implementation at various stages of a life cycle of 
analyzed computer systems.  
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The basic components of suggested intelligent SAS are the knowledge base of 
functionality rules, the model of computer attacks and the model of security level as-
sessment based on developed taxonomy of security metrics. The SAS prototype was 
implemented and the experiments were held based on the case-study developed.  

The future research will be devoted to improving the models of computer attacks, 
the model of security level assessment, and comprehensive experimental assessment 
of offered approach.  
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Abstract. Research in computer and network forensic investigation has
recently addressed the development of procedural guidelines, technical
documents, and semi-automation tools. It has however omitted the need
of formal proof. This work provides a novel approach that formalizes and
automates the proof in digital forensic investigation. First, it brings out
a formal logic-based language, called S-TLA+, to enable reasoning on
systems with uncertainty, by adding forward hypotheses to fulfill poten-
tial lack of details. S-TLA+ is suitable for the description of evidences,
as well as elementary scenarios fragments representing the investigators
knowledge. Secondly, the proposal provides an automated verification
tool, S-TLC, to prove the correctness of S-TLA+ specifications. It checks
whether there are possible hacking scenarios that meet the available dig-
ital evidences, and explores additional evidences. To demonstrate its ef-
fectiveness, the formalized analysis is applied on a compromised host.

1 Introduction

The growth of the number of digital security incidents and the sophistication
of the intrusions techniques made it impossible to completely prevent attacks.
Therefore, it becomes necessary to react efficiently to security incidents. Com-
puter forensic investigation, defined as “preservation, identification, extraction,
documentation and interpretation of computer data” [1], enables achieving these
objectives while performing a post-incident examination: a) evidence collection;
b) attack scenarios and relating security weakness determination; and c) result
argumentation with methods and techniques that are well-tested and proved.

During the recent years, the literature has addressed two main themes: a)
contribution to the development of technical documents specific to the inves-
tigation of various operating systems and b) writing of procedural guidelines
for forensic investigation. It has omitted any need of formalization and proof au-
tomation in digital forensic investigation, reducing consequently the results accu-
racy, and analysis practicality. Formalization allows an explicit and unambiguous
representation of forensic investigator’s knowledge and observations. The proof
automation makes the generated investigation deductions relevant even with a
huge amount of data. It lets investigators argue about complex scenarios without
a need for advanced skills, nor a priori knowledge about the incident causes.
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Formal digital forensic investigation has interested few works that differ ac-
cording to the techniques and methodologies they used. [2] used Colored Petri
Nets to model digital postmortems investigation as a time-line of events. It fo-
cused on determining the set of causes that enabled the security incident to suc-
cess, so that the appropriate countermeasures can be foreseen. Nevertheless, the
methodology does not model incident effects, and does not support hypotheses
formulation when details are missing. [3] presented an automated diagnosis sys-
tem that generates possible attacks sequences using a plan recognition technique,
simulates them on the victim model, and performs pattern matching recognition
between their side effects and log files entries. This technique assumes that attack
activity is logged, which is in contradiction with the fact that complex attack
scenarios may subvert logging daemon and alter logs before hackers leave the
system. [4] used an expert system with a decision tree to search through evi-
dences for potential violations of invariant relationship between digital objects.
The methodology is useful in reducing the amount of data to be analyzed. Nev-
ertheless, it roughly depends on the system time granularity and the degree of
preciseness that the system uses to record time on objects.

This paper extends the work of [5]. First, it brings out a new logic-based
language, entitled S-TLA+. Using a temporal logic of security actions, it offers a
important enhancement of the formal specification language TLA+[6]. S-TLA+

is founded on a logic formalism that let adding forward hypotheses whenever
there is lack of details (information may be corrupted by hackers) to understand
the system. Second, the proposal is completed with an automated verification
tool, called S-TLC, to prove the correctness of S-TLA+ specifications. The tool
is based on the enhancement of the TLC model checker [6, 7]. It is fitted to the
automated diagnosis of digital security incidents.

Our contribution is straightforward. First, the proposed approach is com-
pletely independent from any computer security technology or incident. It al-
lows arguing about sophisticated hacking scenarios as it tolerates potential lack
of details. Second, S-TLA+ takes advantage from the richness of the formal
specification language TLA+ to support advanced description of scenarios and
evidences, namely using temporal modalities.

The remaining of this paper is organized as follows: First, the forensic investi-
gation model is defined in Section 2. Next, Section 3 defines the novel S-TLA logic
and emphasizes on the new concepts and modifications added to TLA. In Section
4, the formal specification language S-TLA+ is defined and demonstrated how
it can be used within forensic investigation. Section 5 presents S-TLC, explains
how it represents states, and describes how hacking scenarios are inferred both
using forward and backward chaining. In Section 6, the proposal is exemplified
by a case study. Finally, the work is concluded in Section 7.

2 The Computer Forensic Investigation Model

Given a set of evidences collected further to the occurrence of a security inci-
dents, the proposal aims to first reconstruct to potential hacking scenarios where
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hypotheses are advanced whenever needed, and secondly, provides any additional
evidences. Alike [8], we consider a hacking scenario as a combination of more
generic and reusable fragments, which are basically described in advance with-
out an a priori knowledge about the whole hacking scenario that is looked for.
Every scenario fragment is depicted by an optional set of hypotheses underlying
the scenario-fragment occurrence, a set of pre-conditions that must be satisfied,
and a set of actions to achieve a sub-goal of the whole scenario objective. The
inclusion of hypotheses is due to the fact that investigation on sophisticated
attack scenarios needs to be tolerant to potential lack of data. The latter is gen-
erated by intruders who want to alter any trace that could prove their identity
or activity.

As the combination of scenario fragments leads to the accumulation of hy-
potheses, care need to be taken from inconsistency introduction. In fact, some
hypotheses are contradictory with each other and could not arise in the same
whole hacking scenario. Moreover as hypotheses are described by a set of rela-
tions between variables and values, two hypotheses using the same variable with
different values might make no sense if grouped together in a scenario.

Figure 1 shows a set of attack scenarios relative to an unauthorized modifi-
cation of access accounts on a remote server. The attack can be achieved after:
1) exploiting a remote vulnerability that grants privileged access; 2) escalating
one’s privilege via local vulnerability exploit, 3) Logging to the system from a
trusted server. The node Log from a trusted server X is composed by a hypoth-
esis stating that a trust relationship is established between servers S and X , a
post-condition stating that the user Usr is being logged to the server X at that
time and an action asserting a telnet connection by the user to the server S .

IP addressprivate key
stole user

action: telnet(Usr,S)
pre−cond: maintain−access(Usr,X)

hyp: trust(X,S)

password
sniff user brute−force

user password
spoof user

unauthorized access
gain to server "X"

remote exploit of vulnarbility
granting privileged access

privilege escalation through
local vulnerability exploit server "X"

log from trusted

remote exploit of a vulnerability
granting unprivileged access

remote login by
user impersonation

Unauthorized gain of root
privilege on server "S"

Fig. 1. Attack scenarios model

3 S-TLA: An Extension to the Temporal Logic of Actions

We provide in the following a Temporal Logic of Security Actions, S-TLA, as
an extension to the Temporal Logic of Actions, TLA. We emphasize only on the
new introduced concepts regarding TLA, as S-TLA embodies TLA and a TLA
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specification is indeed an S-TLA specification. TLA was introduced by Leslie
Lamport for the specification of distributed and asynchronous systems [9].

Suppose, for instance, a formal system description that should involve a detail
(value progress) of its n dependent variables, but some of them are unknown.
To overcome such lack of details, it is conceivable to use a formalism that let
enunciate hypotheses whenever needed. As denoted by Figure 2, we want to
make TLA able to describe a system progress from a state s to a state t , further
to the execution of an action A and under a hypothesis HA.

s t
Hypothesis: HA

Action: A
HA

Fig. 2. State transitions under hypotheses

S-TLA Constrained Variables: We introduce a new set of variables, called
constrained variables set VC , to encompass the variables representing hypothe-
ses. Vc is disjoint from sets VF and VR that represent flexible and rigid variables
sets, respectively. Such separation is of great importance since we are looking
during verification phase (c.f. section 5.1) to reach a given system state under
a minimal set of hypotheses. Moreover as a hypothesis, once enunciated, might
affect the system behavior, we assume that a constrained variable, whose value
once set during a system state transition, could not be valued differently after-
wards all through the system behavior.

S-TLA State: As in TLA, a state remains a valuation of all system variables.
Precisely, it is an assignment from the collection Val of values to the set Var =
VF ∪ VR ∪ VC . A state can thus give information on the set of enunciated
hypotheses that let it being reachable from the initial system state.

S-TLA Fictive Value �: As a state is a valuation of all variables, a con-
strained variable should have a value even if there is no enunciated hypothesis
yet. To bridge this gap, a new fictive S-TLA value described by the symbol � is
introduced to represent the value of a constrained variable that up to the moment
was not used to make a hypothesis. Broadly, a state with a constrained variable
whose value is different from � means that there is an enunciated hypothesis to
reach the related state.

S-TLA Assumption Operator ′′: We introduce a new S-TLA operator enti-
tled assumption operator ′′ to denote the value of a constrained variable in the
new state. This operator is different from the TLA prime operator. It changes
the value of a constrained variable only if its value is different from �. We define
assumed and non-assumed variables to refer respectively to new and old state
of constrained variables. In this way, we let VA � {x” | x ∈ VC} be the set of
assumed variables.
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S-TLA Inconsistency: We define an S-TLA inconsistency as a predicate con-
taining constrained variables, constants, and constants operators [9]. Informally,
an inconsistency denotes a combination of hypotheses that must not be observed
inside a system behavior. Semantically it is true or false for a state. If it is true
for a state t , then the system transition on the way to that state should not be
followed. Hereinafter, we denote an S-TLA inconsistency using the symbol ⊥.

S-TLA Action and Hypothesis: An S-TLA action is a conjunct between two
expressions. The former is optional, of type boolean, denotes some hypotheses,
and contains assumed and non-assumed variables. The latter is the old TLA
action containing primed and unprimed variables. Semantically, given an incon-
sistency ⊥, an S-TLA action A is true for a pair of states 〈s , t〉 iff,

– A(∀v ∈ VF : s(v)/v , t(v)/v ′) = true: By replacing each unprimed flexible
variable in action A by s(v); the value of v in state s , and each primed
flexible one by t(v), the boolean resultant expression equals true.

– A(∀v ∈ VC : s(v)/v , t(v)/v ′′) = true: By replacing each non-assumed con-
strained variable v in the action A by s(v) and each assumed constrained
one v ′′ by t(v), the boolean resultant expression equals true.

– ∀v ∈ Vc / s(v) �= � : s(v)/v = t(v)/v : The set of constrained variables
whose values have been stated by a hypothesis (e.g. different from ∇) some-
where before, retain the same value in state s and t .

– ⊥ (t) = false: The predicate ⊥ must not hold in the state t , that is (t �⊥).

S-TLA Specification Formula: We introduce the predicate IsTrueA(⊥) to be
equal true if and only if ⊥ is true further to the execution of action A. We define
NIv(N , ⊥), No Inconsistency on action N as: NIv (N , ⊥) ≡ enabled N ∧
¬IsTrueN (⊥) ⇒ 〈N〉v to states: if action N is enabled and if its execution does
not let inconsistency ⊥ equal true, then action N occurs. We define φ as the
system specification formula that generates an infinite behavior � = 〈s0, s1, s2, ...〉
(denoting the system progression) where no inconsistency ⊥ is holding in any
state si ∈ �. The resultant form is as follows: φ � ∃∃∃∃∃∃ x : Init ∧ �[N ]v ∧ L ∧
NIv (N , ⊥). Except the quoted syntactically and semantically modifications, the
remaining TLA notions including Fairness, stuttering, and temporal modalities
are preserved.

4 S-TLA+: A Formal Language for Writing Specifications

We define S-TLA+ as a language for writing specifications in S-TLA, it embodies
TLA+ [6] with some add-ons in the module structure (the lowest granular part
of a TLA+ specification,) and in the constant and non constant operators. TLA+

is the high-level specification language that is based on TLA, and extended by
notations of set theory (Zermelo Fraenkel set theory) and syntactic structur-
ing mechanisms. To describe S-TLA+, we concentrate only on the introduced
modifications as outlined hereinafter:
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a) Module-Level constructs: The expression cvariables v1, . . . , vn adds
the declaration of constrained variables, distinguishing them from non-constrained
ones, which remain declarable using variables statement.

b) Non constant S-TLA+ operators: Given a constrained variable h, we
denote by h′′ the value of h in the next state. Moreover, untouched h replaces
the expression h′′ = h

c) Constant S-TLA+ operators: we denote by � a fictive value to rep-
resent the constrained variable value, before a hypothesis is enunciated.

4.1 Standard Form of a S-TLA+ Specification

The first part of Figure 3, [5], illustrates a typical S-TLA+ specification, de-
scribed by module SpecExpl . The specified system is described by formula spec,
while the initial system state is described by predicate Init (no hypotheses are
enunciated as constrained variables g and h are both equal to �). Action A, for
instance, is true for a pair of states 〈s , t〉 if (1) the value that t assigns to x is
1 higher than the value that s affects to x , (2) under the hypothesis g ′′ = 1,
and (3) without t being reached under the hypothesis h′′ = 2 (by the definition
of inconsistency predicate Inc). Finally, the predicate Evd describes a relevant
S-TLA+ system state (a valuation of some system variables) which is of capital
importance especially in fulfilling forensic investigation objectives. Its use will
be demonstrated afterwards in section 4.2.

module SpecExpl
extends Naturals
variables x
cvariables h, g

Init � (x = 0) ∧ (g = �) ∧ (h = �)
A � (g ′′ = 1) ∧ (x ′ = x + 1)∧ untouched h
B � (h ′′ = 2) ∧ (x ′ = x − 1)∧ untouched g
C � (x ′ = x × 3)
Next � A ∨ B ∨ C
Evd � x = 2
Inc � (g = 1) ∧ (h = 2)
Spec � Init ∧�[Next ]〈x ,g,h〉∧ni〈x ,g,h〉(Next , Inc)

theorem Spec ⇒ �(x ∈ Nat)

(� |=⊥φ)

⎡⎣ x = 1
g = 1
h = �

⎤⎦ B

⎡⎣ x = 2
g = 1
h = �

⎤⎦

⎡⎣ x = 3
g = 1
h = �

⎤⎦

⎡⎣ x = −1
g = �
h = 2

⎤⎦

⎡⎣ x = 0
g = �
h = �

⎤⎦

A

C

⎡⎣ x = −2
g = �
h = 2

⎤⎦
⎡⎣ x = −3

g = �
h = 2

⎤⎦

B

(� |=⊥φ)A

C

B

A

Fig. 3. Standard form of a S-TLA+ specification and a relative behavior fragment

The second part of Figure 3 describes a fragment from the set of possible
system behaviors relative to formula Spec. For a successive execution of A fol-
lowed by B , two successive hypotheses are generated: g” = 1 followed by h” = 2.
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This is an unacceptable execution as it drives to a state where the S-TLA in-
consistency predicate Inc will be true. Besides, a successive execution of action
A followed by C is legitimate.

4.2 Computer Forensic Investigation Using S-TLA+

A scenario fragment component as modeled in Section 2 matches well the form
of a S-TLA+ action. In fact, pre-conditions, generated hypotheses, and actions
which represent the context of a scenario fragment can be described respectively
by state-predicates, relations between assumed and non-assumed variables, and
relations between primed and unprimed variables.

A digital forensic evidence can take the form of a temporal property (e.g., a
hacked system is issuing every so often an outbound connection to send sniffed
passwords), or an undesirable state of a system component (e.g., an altered file
is a violation of the integrity property). These two forms can be specified in
S-TLA+ using temporal formulas, and state predicates, respectively.

An expected hacking scenario is a disjunction of scenarios fragments (i.e.,
S-TLA+ actions) denoting possible hacking events starting from a state repre-
senting a safe system and ending in a state satisfying the digital evidence(s). The
core S-TLA logic works by infinitely selecting the suitable scenario fragment that
copes with the attained system behavior, such that no inconsistency is holding
and composing it with the previous ones into potential hacking scenarios.

5 S-TLC: A Model Checker for S-TLA+ Specifications

To automate the proof in the context of forensic investigation, we propose S-TLC
as an automated verification tool for S-TLA+ specifications with a stress on the
handling of hypotheses and an improvement in the states space representation.
S-TLC is somehow an extension to the Model Checker TLC[6], which checks S-
TLA+ specifications for errors such as silliness, invariance properties violation,
and deadlock [6–chapter 14]. In the following, we emphasize on the contributions
and changes in S-TLC, namely state computation and scenario inference.

5.1 S-TLC’s States Space Representation

Given two different states that represent respectively a valuation (x = 1) of
the variable x under two possible sets of hypotheses (h = 1 ∧ g = 2) and
(h = 3 ∧ g = 3). Representing a state as a valuation of all its variables (as
in Figure 3) will involve a representation of two different states ((1, 1, 2) and
(1, 3, 3)) in the generated scenarios. We propose a more developed and optimal
representation involving two notions: node core and node label. The core of a node
represents a valuation of the entire non-constrained variables, and the node label
represents the potential sets of hypotheses (a set of hypotheses is a valuation
of the entire constrained variables) under which the node core is reached. The
node label is represented and maintained in a way akin to the one used in the
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Assumption Truth Maintenance System (ATMS [10]). Precisely, a node label is
a set of environments and an environment is a set of hypotheses. The previous
example will thus involve only one node represented by 1{(1, 2), (3, 3)} where 1
is the node core, (1, 2) and (3, 3) are both environments, and {(1, 2), (3, 3)} is the
node label. In the following, given a state t , we use tn to denote its corresponding
node core, tc to describe its resulting environment, and Label(G, t) to refer to
its label in graph G.

5.2 Inferring Scenarios with S-TLC

The S-TLC Model Checker is described by Algorithm 1. It employs three data
structures G, UF and UB . The first refers to the reachability directed graph under
construction generated during forward chaining and backward chaining phase.
The last two are FIFO queues, containing states whose successors have not
being yet computed respectively during forward and backward chaining phases.
The algorithm assumes that a configuration file is done as input, it includes
statements denoting that Init is the initial state predicate, Next is the next state
relation, Invariant is a state-predicate to be satisfied by each reachable state,
and Inc is the predicate to be equal false for all states of the system behavior,
it represents the the set of S-TLA inconsistencies. Moreover, the specification is
supposed to be made finite-state. To that effect the configuration file is presumed
to include statements stating that Constraint is a predicate that asserts bounds
on the set of reachable states, and EvidenceState is a predicate characteristic of
a terminal state representing forensic evidences.

To append a node to the graph under construction, the algorithm uses func-
tion Append(G, t , t � s) to add a node t to graph G with a pointer to its
predecessor state s . Besides, a state s is attached to a FIFO queue U using the
function Append(U , s) and detached using the function Tail(U). Moreover, a
node t is joined to an existing node s inside the graph G using the function
Join(G, t � s). S-TLC works in three phases:

Initialization Phase: G, as well as UF and UB are created and initialized
respectively to empty set ∅ and empty sequence 〈〉. During this step, each state
satisfying the initial system predicate is computed and then checked whether
it satisfies predicate Invariant . In that case, it will be appended to G after
computing its label, and pointing it to the null state. If the state does not
satisfy EvidenceState, it will be attached to the unseen queue UF , otherwise,
it will be considered as a terminal state and appended to UB in order to be
retrieved in backward chaining phase.

Forward Chaining Phase: During this phase, the algorithm starts with UF

equal to the set of initial system states. Afterwards and until the queue becomes
empty, state s (representing the tail of UF ) is retrieved and its successor states are
computed. From the latter, for every state (denoted by t) satisfying Constraint ,
if Invariant is not satisfied, an error is generated and the algorithm terminates,
otherwise t is appended to G as follows:
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– If tn does not exist in G, it is appended as a new node with a label equal
to tc and a predecessor equal to sn . Then, t is appended to UB if it satisfies
EvidenceState, otherwise it is attached to UF .

– If there exists a node x in G which is the same as tn and whose label includes
tc, then a conclusion could be made stating that t has been added previously
to G. In that case, a pointer is simply added from x to sn .

– If there exists a node x in G that is the same as tn , but whose label does not
include tc, then the node label is updated in the following manner:
1. tc is added to Label(G, x ).
2. Any environment from Label(G, x ), which is a superset of some other

environment in this label, is deleted to ensure hypotheses minimality.
Formally, an environment E1 is a superset of E2 in the same environment
iff: E1(x ) = E2(x ) ∨ E2(x ) = ∇, where E (x ) represents the x th value in
E . An environment (8, 1, 3) is for instance a superset of (∇, 1, 3).

3. If tc is still contained in the label of state x (meaning that it was not
deleted in step (2)) then node x is pointed to sn and node t is appended
to UB if it satisfies EvidenceState. Otherwise, it is attached to UF .

Every node label is provided with the following four properties: 1) Soundness:
a node x holds each environment Ei ; 2) Consistency: None environment Ei in
Label(G, x ) is inconsistent, preventing Inc from holding; 3) Completeness: every
environment E is a superset of some Ei ; and 4) Minimality: no environment Ei
is a proper subset of any other.

Forward chaining may generate many slices of global attacks scenarios, a
great majority of them are useless due to further occurrence of inconsistencies or
because they do not lead to evidence generation. Nevertheless, this may generate
additional source of evidences and show the propagation steps of the attack.

Backward Chaining Phase: This phase helps obtaining potential and addi-
tional scenarios that could be the root causes for the set of available evidences.
This phase starts with UB holding the set of terminal states; the ones that sat-
isfied EvidenceState in forward chaining phase. Afterwards, and until the queue
becomes empty, the tail of UB , described by t , is retrieved and its predecessor
states (the set of states si such that (si , t) satisfies action Next) which are not
terminal states and satisfy Invariant (States that do not satisfy Invariant are
discarded because this phase does not aim to check whether a specification is
correct or not but simply to generate additional explanations) and Constraint
are computed. Each computed s is appended to G as follows:

– If sn does not exist in G, a new node (set to sn) is appended to the graph
with a label equal to sc . Afterwards, a pointer is added from tn to sn and s
is appended to UB .

– If there exists a node x in G which is the same as sn , and whose label includes
sc , then s was added previously to G. In that case a pointer is simply added
from tn to sn and s is appended to UB .

– If there exists a node x in G which is the same as sn , but whose label does
not include sc , then the node label of x is updated in the following manner:
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1. The environment sc is added to Label(G, x ), the label of state x .
2. Any environment from Label(G, x ) which is a superset of some other

environments in this label is deleted to ensure hypotheses minimality.
3. If sc is still contained in the label of x then t is pointed to the predecessor

state x and s is appended to UB .

The outcome of the three phases is a graph G of the potential scenarios that
lead to the collected evidences. It embodies different initial system states apart
from the ones described by the specification. In fact, in the context of forensic
investigation, an attack scenario could start from a legitimate system state, as
well as from a previous system incident or instability.

6 Case Study

To make concrete the use of S-TLA+ and S-TLC in digital forensic investigation,
we propose this case study which is an investigation of a standalone (discon-
nected from network) system that is compromised, where an illegal privileged
access is detected. The system ran initially with two users accounts: a root and
an unprivileged user. A straightforward examination by experts shows that the
system security log is altered. The latter no longer contains more than a single
unexpected record showing that the system root has closed its session.

6.1 S-TLA+ Specification Description

The following set of S-TLA+ actions is specified to represent hacking scenarios
fragments. For the sake of readability, we ignore the fragments that will not be
part of the whole expected scenarios.

– LogAsUsr : Using the hypothesis stating that the user password is a well-
known word, an intruder guesses the password and gains access to the system,
raising its privilege localpr from 0 to 1. Moreover, the pair 〈“usr”, “logon”〉
is appended to the sequence log to log such event. Note that 0 means there
is no granted access, while 1 lets a user execute any non administrative
command. Finally, 2 refers to the root privilege.

LogAsUsr Δ= ∧ userhas ′′ = “weakpwd”∧ localpr = 0 ∧ localpr ′ = 1
∧ log ′ = Append(log, 〈“usr”, “logon”〉)

– InstSoft : A user who gained an unprivileged access can install its own soft-
ware, particularly, a vulnerability exploit tool.

InstSoft Δ= localpr = 1 ∧ addsft = “” ∧ addsft ′ = “exploit”

– ExpLclVuln: Hypothesizing that there is a vulnerability in one of the installed
super-user commands that could grant a privileged access, if exploited, the
current user exploits such vulnerability and rises its privilege from 1 to 2.
The system kernel updates sequence log in order to log the event.

ExpLclVuln Δ= ∧ roothas ′′ = “vulnbin” ∧ localpr = 1 ∧ addsft = “exploit”
∧ localpr ′ = 2 ∧ log ′ = Append(log, 〈“root”, “logon”〉)
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Algorithm 1. S-TLC algorithm

Comment: Initialization phase
G ← Ø, UF ← 〈〉 , UB ← 〈〉
S ← {si | si � Init}
For each s ∈ S

do

⎧⎨⎩
if s � Invariant then error , break

if s � Constraint then

{
Append(G, sn , s � null), Label(G, sn) ← sc
if s � EvidenceState thenAppend(UB , s) elseAppend(UF , s)

Comment: Forward chaining phase
While UF �= 〈〉

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s ← tail(UF )
T ← {ti | ((s, ti ) satisfies the S-TLA+ action Next) ∧ t � Constraint}
Foreach t ∈ T

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if t � Invariant then error , break
if� x ∈ G / tn = x

then

{
Append(G, tn , tn � sn ), Label(G, tn ) ← tc
if t � EvidenceState then Append(UB , t) elseAppend(UF , t)

if (∃ x ∈ G / tn = x) and tc ⊆ Label(G, x) then Join(G, x � sn )
if (∃ x ∈ G / tn = x) and tc � Label(G, x)

then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Label(G, x) ← Label(G, x) ∪ tc
Delete any superset of hypotheses from Label(G, x)
if tc ∈ Label(G, x)

then

{
Join(G, tn � sn )
if t � EvidenceState thenAppend(UB , t) elseAppend(UF , t)

Comment: Backward chaining phase
While UB �= 〈〉

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t ← tail(UB)
S ← {si | ((si , t) satisfies the S-TLA+ action Next) ∧ (si � Invariant , Constraint)

∧(s � EvidenceState)}
Foreach s ∈ S

do

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

if� x ∈ G / sn = x

then

⎧⎨⎩
Append(G, sn , tn � sn )
Label(G, sn ) ← sc
Append(UB , s)

if (∃ x ∈ G / sn = x) and sc ⊆ Label(G, x) then

{
Join(G, x � sn )
Append(UB , s)

if (∃ x ∈ G / sn = x) and sc � Label(G, x)

then

⎧⎨⎩
Label(G, x) ← Label(G, x) ∪ sc
Delete any superset of hypotheses from Label(G, x)
if sc ∈ Label(G, x) then Join(G, tn � sn ),Append(UB , s)

– OfflBrForce: Hypothesizing that the algorithm used to hash the account’s
passwords is weak, a user reads the file containing the password hashes and
brute-forces the root password off-line (outside the current system). It suc-
ceeds thus in escalating its privilege.
OffBrforce Δ= ∧ roothas ′′ = “pwdhashcomp”∧ localpr = 1 ∧ localpr ′ = 2

∧ log ′ = Append(log, 〈“root”, “logon”〉)
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– ChangeID : Hypothesizing that the root password is equal to the user’s, the
user changes its identity to the root by providing the correct password. Con-
sequently, its privilege rises from 1 to 2, and the event is logged.

ChangeID Δ= ∧ roothas ′′ = “pwdequser”∧ localpr = 1 ∧ localpr ′ = 2
∧ log ′ = Append(log, 〈“root”, “logon”〉)

– ExtSoft : Given a software installed on the system for security auditing pur-
pose, the user copies one binary command from those that come with it to
be used maliciously as an exploit tool.

ExtSoft Δ= localpr = 1 ∧ addsft = “audittool”∧ addsft ′ = “exploit”

– CleanLog: A privileged user can clean the log file content.

ClaenLog Δ= localpr = 2 ∧ log �= 〈〉 ∧ log ′ = 〈〉
– DelSoft : A privileged user can delete the whole tools unexpectedly installed.

delSoft Δ= localpr = 2 ∧ addsft �= “” ∧ addsft ′ = “”

– Exit : The user logs off, its privilege goes down to 0 and the event is logged.

Exit Δ= localpr = ∧ localpr ′ = 0 ∧ log ′ = Append(log, 〈“root”, “logoff”〉)
Inconsistency defined as: userhas = ”weakpwd”∧ roothas = ”pwdequser”, states
that a system state should not be reached under a conjunct of the following two
hypotheses: a) the user password is a well-known word and b) the root password
is equal to the user one. In fact, the forensic investigator is sure that the root
password fulfills a strong password policy. The available evidence is described by
predicate EvidenceState Δ= Head(log) = 〈”root”, ”logoff ”〉, which states that
the finite sequence log encloses only one record equal to 〈“root”, “logoff ”〉.

The system under investigation is specified by a S-TLA+ formula Spec simi-
larly to the form described in section 4.1, where Init describes the initial system
state (empty log file, no unexpected tool installed, no granted access).
Init Δ= localpr = 0 ∧ log = 〈〉 ∧ addsft = “” ∧ userhas = ∇∧ roothas = ∇

6.2 Investigation Using S-TLC

Figure 4 describes the results generated by S-TLC until the forward chaining
phase. It outlines two different system states (the ones which are encircled)
satisfying predicate EvidenceState, where one of them shows a new generated
evidence as an exploit tool installed by the malicious user to exploit a local
vulnerability. These two evidences can be generated under two possible set of
hypotheses: 1) the user password is weak and one of the installed system com-
mands contains a vulnerability that grants a privileged access; and 2) the user
password and the password hashing algorithm are both weak. Two main possible
scenarios may be distinguished in this phase:

1. An intruder guesses the weak user password and gains an unprivileged access.
Afterwards, it exploits a weakness in the password hashing algorithm and
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(1, 〈〈“usr”, “logon”〉〉, “exploit”) {(“weakpwd”, ∇)}

LogAsUsr

(1, 〈〈“usr”, “logon”〉〉, “”) {(“weakpwd”, ∇)}

(0, 〈 〉, “”) {(“weakpwd”, ∇)}

Instsoft

OffBrForce

Exit

Exit

CleanLog

ExpLclVuln

DelSoft

(2, 〈〈“root”, “logoff ”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〈“root”, “logoff ”〉〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}

(2, 〈〈“usr”, “logon”〉〈“root”, “logon”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}CleanLog

(2, 〈〈“usr”, “logon”〉〈“root”, “logoff ”〉〉, “”) {(“weakpwd”, “pwdhashcomp”)}

Fig. 4. Scenarios generated in forward chaining phase

(2, 〈〈“root”, “logoff ”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(1, 〈〈“usr”, “logon”〉〉, “audittool”) {(“weakpwd”, ∇)}

(1, 〈〈“usr”, “logon”〉〉, “exploit”) {(“weakpwd”, ∇)}

(0, 〈 〉, “audittool”) {(“weakpwd”, ∇)}

(2, 〈〈“usr”, “logon”〉〈“root”, “logon”〉〉, “exploit”) {(“weakpwd”, “vulbin”)}

(2, 〈〉, “exploit”) {(“weakpwd”, “vulbin”)}

ExtSoft

ExpLclVuln

CleanLog

Exit

LogAsUsr

Exit

DelSoft

(2, 〈〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}

(2, 〈〈“root”, “logoff ”〉〉, “”)
{

(“weakpwd”, “pwdhashcomp”)
(“weakpwd”, “vulbin”)

}

Fig. 5. Scenarios generated in backward chaining phase

succeeds in escalating its privilege by performing an offline brute-force of
the root password. It cleans its logged activity and logs off from the system.
Fortunately, the latter activity is logged.

2. An intruder guesses a weak user password and logs in to the system, gaining
an unprivileged access. After that, it installs a malicious tool and exploits
a vulnerability in one of the installed super-user commands, obtaining thus
a privileged access. Before cleaning the log file and leaving the system, the
intruder either deletes its installed tool or leaves such kind of evidence.

The generated scenario prevents inconsistency from occurring. In fact, action
ChangeID does not belong to the scenario since it contains a hypothesis that is
inconsistent with the one occurring in LogAsUsr according to the definition of
predicate Inconsistency. The graph of Figure 5 is the graph generated after the
execution of forward and backward chaining phases. For readability reasons, it
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shows only the new generated scenarios compared to the ones of Figure 4. Mainly,
a new scenario is added. It strongly resembles to the second one generated in
forward chaining phase, except that the system is initially housing a security
auditing software and the hacker is using one of the commands that come with
such software as an exploit tool, instead of installing its own one.

7 Conclusion

We proposed in this paper a novel formal logic-based language entitled S-TLA+

to achieve a tremendous aspect in digital forensic investigation: the reconstruc-
tion of potential hacking scenarios and the providing of new evidences that could
complement the available ones. S-TLA+ uses a formalism that allows handling
hypotheses whenever there is a lack of details to demonstrate some part of an
attack scenario. We have also described S-TLC as a new automated formal verifi-
cation tool that is able to handle S-TLA+ specifications. Its main advantage lies
in its robustness in managing hypotheses and representing states. Considering
implementing and testing this tool represents a continuation of this work.
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Abstract. This paper addresses to the technique of the vulnerabilities detection. 
The proposed methodology is applicable to verify property of the operating 
system configurations safety. Using our technique it becomes possible to 
discover security drawbacks in any secure system based on access control 
model of 'state machine' style. We discuss the Vulnerability Criteria Processing 
Unit, the automated detection tool, working in MS Windows and calculating the 
set of vulnerable settings. Through our case study of model checking in Sample 
Vulnerability Checking (SVC), we show how the proposed technique is applied 
to verify system security. 

1   Introduction 

The most important aspect of the computer system is secrecy of information stored in 
a system. A secrecy violation was defined in [1] as "an unauthorized person is able to 
read or take advantage of information stored in the computer". Reasons of poor data 
protection are concealed at abundant errors that expose during system designing, 
coding, and administrating. The well-known lacks of security are those of 
programming origin, but they are successfully resolved with regular patches and 
service packs. At the same time, sophisticated analyses of the operating systems made 
by the world-renowned organizations, e.g. CERT or Secunia, testify to the 20 percents 
of vulnerabilities caused by incorrect security configuring and adjustment arranged by 
users or administrators. We consider errors made at the time of security 
administrating as reasons of operating system configuration vulnerabilities (OSCV). 

The OSCVs take place after: 

• ignoring the security requirements, published by vendors or security experts; 
• setting the different security adjustments that implicitly may conflict with each 

other or alternate other settings; 
• keeping the security settings that may contradict to the company security policy. 

The most typical examples of the OSCVs are using of default system security 
configuration, accidental folder permissions for the system files, and software 
installation to the default paths. For instance, in MS Windows 2000, if there is a 
shared folder created by administrator, the system grants 'Full Access' to new object 
for 'Everyone'. If administrator is a novice in security, she or he could miss such fault 
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and others could access to somebody's private files. Another example is that 
Dr.Watson, the built-in debugger in MS Windows, starts every time after system fault 
and creates the dump file C:\Winnt\user.dmp. Now imagine that OE falls down and 
Dr.Watson makes the dump. The dump corresponding to OE includes all mail 
accounts and passwords as plain text. Besides this, the NT file system (NTFS) creates 
a new file with default properties (with default access permissions among them) taken 
from the parent folder, e.g. C:\Winnt, and 'Everyone' thus has 'Full Control' over the 
dump file and consequently all private email passwords saved in the file. The Linux-
style operating systems obtain the OSCVs of the same sort, e.g. they have a SUID-
programs problem. Such mistakes in configuration of protection environment reduce 
every solid and well-engineered security to 'zero'. 

To eliminate the OSCVs, administrator has to know and observe all of the system 
details on-the-fly, analyze the security bulletins and vulnerability reports, and apply 
the security reconfiguring operatively. Therefore, administrator needs to be in good 
knowledge of the system inside and control a countless number of the system 
securable objects. For instance, we can estimate a great many of the objects of 
security interest in the wide-spread MS Windows operating system. There are 36 
types of the MS Windows entities that are used with access differentiation. Among 
them there are 9 entities of user level (e.g. group accounts, NTFS objects, system 
registry), and 27 kernel-level objects (e.g. jobs, processes, threads, objects of 
synchronization). Each object in MS Windows refers to the discretionary access 
control mechanism — the access control list (ACL). Every entry of ACL is a 32-bit 
access mask that provides the access rights. Users and groups obtain up to 37 
privileges that allow control of their behavior in the system. What is more, 38 local 
security settings specify the computer-native security policy. Thus, even in the 
isolated station, a number of security setting combinations exceeds tens of millions.  
For administrator, it is an impracticable task to detect OSCVs in such a complex 
system as MS Windows. She or he could make a very hard work of analyzing and 
monitoring the security settings in 'step-by-step' mode for 'one-by-one' security 
setting, but it will take enormously long period. Consequently, to solve a task of 
security faultlessness in the operating system, we need a special facility for the 
system's vulnerability detection. 

This paper discusses the theory and technique of the OSCVs detection in the secure 
operating systems. This paper is structured as follows. Section 2 reviews the related 
works in security flaws detection conformably to the MS Windows safety. Section 3 
introduces our approach applied to the vulnerabilities searching. Section 4 gives a 
brief review of our solution to search the OSCVs. Here we also explain an example of 
logical specification and OSCVs detection for Sample Vulnerability Checking (SVC) 
in MS Windows. Finally, section 5 discusses conclusion of our work. 

2   The Related Works 

Most of the other works on security assurance in the computer systems relates to the 
evaluation of the system safety. CSP [2] is an example which allows a security of the 
fixed number of the system processes to be specified and evaluated. Each process is 
identified with a security label, and the system security is evaluated in a field of these 
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labels. The security calculus is provided with a technique of a parallel programming 
language. This approach is useful for the vulnerabilities searching in the flow-related 
computer systems: network transactions [3], client-server communications. 

In [3], there is presented the UML-based approach for the automated verification of 
the security requirements. They have demonstrated a conception of the verification 
routines for security constraints associated with the stereotypes of the UML security 
extension UMLsec [4]. To do so, the analysis routine extracts information from 
different diagram types (class, deployment, and statechart diagrams) that may contain 
specific security-related information. The system requirements can be formulated at 
the level of the system's security model. But for this work we need to obtain the 
UMLsec diagram. Unfortunately, it cannot be obviously built for MS Windows. To 
do this, we would have a need for special tool, which will automatically compose the 
UML-diagram for a huge number of MS Windows objects. Other ways, the UML-
based approach could not be a reliable and efficient way to check the security 
vulnerabilities. 

A group at Carnegie Mellon developed a security specification and checking 
system called Miro [6]. The Miro system consists of two languages and a collection of 
software tools. One specification language is for protection configurations and the 
other is for security policies. It is a general system, but the Miro system was 
accomplished for the UNIX operating system [7]. The UNIX-style systems are mostly 
the open source ones, they operate with a limit number of the objects to be protected. 
To investigate the UNIX security thus needs little mind and time expenses. 

We have also observed characteristics of the MS Windows-oriented vulnerabilities 
detectors (Enterprise Security Manager, Symantec Corp.; Intrusion SecurityAnalyst, 
Intrusion Inc.; NetIQ Security Analyzer, NetIQ Inc.; XSpider, Positive Technologies; 
Microsoft Baseline Security Analyzer, Microsoft Corp., etc). After analyzes, we have 
made some conclusions (it is notable, that the following remarks are independent of 
developer's name and product version): 

• no solution investigates the system inside. For example, the known products have 
an eye on the well-known file paths or the security-critical folders. No one looks at 
security of the kernel mode objects; 

• no product allows composing the detection criteria. For example, the analyzed 
solutions use either the predefined checks or the scripts of the check sequence; 

• no detector predicts an effect of the security settings upon the reachable states of 
the system. 

Therefore, to our knowledge, the general problem of evaluation of security 
enforcement including weakness detection in such a complex operating systems as 
MS Windows has never been addressed by any author. 

3   Vulnerabilities Detection 

According to the fundamentals of computer system modeling, we look at the safety of 
the system through the safety of the system states. The state is characterized with the 
security configuration, which could (or not) contain the OSCV. To detect the OSCV 
in the state we need to analyze the security configuration corresponding to the given 
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state. We consider the security configuration of the given state as a complex of 
subjects (the active system entities, e.g. users), objects (passive containers of 
information, that need a protection, e.g. files), and their security attributes (e.g. access 
rights). We add to this schema the term of constraints like a set of access restrictions 
given for the 'subject-object-attributes' triple. We call the system to be safe in the 
given state, i.e. "something bad never happens in the given state". In other words, 
there is no critical OSCV in the given state. In real-life systems, the constraints are 
imposed upon the system state through the scope of the system-related security 
configuration. Breaking the security configuration produces the OSCV. Criteria, that 
help us to delimit the secure and insecure states for the OSCVs checking, we will call 
as OSCV-criteria. 

If security system has a problem in its security configuration, it means that the 
OSCV exists and secret information is leaked by unauthorized access. Assurance that 
system exploitation or the administrator's behavior does not result in the unauthorized 
access is fundamental for ensuring the system security. An important feature of an 
access control in the operating system is an ability to verify the correctness of security 
configuration. If the security configuration is set properly, then there is no OSCV in 
the system, and the system is thus secure in terms of the given vulnerabilities. 

As we see, the OSCVs detection may be accomplished as checking of the security 
requirements fulfillment or, in opposite side, as checking of the definite insecure 
settings. Consequently, the criteria could be formulated either in terms of positive 
(required or "desirable") situation, or in form of negative (denied or "undesirable") 
situation. Verbally, in case of positive statement, the criterion specification starts with 
the words: "System is secure, if ... [security requirements that need to be in the 
system] ... ". In case of negative criteria, the specification of criterion starts with 
"System is vulnerable, if ... [vulnerability conditions that need not to be in the 
system] ... ".  

To make the OSCVs detection a comfortable routine we need both specifications, 
because transformation from one mode to another is obvious mathematically but not 
trivial for complex computer systems. Let us demonstrate the example of 'negative-to-
positive' transformation hardness. We have the following OSCV-criterion: "System is 
vulnerable, if user U obtains right "w" for file F" (fig. 1). We mathematically could 
use just a positive specification instead of both modes. To do this, we ought to 
transform negative description of OSCV to positive one. Thus, we need to specify 
four different positive situations.  

The theory of security supplies us with the following basics of OSCVs detection. 
Rall defines a set of all possible access rights that the user can obtain for the given 

type of securable object. RPA denotes the "required" access rights, that user should 
have. If she or he has the "required" rights, the system will be thus secure. RPD is a set 
of the "denied" rights, i.e. the access rights that should be forbidden to user. If those 
rights are banned to user, the system is considered to be secure. To take into account 
the system security settings, we need to introduce the set RS, the number of access 
rights, range of which is allowed by the system security settings, RS ⊆ Rall. 

Rexcess denotes the "excess" rights, i.e. a subset of rights which are not "necessary" 
but allowed by the security settings; and Rmiss marks the "missed" rights, i.e. a subset 
of rights which are not enough for user to obtain all of the system-defined rights. 
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Rights mask R    
bits r w x 

 
Negative specification (spec. of OSCV): 

• bit "w" is set 
 
Positive specification (spec. of security requirement): 

• bit "r" is set; 
• bit "x" is set; 
• bits "rx" are set; 
• ∅ — no bits are set 

 

Fig. 1. Criteria Enhancement in Specification Transformation 

For positive specification of OSCV-criteria, we have declared three conditions of 
the system security. 

Condition P1. Positive Equity. System is secure (according to the given 
criterion), if the set RS of the system-provided rights coincides with the set RPA of the 
"required" rights, RS=RPA (fig. 2). 

Condition P2. Positive Secrecy. System is secure (according to the given 
criterion), if the set RS of the system-provided rights not exceeds the set RPA of the 
"required" rights, RS ⊆ RPA (fig. 3). 

Condition P3. Positive Availability. System is secure (according to the given 
criterion), if the system allows the user to obtain all of the "required" access rights, 
RPA ⊆ RS (fig. 4). 

To detect the OSCV in positive case, we need to make the following calculus. 

Test P1. Rexcess = RS – RPA. If Rexcess  ∅, the system is vulnerable, because the 
current security configuration allows the user to hold the unauthorized access rights 
(fig. 5). 

Test P2. Rmiss = RPA – RS. If Rmiss  ∅, the system is vulnerable, because the current 
security configuration denies the user to possess the required access rights (fig. 5). 

To explain the reasons of OSCV given in the form of 'Positive Equity', we need to 
make both tests. Thus, we will define inconsistency between the access rights 
completely. To check the 'Positive Secrecy', we need to make the Test P1. And to 
make 'Positive Availability', we need to accomplish the Test P2.  

If Rexcess is not empty, we can conclude that the system is vulnerable, because the 
system presents the user rights from Rexcess. If Rmiss is not empty, we can also show the 
vulnerable rights, because the user has no the required rights from Rmiss. 
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Fig. 2. Condition P1 
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Fig. 3. Condition P2 
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Fig. 4. Condition P3 
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Fig. 5. Vulnerability Tests in Positive Mode 

For negative specification of OSCV-criteria, we have declared another three 
conditions of the system security. 

Condition N1. Negative Equity. System is vulnerable (according to the given 
criterion), if the set RS of the system-provided rights coincides with the set RPD of the 
"denied" rights, RS=RPD (fig. 6). 

Condition N2. Negative Secrecy. System is vulnerable (according to the given 
criterion), if the set RS of the system-provided rights is not less than the set RPD of the 
"denied" rights, RPD ⊆ RS (fig. 7). 

Condition N3. Negative Availability. System is vulnerable (according to the 
given criterion), if the system allows the user to obtain no more than the "denied" 
access rights, RS ⊆ RPD (fig. 8). 

To detect the OSCV in negative case, we need to make the following calculus. 

Test N1. RPD ⊆ RS. In this case Rexcess = RPD. The system is vulnerable, for the 
current configuration does not denies the "denied" access rights (fig. 9). 

Test N2. RS ⊆ RPD. We have Rmiss = Rall – RPD.  If Rmiss  ∅, the system is 
vulnerable, because the current security configuration does not allow to the user no 
one right from the set of the "required" access rights (fig. 9).  
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Fig. 9. Vulnerability Tests in Negative Specification 

As in positive case, here we need both tests when we check the 'Equity' condition. 
To check the 'Negative Secrecy' we need only Test N1. And we need to provide the 
Test N2 to check the 'Negative Availability'.   

The above mentioned conditions and tests can be successfully extended to support 
users operations, because of granular nature of the sets to be compared. 

Therefore, in positive case of OSCV detection, as well as in negative mode, we 
need to fulfill the following flowchart: 

• parsing the criteria format specifications,  
• comparing the sets of the security configurations (according to Conditions above),  
• analyzing the results of the sets comparison (according to Tests above).  

To make this algorithm a mechanical procedure, we have designed and built a 
vulnerability detection tool — the Vulnerability Criteria Processing Unit (VCPU). 

4   The Criteria Calculus Procedure 

Formal approaches are not intuitive. We do map our technique onto executive 
implementation. To automate the OSCVs detection according to the technique 
mentioned above, we have developed the Vulnerability Criteria Processing Unit 
(VCPU). This utility is a calculus facility for the Safety Problem Resolver, the part of 
the Safety Evaluation Workshop (SEW). Original conception of the SEW was 
presented in [8], and the current paper discloses the theoretical basis of the SEW's 
core component. 
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For its work VCPU uses:  

• Safety Problem Specification Language (SPSL): allows to specify the system state, 
the access control rules, and the OSCV-criteria, and thus to obtain the formal 
model of the evaluated system for further resolving;  

• Scopes: 
− Model-related System Security State Scope (M3S-scope): specifies the system 

security state in SPSL. For example, the scope for MS Windows 2000 contains 
the predicates describing all of the securable objects and their attributes, e.g. 
users, files, processes, ACLs, owners, hierarchy, memberships, etc. This scope 
is generated automatically with the Security Analyzer, the part of the SEW; 

− Access Control Rules Scope (ACR-scope): specifies the access control rules in 
SPSL. For example, in MS Windows 2000, this scope contains the rules that 
regulate the access control to the securable objects and that are realized in the 
system reference monitor (e.g. MS Windows SRM). Rules have a form of 
Prolog clauses and allow the state transactions resolving and computing of the 
authorized accesses for any user; 

− State Security Criteria Scope (SSC-scope): expresses the OSCV-criteria in 
SPSL. For example, in MS Windows 2000, this scope allows users to set 
checking of the Microsoft security requirements or the firm security policy. To 
construct this scope we use the Criteria Manager, the part of the SEW facility. 

For easy understanding of security specification for the VCPU and OSCVs 
detection technique, we show a Sample Vulnerability Checking (SVC) applied in MS 
Windows 2000 Professional. 

Like on office workstation, our sample computer has the MS Office installed. All 
of the MS Word templates of the user documents are located in the given folder, e.g. 
C:\Documents and Settings\Administrator\Application Data\Microsoft\Templates. 
Now let's imagine the situation when user named 'Administrator' shares her template 
with other users. To do it, she grants the access to read and write the template for the 
MS Windows built-in group named 'Users'. If the violator, the member of the 'Users' 
group changes the Normal.dot template file in the given folder so it contains the 
malicious code (e.g. macro-virus). Thus, all new documents of Administrator will be 
infected. This is a sample of the OSCV: user has ignored or forgotten the 
recommendations to protect the MS Word templates. 

Like in any theoretical security model, our security states are the collections of all 
entities of the system (subjects, objects) and their security attributes (e.g. ACLs). In 
our example, we assume that a target of OSCV-criteria is a C:\Documents and 
Settings\Administrator\Application Data\Microsoft\Templates folder. The system 
security states may be presented as the M3S-scope. 

We have used the State Analyzer component of the SEW [8] to specify the SVC's 
security state. The following code example shows the M3S-scope for SVC. 

 

..........[abbreviation]........ 

subj('s-1-5-21-73586283-484763869-854245398-500', 

[type(user),name('administrator'), 
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privileges([security,...,remoteinteractivelogon]), 

groups(['s-1-5-32-544'])]). 

..........[abbreviation]........ 

subj('s-1-5-32-545', 

[type(group),name(['users']), 

privileges([shutdown,...,networklogon])]). 

 

..........[abbreviation]........ 

obj('c:\\documents and settings\\user\\application 
data\\microsoft\\templates\\normal.dot', 

[type(file), 

owner(['s-1-5-21-73586283-484763869-854245398-
500']),inheritance(yes)], 

[['s-1-5-21-73586283-484763869-854245398-
500',tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]], 

['s-1-5-18',tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]], 

['s-1-5-32-544', 

tnn,[0,1,2,3,4,5,6,7,8,16,17,18,19,20]], 

['s-1-5-32-545',tnn,[0,1]]]). 

..........[abbreviation]........ 

 

We use the logic Prolog-style predicates to specify the state. This sample state 
specifies three entities: two subjects (one user with one group) and one object (the 
template file). Every entity is specified in the SPSL format. Each predicate declares 
the security attributes of the corresponding unit. For example, user 'Administrator' 
owns SID equal to S-1-5-21-73586283-484763869-854245398-500, some system 
privileges, and membership in the 'Administrators' group. The second predicate 
specifies the group named 'Users', which is characterized with some system privileges 
only. The third expression declares the object, the template file C:\Documents and 
Settings\Administrator\Application Data\Microsoft\Templates, which is a goal of 
vulnerability evaluation. The attributes of this file are: the owner SID, inheritance 
flag, and the object's ACL. Each ACL is a set of access control entities, presented in 
the form of "SID – 'rights delegation' – 'access bits' ". 

In the same manner, using the State Analyzer, we can gather all of the system 
objects of the user mode as well as of the kernel mode. For example, the following 
predicate specifies the COM-object and its security configuration:  

 

obj('tlntsvr.exe', 

[type(com), owner(['s-1-5-32-544']), 
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appID(['{b8c54a54-355e-11d3-83eb-00a0c92a2f2d}'])], 

[['s-1-5-32-544',tnn,[0]],['s-1-5-4',tnn,[0]], 

['s-1-5-18',tnn,[0]], 

['s-1-5-18',tnn,[1]]]). 

 
Access control rules express the restrictions on a system behavior. The system 

states transformation is able after the access authorized in kernel mode within the 
security subsystem of MS Windows by the system's reference monitor (access control 
mechanism). Using an object’s ACL, it compares information about the client and the 
information about the object to determine whether the user has the desired access 
rights (for example, read/write permission) to that object (for example, a file). 
Depending on the outcome of this comparison, the security service will respond to the 
client, either serving the object or returning an access-denied failure.  

To embody this mechanism, we have investigated the MS Windows inside (e.g. 
using the gray-box testing strategy) and looked through innumerous Microsoft Press. 
It made us able to re-compose the MS Windows protection subsystem in the form of 
logical clauses.  

Such specification can be called as the ACR-scope. The following code example 
shows the ACR-scope of SVC. For want of paper space, we do not describe all of the 
MS Windows ACR-scope in SPSL. We have just prepared a sample of the read access 
checking with some comments describing the system reference monitor working: 
 
..........[abbreviation]........ 

allow_file_read(U, F):- 

% System security settings allow user U to traverse 

% through containers of file F 

   allow_traverse(U, F),  

% EPL is effective permissions list 

% for user U and file F 

   effective_permissions(U, F, EPL),  

% Get PL, the list of privileges granted to user U 

   privileges_list(U, PL),            

% Privilege "Backup files and directories" 

% is granted to user U 

   ( member(backup, PL), !;           

% Permission "Read data" is granted to user U 

   member(0, EPL),                    

% Permission "Read attributes" is granted to user U 

   ( member(7, EPL),!;                
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% P is direct container of file F 

   container_of_file(P, F),           

% Permission "List folder" is granted to 

% user U for direct container of file F 

   group_permissions(U, P, 0) ),      

% Privilege "Backup files" is granted to user U 

   ( member(restore, PL), !;          

% Permission "Synchronize" is granted to user U 

   member(20, EPL) ) ).               

..........[abbreviation]........ 
 
The 'read' access to the file is granted, if user has a 'traverse' permission for the 

file, or she has a 'Read Data' bit in her ACE referred to the file, or the user's group 
membership gives her some abilities to access the file. 

The security criteria allow the customer or evaluator to delimit the secure and 
insecure states in security model. Criterion may have a form of constraint which states 
the necessary condition of the secure state (positive specification). The system is safe 
by the OSCV-criteria if all logical goals corresponding to the criteria are true. If some 
criterion goal is false, then system breaks the safety conditions specified in the 
criterion. In VCPU facility, security criteria can be noted as the SSC-scope. The 
special component of the SEW, the Criteria Manager, allows to compose and edit the 
vulnerability criteria [8]. The following code example shows the SSC-scope. 

 

..........[abbreviation]........ 

criterion('Criterion #1: Users are not allowed to edit 
the file Normal.dot',  

mask, 

[obj('c:\\documents and settings\\administrator\\ 

application data\\microsoft\\templates\\normal.dot'), 

inheritance('tnn'), 

's-1-5-32-544'(0,1,2,3,4,5,7,8,6,16,17,18,19,20), 

's-1-5-18'(0,1,2,3,4,5,7,8,6,16,17,18,19,20)]). 

..........[abbreviation]........ 

 
The logical predicate denotes one of the OSCV-criteria to be checked in MS 

Windows system. It refers to the Normal.dot file. It has the form of "required" access 
rights (positive mode of criteria specification). Type 'equity' pays our attention at an 
equity condition (Condition P1), i.e. there is the checking of the concrete access 
rights to the given Normal.dot object. There is also a condition of safe system: only 
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SYSTEM (its SID equals to S-1-5-18) and 'Administrators' group (S-1-5-32-544) are 
allowed to do 'Full Access' to Normal.dot. All other cases are considered to be 
vulnerable. 

In the mentioned style, we can compose a full range of OSCV-criteria. It becomes 
able to handle even context-related conditions, such as "The system is vulnerable, if 
Administrator can modify object X, provided she is connected to the local console". 
Such conditions are indeed part of Microsoft Windows security model. From the point 
of security, all kinds of user's activity in the system (such as connection to the local 
console, applications running, etc) are mapped to Win32API functions calls operated 
with the Windows recourses. List of functions calls and set of resources maintained 
by the Windows security (so named as securable objects) are defined in MSDN. 
Because of monitoring a variety of operations over the securable objects, we can 
analyze the user's activity in the system.  

We have the VCPU's  input with a triple (M3S-scopc, ACR-scope, and SSC-scope) 
written in SPSL. Then we have run the resolving program for SVC. The VCPU makes 
calculus using our vulnerabilities detection technique. It takes the M3S-scope and 
finds the target object mentioned in the SSC-scope. Then it calculates the sets of the 
"pure" access rights taking into account all other security settings, e.g. privileges, 
ownerships, and etc. To do this VCPU uses the ACR-scope. Then it compares the 
rights sets, and makes the result tests for vulnerabilities using the SSC-scope and 
ACR-scope (Test P1 and Test P2). After the running procedure, we have got a result 
file — the security evaluation Report. The following text example shows the report 
file for our SVC.  

 

*** SYSTEM SAFETY RESOLUTION *** 

CRITERION #1:  

Users are not allowed to edit the file Normal.dot 

>> VIOLATION DETECTED: 

subject        group  <Users> 

has unauthorized permissions  

       bits   [0,  1] 

          [Read Data,   Write Data] 

for object(s)    file c:\documents and settings\ 

       administrator\ 

       application data\ 

          microsoft\templates\ 

          normal.dot 

..........[abbreviation]........ 
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The result for checking criterion 1 is the OSCV found. It means that there is some 
incorrectness in the security setup followed with security violation. After analyzing 
the unsafe state, VCPU discloses nature of security flaw, detecting subjects, objects, 
and their attributes that lead to protection weakness. The evaluation verdict is "system 
is unsafe by the given criterion", because members of 'Users' have the 'Read Data' and 
'Write Data' access in the ACL, corresponding to Normal.dot.  

5   Conclusion 

In this paper, we addressed to formal basics of OSCVs verification approach for 
secure operating systems. We discussed a technique of the vulnerabilities analysis and 
a formal processing tool, the VCPU. All these allow to specify the system security-
related elements and proof the system safety. 

The VCPU facility brings our vulnerability checking method to practice. The 
targets of its applications (being integrated into SEW toolkit) are the computer 
systems based on the granular security: the operating systems, DBMSs, and firewalls. 
Our approach is very useful for administrators and security officers to monitor the 
system securable resources (files, shared folders, printers, accounts, etc). It allows any 
user to discover security of her or his system in the depth, and thus open the 'holes' in 
the protection. The OSCVs, as mentioned, represent a very serious problem in the 
modern operating systems. Contemporary systems operate with a huge number of 
security settings, and the user needs some tools that could explain the whys and 
wherefores of security weaknesses. The VCPU utility makes this process closer to 
person than ever, because while logical resolving it marks the clause that caused fault 
of OSCV-criterion, and supplies user with a true reason of the security flaw. 
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Abstract. An algorithm for designing hybrid intrusion detection sys-
tem based on behavior analysis technique is proposed. This system can
be used to generate attack signatures and to detect anomalous behavior.
The approach can distinguish the order of attack behavior, and over-
come the limitation of the methods based on mismatch or frequencies,
which performs statistical analysis against attack behavior with asso-
ciation rules or frequent episode algorithms. The preprocessed data of
the algorithm are the connection records extracted from DARPA’s tcp-
dump data. The algorithm complexity is analyzed against a very known
algorithm, and its complexity is decreased greatly. Using the proposed
algorithm with transactions of known attacks, we found out that our
algorithm describes attacks more accurately, and it can detect those at-
tacks of limited number of transactions. Thus, any important sequence is
considered and discovered, even if it’s a single sequence because the ex-
traction will cover all possible sequences combinations within the attack
transactions. Four types of attacks are examined to cover all DARPA
attack categories.

Keywords: intrusion detection, continuous pattern, discontinuous pat-
tern, data mining.

1 Introduction

Over the past decade, the number as well as the severity of computer attacks
has significantly increased. CSO magazine conducted a survey on the 2004 cy-
ber crimes, the survey shows a significant increase in reported electronic crimes.
Compared to the previous year, more than 40% of intrusions and electronic
crimes are reported. Also, 70% of the respondents reported at least one elec-
tronic crime or intrusion was committed against their organization [1]. According
to collected statistics, electronic crimes have an incredible impact on economy.
Reports say that electronic crimes have cost more that $600 million in 2003.

IDSs are considered as powerful security tools in computer systems environ-
ments. These systems collect activities within the protected network and analyze
them in order to detect intrusions. System activities are usually collected from
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two main sources, network packet streams and host log files. Once the infor-
mation is collected, the detection algorithm starts looking for any evidence for
intrusions existence.

There are two general methodologies of detection used by IDSs: misuse and
anomaly detection [2,3]. Misuse detection systems such as STAT [4] look for a
known malicious behavior or signature, once it is detected an alarm is raised
for further actions. While this type is useful for detecting known attacks, it
can’t detect novel attacks, and its signatures database needs to be upgraded
frequently. The main feature of this model is its low false alarm rate. Anomaly
detection models (e.g. IDES [5]) compare reference model of normal behavior
with the suspicious activities and flag deviations as anomalous and potentially
intrusive. Unlike misuse detection, anomaly detection systems identify unknown
intrusions. The most apparent drawback of these systems is the high rate of false
alarms. The two detection approaches can be combined to detect attacks more
efficiently. There are various types of detection models (e.g. [6], [7], and [8]).
Among these techniques, ADAM: Audit data analysis and mining, association
rules data mining [9,10], and classification data mining [11,12,13] are the main
used algorithms.

Following this introduction, we provide a background on the related work,
and a briefing of our contribution. Section 2 then presents the proposed algo-
rithm. In Section 3, the experiments are explained, including: data set model,
details of learning and detection phases. Finally, Section 4 summarizes this pa-
per’s main conclusions.

1.1 Related Work

There has been extensive considerable work in representing and recognizing nor-
mal or malicious activities. Henry et al. in [14] proposed an approach that uses a
time-based inductive machine (TIM) to generate rule-based sequential patterns
that characterize the behavior of a user. This approach, to some extent, is sim-
ilar to our approach in that both can be used to offer a simplified view of a set
of complex data. There are, however, some fundamental differences between the
two approaches: first, Henry’s approach conducts a heuristic search to find the
rules that satisfy certain given criteria, while our approach is mainly used for the
evaluation of generated patterns. Second, Henry’s model uses only continuous
patterns, while our model combines both continuous and discontinuous patterns.
Third, in the case of using our model as Anomaly detection, deviation from the
norm in TIM is detected by matching the two sides of the rule, while in our model
deviation is conducted by the summation weights of the matched patterns.

The most efforts that contribute to the current proposal are proposed by Kim
and Wenke lee in [15] and in [16] respectively. While Kim proposed a new in-
trusion detection classification using data mining based on CTAR which consid-
ers temporal attribute of audit data. Wenke applied data mining with frequent
episode algorithm, and structure statistic features. Wenke built his detection
model based on RIPPER classifier. In the following, we summarize some draw-
backs that have been noticed in these two approaches: First, although some
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intrusion behaviors depend on frequent episode or temporal attribute, analysis
based on statistical features may not reflect the different features relationship
in the context of time order. e.g., attacks with features appearing only once in
the records, and attacks based on features that don’t have frequent connection
records or features that occur only once in an attack. Second, both detection
methods of Wenke and Kim were designed to detect mainly Probe and DoS
attacks. Current efforts of intrusion detection focus on detecting attacks with
no clear evident features, such as application layer attacks or what are called
in DARPA dataset remote to local and user to root attacks. Third. the most
important, using statistical analysis would lead to lose order actions. Because
attack evident features spread over many records, we need a technique to search
the records vertically, and dig out the records for each single itemset sequences
that may reflect attack features, that is continuous and discontinuous based data
mining.

1.2 Our Contribution

The objective of this paper is to treat the systems ordered actions differently.
Our approach uses the continuous and discontinues patterns to characterize the
system behaviour. We used the proposed technique to extract some attacks sig-
natures, and also to build an anomaly detection classifier. To classify a new se-
quence into either normal or intrusive, our proposed classifier converts the new
sequence into a number of patterns and then calculates the similarity between
these patterns and those of the training sequences. There are some advantages
to applying this method to intrusion detection: First, without affecting the de-
tection rate, limited and reasonable deviations from the norm are allowed, thus,
false positive rate is significantly reduced. Second, foremost advantage is that
this technique aims to discover all important possible patterns within the se-
quence. Third, in case of using this technique for building attack signature, it
can deal with any kind of attack attributes such as time, numerical, categorical,
and free-text.

2 Proposed Algorithm

2.1 Notations and Definitions

This section defines concepts that are central to this article, including the fun-
damental notions and definitions.

Definition 1 (Notions).

– C (k,l): used to represent the set of candidate sequences of k elements and l
stars.

– L(k,l): The sequences set that have a support value bigger than the given
minimal support where the sequence length is k and it has l stars.
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– SupL(k,l): The super large set, SupL(k,l), used to store the list of all sup-
ported sequences of both types continuous and discontinuous.

– Pattern: also called sequence, it is a number of ordered actions. the pattern
X can be shown as (x1, x2, .., xn), each xj means an item or element.

– record: single instance of an attack. If an attack is involved in multi-instances,
then we say attack records for all involved instances.

Definition 2 (continuous patterns). Suppose a pattern Si extracted from
the sequence Xi = {x1, x2, ..., xm} and contains some actions, that is, Si =
{s1, s2, ..., sl} which may reflect ordered commands executed by a program run
on a computer machine. The pattern Si can be classified as continuous pat-
tern if all contained elements appear in consecutive positions of the sequence
Xi, such that, there is an integer r such that; s1 = xr , s2 = xr+1, ..., sd =
xr+l−1. For example, the continuous pattern (s3, s4) occurs in sequence: X1 =
(s1, s2, s3, s4, s5, s6).

Definition 3 (discontinuous patterns). We say that Si is a discontinuous
pattern if the elements of that pattern don’t appear in consecutive positions of
the sequence Xi, that is, if there are existing integers r1 < r2 < ... < rl such that
s1 = xr1 , s2 = xr2 , ..., sl = xrl

. For example, the pattern (s1, ∗, s4) in sequence:
X1 = (s1, s2, s3, s4, s5, s6) is a discontinuous pattern.

Definition 4 (star patterns). Star pattern is a pattern that contains one
star or more as part of its elements. In a discontinuous pattern, hidden elements
represented by star “ ∗ ” which is defined as a variable number of intermediate
elements. The star pattern never starts or ends by “ ∗ ”. For example, if we
have a sequence Xi = {x1, x2, x3, x4}, we may have these continuous patterns
(x1, x2), (x2, x3, x4), and (x1, x2, x3), or this discontinuous pattern (x1 ∗ x3, x4).
Because of the definition of the “ ∗ ”, the pattern (x1 ∗ x3, x4) implicitly has two
other patterns: (x1, x3, x4), and (x1, x2, x3, x4).

2.2 Data Analysis and Patterns Generation

DARPA 1998 off-line data sets [17] developed to evaluate any proposed tech-
niques for intrusion detection. These data prepared and managed by MIT Lincoln
labs, sponsored by DARPA, and contain contents of every packet transmitted
between hosts inside and outside a simulated military base. There were a collec-
tion of data including TCPDUMP and Basic security module (BSM) audit data
of a victim Solaris machine. Both types are used in this work. While we used
BSM data to model users normal behavior, we preprocessed and used tcpdump
data set to model attack behavior. tcpdump records consist of a number of at-
tributes as items of sequences, and these items include class attribute and other
attributes, which are shown in Figure 1.

The aim of the proposed algorithm is to find out all frequent patterns from an
attack records. Compared with CTAR or even with traditional Apriori algorithm,
the proposed algorithm mines two types of sequences, one is continuous, and the
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loadmodule172.016.113.050172.218.117.0692320504telnet

Normal192.168.001.001192.168.001.005801106http

Class

Attack/Normal

Dest 

IP address
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IP address

Dest 

Port

Src 

Port

Service

Fig. 1. Dataset records, each one has a number of attributes. Class attribute has two
categories, normal or attack. The rest of the attributes have many values.

other is discontinuous. The algorithm includes two steps, the first step is to search
large-sequences of the first type of patterns, and the second step is to search the
second type of patterns. In the following, the steps are summarized as follows:

– All attribute values in records database are considered as candidates to
1-element-zero-star-sequence-itemset, C (1,0). After generating C (1,0), the
records database is scanned vertically. If the elements of C (1,0) are con-
tained in any instance, then the support of that element adds 1. Insert any
element with support value greater than the given minimal support in 1-
element-zero-star-sequence-large-itemset, L(1,0), and store the results in a
temporary database.

– Each two elements from two different attributes in L(1,0) are combined to
form 2-element-sequence-itemset-zero-star, C (2,0). The records database is
scanned for all patterns existing in C (2,0). When the support value of a
pattern exceeds the given minimal support it inserts in 2-element-sequence-
large-itemset-zero-star, L(2,0). We find out all k -element-large-zero-star
L(k,0) and store in a temporary database in turn. And then, we list all large-
zero-star-sequence, L(1,0), L(2,0),..., L(m,0), and store them in a common
database called super large sequences set, SupL.

– After generating all possible L(k,0), we extract all discontinuous patterns.
First, from the temporary database of L(3,0) we found out 2-element-1-star-
sequence C (2,1) by replacing the second item of the pattern by star. And
then the records are scanned vertically for each pattern existing in C (2,1),
the patterns that have a support value exceeding the given minimal support
are inserted in 2-element-zero-star-sequence-large-itemset, L(2,1). We then
found out all 2-element-l -star-large-itemset L(2,l), and list all large-l -star-
sequence, L(2,1), L(2,2), ..., L(2,l). We do the same thing for all k -element-
large-zero-star L(k,0) in turn. The resulting sets add to SupL database. These
steps are shown in Figure 2.

In order to describe the algorithm clearly, we will take the example of an
attack that includes 5 items and generate all possible sequences, which are shown
in figure 3.

2.3 Complexity Analysis

The proposed algorithm is very different from Apriori algorithm [18]. First, dis-
continuous sequences are not considered in Apriori algorithm. Second, item-
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Input: Extracted transactions from Original records.
Output: SupL; L(k,l) for all ks and ls

//Generate all possible candidate patterns of 1-element-sequence
C(1,0) = gen (Original records)
//Extract 1-element-sequences that have support value bigger than the min support
L(1,0) = subset (C(1,0))

For (2 ≤ k ≤ m)
C(k,0) = gen (L(k-1,0)) //Generate all combinations of L(k-1,0)
L(k,0) = subset (C(k,0)) //Extract all supported continuous patterns

For (1 ≤ l ≤ m-2)
C(k,l) = gen (L(k,0)) //Generate all combinations L(k,0) with star
L(k,l) = subset (C(k,l)) //Extract all supported discontinuous patterns

Fig. 2. Proposed algorithm

CDEBCDABC3-items-sequence

DECDBCAB2-items-sequence

EDCBA1-item-sequence

……

Attack pattern: ABCDE

A*C*E2-star-1-item-sequence

A*E1-star-3-item-sequence

AB*EA*DE1-star-2-item-sequence

ABC*EAB*DEA*CDE1-star-1-item-sequence

Discontinuous sequences:

5-items-sequence

4-items-sequence

Continuous sequences:

ABCDE

BCDEABCD

Fig. 3. Pattern extraction trees

record data is scanned vertically instead of horizontally. Among other steps,
we found calculating the support value is the most time-consuming step, al-
gorithm of support calculating is shown in Figure 4. Thus, the proposed algo-
rithm reduces the complexity of continuous and discontinuous patterns mining
greatly.

The Apriori algorithm built based on an iterative technique, where k -itemsets
are used to generate (k+1)-itemsets. First, supported 1-itemset is generated, i.e.
L(1,0). Then, L(1,0) is employed to generate the set of frequent 2-itemsets, i.e.
L(2,0), which is used to find L(3,0), and so on until all supported k -itemsets
are extracted. The next process consists of two actions; joining and pruning.
First, the join step: To generate L(k,0), a candidate set k -itemsets is extracted
by joining L(k -1,0) with itself, where items of L(k -1,0) can be joined if their
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Input: i=1, j=1, sequence x, pattern t
Output: sum, number of t included in x
number(String[] x, int i, String[] t, int j){
if (x[i]=(“ ∗ ”)) i++; // If we have a star, skip it, it was already used
// If the star was the last character, found another match.
if (i = m AND x[i] = (“ ∗ ”)) return ++sum;
if (j = n) {return sum;}
if (i = 0 AND j = 0) sum = 0;

// The “ i > 0 ” test simulates a starting star.
if (i > 0 AND x[i - 1] �= (“ ∗ ”)) {

if (x[i] = (t[j]) AND i = (m - 1)) { sum++;}
else if (x[i] = (t[j])) { number(x, i + 1, t, j + 1); } }

else {
for (int p = j; p < n; p++) {
if (x[i] = (t[p]) AND i = (m - 1)) {sum++;}
else if (x[i] = (t[p])) { number(x, i + 1, t, p + 1); }
}

} return sum; }

Fig. 4. An algorithm to find out how frequent is each pattern within a certain number
of records

first (k -2) items are similar. This set of candidate is denoted C (k,0). Second,
the prune step: C (k,0) is a superset of L(k,0), that is, its elements may or may
not be frequent, but all of the frequent k -itemsets are included in C (k,0), even
if C (k,0) is very large. In fact any (k -1)-itemset that is not frequent cannot
be a subset of a frequent k -itemset. Hence, if any (k -1)-subset of a candidate
k -itemset is not in L(k -1,0), then the candidate cannot be frequent either, and
so, can be removed from C (k,0). Suppose there are n records in the original
data set, to find all n large sequences, the number of connection will be 2n. To
build the signature of an attack with around 100 records, this structure is not
suitable.

In contrast, when we search for 1-itemsets candidate, C (1,0), with our pro-
posed algorithm, we need to scan the original records once and count all items,
the same as the Apriori algorithm. When searching for frequent 1-itemsets,
L(1,0), instead of scanning original records, we only need to scan C (1,0) which
is composed of original records and much less than the original data. After gen-
erating all L(k,0), we scan the original records once, and every C (k,0) is also
scanned once. In total, k times of scanning are performed. Since any L(k,l)
is extracted from the corresponding L(k,0), we only need to scan the data
stored in the temporary database instead of the corresponding C (k,0) or origi-
nal records. The data quantity is reduced evidently. And the most important, by
taking out C (2,0), and only scan the corresponding L(1,0) which may compose
the C (2,0) in the temporary database. Then, the other C (2,0) is taken out in
turn.
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Thus, for a limited number of attributes and more records, the proposed
algorithm has proved more efficient compared to Apriori.

3 Experiments

3.1 Misuse Detection

For the sake of clarity, the algorithm is described through the example of number
of attacks. Each attack includes a number of records, in some attacks tens of
instances are collected, each record includes five attributes shown in table 1. We
dig out continuous and discontinuous patterns of these attacks with the misuse
intrusion detection algorithms. Results are shown in Figure 5.

The first examined attack is Back attack, which belongs to denial of service
attack against the Apache web server. Back attack is fabricated by submitting
frontslashes contained in URL’s requests. The Back attack causes instances of
the http process on the victim machine. As the server tries to process these
requests it becomes unable to process other requests, consequently, the attack
slows down the server. Attack signatures in Figure 5 show that the attacker https
to the victim machine “172.016.114.050” from a certain machine. This flow of
request consumes excessive processor time, when the original data was checked
back, we found the attribute Src port has many values, none of them support the
minimal given support value. Consequently, it is replaced by star in the patterns,
and didn’t appear in large-sequences L(1,0) or in super-large-sequences, SupL.

The second simulated attack is the ftp-write attack, which belongs to R2U
attack. It takes advantage of misconfiguration of an anonymous ftp, which allows
the intruder to add files such as an rhosts file, and gain local access to the system.
This is exactly what the patterns show in Figure 5. Regardless of the values of
attributes: Src port and dest port, which are represented by star, the attacker
anonymously ftps the victim machine, performs some tasks such as creating
“.rhosts” file, and disconnects from the server. Then, as the second pattern
shows, login to the victim machine by using rlogin to connect back to the server
as ftp user, and finally performs some illegal actions on the victim machine.

An eject attack, the third simulated attack, belongs to U2R category. It ex-
ploits buffer overflow vulnerability of the distributed “eject” binary with Solaris
2.5. This vulnerability, if exploited, is used to gain root access on the attacked
machine. As shown from the attack signature in figure 5, the attacker telnets the
workstation “172.016.112.050”, regardless of what source port is used, or from
where the attack is launched, which explains the stars in the last three patterns.
Then, telnet victim machine is exploited to distribute the malicious code. The
implanted code, if compiled, can be run on the victim machine, as a command
line session where the attacker can gain root access.

The last simulated attack is ipsweep which belongs to the probing attacks
family. Attackers use this attack to search for vulnerable machines to determine
which hosts are listening on a network. It can be performed by sending an ICMP
Ping packets to every possible address within a subnet, listening machines will
respond to the sender. The generated attack pattern shows that a Ping packet
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Pattern 1: telnet (service)

Pattern 2: 23 (Des. port)

Pattern 3: 172.016.112.050 (Des. IP)

Pattern 4: telnet,*,23

Pattern 5: 23,*,172.016.112.050

Pattern 6: telnet,*,23,*,172.016.112.050

eject (U2R)

Week-6

Thursday

Pattern 1: ftp,*,195.073.151.050,172.016.112.050

Pattern 2: Login,*,195.073.151.050,172.016.112.050

ftp-write (R2U)

Week-2,Friday

Pattern 1: eco/i,7,7,202.077.162.213,*ipsweep (Probing)

Week-3,Wednesday

Pattern 1: http (service)

Pattern 2: 80 (Des. port)

Pattern 3: 135.008.060.182 (Src. IP)

Pattern 4: 172.016.114.050 (Des. IP)

Pattern 5: http,*,80

Pattern 6: 135.008.060.182,172.016.114.050

Pattern 7: http,*,80,135.008.060.182

Pattern 8: http,*,80,135.008.060.182,172.016.114.050

back 

(DoS)

Week-2 

Friday

Generated patterns for chosen attacksAttack type

Fig. 5. Number of chosen attacks, and their behavior as continuous and discontinuous
sequences

“eco/i” is always sent from the same source “202.077.162.213”, and the attribute
Dest IP address is replaced by star “ ∗ ” which explains that the Ping message
is sent to a variety of destinations. That is exactly how the attack is performed.

The experiment indicates that the pattern we obtained is different from the
command pattern, it is a new pattern. It can describe attacks more accurately,
detect the attacks whose features appear only once, improve detection rate, and
offer a new idea for the research of intrusion detection.

3.2 Anomaly Detection

Data Model and Preprocessing. In our experiments, and to evaluate the
algorithm as an anomaly detector, we used the Basic Security Module (BSM)
audit data collected by DARPA. Besides many attributes of BSM events, each
session contains one or more system calls information that are generated by the
programs running on the Solaris system. Also, each session is labelled with a
related unique process number.

Programmatically, for each single process all related individual sessions are
extracted, and then the complete set of ordered system calls spreading over the
sessions are recorded. For our data model, we only recorded the names of the
executed system calls ignoring other session attributes. And then, the algorithm
is used to transform each process into its related continuous and discontinuous
patterns. A sample of System calls generated by one user during two processes;
118 and 102 is shown in table 1.

Anomaly Model. Our implementation is based on normal programs behavior.
Two stages have to be defined, the learning and detection stages. In the following,
the two stages are presented in more details.
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Table 1. Sample of ordered normal system calls included in two processes 118, and
102, Executed by the user named by: franko within the first day of the first week of
the training 1998 DARPA data set

Process System calls

118 stat stat stat stat chdir chdir lstat

stat stat open chdir chdir lstat stat

stat open pathdonf stat stat open chdir

pathdonf stat open chdir pathdonf stat

stat open chdir

102 stat stat stat stat access stat open

open access stat open open

Learning Process. DARPA simulated BSM audit data set featured 6 users
whose activity can be used to test anomaly detection systems. The users are
named as: franko, georgeb, janes, fredd, williamf, and donaldh. The activity of
those users remains consistent from day to day, but on some days, those users
exhibit anomalous behavior in ways that should be detectable to an anomaly
detection system. The anomalies that are introduced into the users’ sessions in-
clude logging in from a different source, logging in at an unusual time, executing
new commands, and changing identity. In the training data, all anomalies were
introduced during the 6th week.

Among the seven weeks training period of DARPA data set, there are 6
weeks free of anomalous behaviour. Arbitrarily, 2 weeks (the first and the second)
picked as a training data set, and left the sixth week for testing.We recorded only
the names of the ordered system calls executed by those 6 users. Users names
are usually found in two attributes: path or mail. Any process not related to
any one of those users are ignored in either data sets, training or testing. The 2
weeks training data set consists of 17 intrusive instances and 17 clear or stealthy
attacks. There are 7798 sessions within these 2 weeks. These normal training
processes run only on Solaris machine. Once we have the training data set for
the normal behavior, each single process is transformed to its related continuous
and discontinuous patterns.

The proposed algorithm is used to generate all large-sequences L(k,l) patterns
that could be contained within one normal process. All system calls within one
process are considered as a candidate to 1-element-sequence-itemset and stored
in C (1,0). This collection of patterns are used as a normal profile.

At a certain detector window size k, Large-sequences L(1,0) patterns of only
one process were generated in each run. A single process may contain a number
of elements more than the detector window size, in this case, we applied the
algorithm for the first k elements, and then moved to the next k elements until
we covered all the elements included in the process.

We look for all normal processes separately and generate super-large- se-
quences, SupL. The resulting normal patterns are stored in a temporary data-
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//build training normal patterns data set
Extract large-sequence L(k,l) of training dataset, and store in SupLN ;
for each process X in the testing data set Do

extract all large-sequence L(k,l) patterns, and store in SupLS ;
get value of n; // extracted programmatically
compare SupLN and SupLS and get kn;
calculate kn/n;

if kn/n ≥ threshold then
The process X is normal;

else then
The process X is abnormal;

Fig. 6. An algorithm code for anomaly classifier

base called “normal pattern database” and denoted by SupLN , and used later
as a normal profile during monitoring and classifying testing processes.

Detection Process. This phase is intended to classify the testing processes
to intrusive or normal. Once we have the training patterns data set for normal
behavior, testing audit data is scanned for each new process associated with the
same chosen 6 users. The new processes are also transformed to their related
large-sequences patterns, L(k,l). All possible patterns were generated for each
testing process, and stored in a temporary database called “suspicious patterns
database” and denoted by SupLS. Then the similarity between patterns of the
new process and the patterns of normal processes is calculated using similarity
algorithm.

The similarity algorithm is described as follows: for any testing process that
is needed to be classified, first, all corresponding large-sequence patterns L(k,l)
are extracted, and then each single generated pattern that is represented in
SupLN database is given a weight w = 1/n, where n is the total number of
all extracted patterns of that specific testing process. The value of n can be
extracted programmatically. The value of w falls in the range (0 ≤ w ≤ 1).
By calculating the total summation weights (kn) of all matches, strength of the
normality signal can be determined. If the total weights summation exceeds a
certain threshold, the testing process is classified as normal. Otherwise, it is an
anomalous process. In Figure 6 an abstract of the pseudo code of the similarity
algorithm is given.

Performance Measurements. Based on similarity function return value, the
classifier makes the decision whether the process under investigation is intrusive
or not. The first error that may occur is the false positive error which occurs
when normal processes are classified as intrusions. The second error type is the
false negative error which occurs when the real intrusive process is classified as
normal, which is more serious.
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Fig. 7. Performance of the algorithm expressed in ROC curves. False positive rate vs
attack detection rate for k =5, 15, and 30

Receiver Operating Characteristic (ROC) is a performance evaluation tech-
nique used to evaluate the intrusion detection algorithm [19]. It is related to the
false error, and it is a trade off between detection rate and false alarms generated
by the intrusion detection system. It can be obtained by varying the detection
threshold and measuring the corresponding number of false alarms. This tech-
nique indicates how detection rate changes affect the raised false alarms. In our
work, we used ROC metric to measure the performance of the proposed algo-
rithm.

To evaluate the proposed algorithm as an anomaly detector, we formed a test
data set from the DARPA BSM data of the 5 days of the sixth training week
(none of the training data was chosen from this week). There are 53 intrusive
sessions included in this testing data, and 14 distinct attacks included in these
intrusive sessions. Also, 10 anomalous behaviors are included, such as unusual
time logging in or from different source logging in, and new commands execution.
Many of the attacks sessions were duplicated and appeared many times, like:
eject, neptune, and pod. Duplicated sessions were not considered. Each process
was classified to normal or intrusive, sessions associated with a single intrusive
process was considered as an attack or anomalous sessions. The performance
of the algorithm is evaluated as the detection rate versus false positive alarms.
Detection rate and false positive alarm were built based on intrusive sessions
detection and normal sessions misclassification. If one session is included in at
least one intrusive process, it is counted as one attack. In our experiments, the
presence of more than one intrusive process in one session does not affect the
number of detection.

The proposed classifier can generate the related large-sequence patterns
L(k,l) of any length of sequences, this length may cover all the elements of
the process, or just part of the process, and it is called the detector window
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size and denoted as k. A detector window size that is smaller than the length of
the process would cause the detector to parse one process into many sequences
resulting in a low anomaly signal. At the same time, a detector window size that
is larger than the process would cause the detector to see only the one process
sequences in the given instance resulting in a fair anomaly detection.

In the experiments, we varied k′s value from 5 to 30, most of the processes
contained a number of system calls less than 30. Compared to the processes
sequences, these values cover the possibilities of being equal, less, or greater
than processes length. Precisely, this choice describes how does the value of k
affect the performance of the classifier. Figure 7 shows the ROC curves for three
different k values. For this particular training and testing data set, k = 15 is
the best choice, with this value, the detection rate reaches 100% faster and at
low false positive rate compared with the other two k′s values. For k = 15,
the classifier algorithm can detect out of 10 anomalous sessions only 3 sessions
with zero false positive rate. Reducing the similarity threshold leads to higher
detection rate, but, this reduction has some cost in that the false positive rate
becomes higher. For k = 15, and at threshold 0.81, the detection rate reaches
100% with false positive rate 0.6% (only 48 false positive detection out of 7798
normal sessions included in the training data set).

4 Conclusion

A new classifier has been proposed, it’s built based on different treatments of
patterns extraction. This type of classification is used for forming attacks sig-
natures and to detect anomalous behavior. The experiments with DARPA data
set have shown that the proposed algorithm can detect the intrusive behaviour
effectively. The experiments indicate that the patterns that we obtained are dif-
ferent from the command patterns. They are new patterns, can describe attacks
more accurately, detect the attacks whose features appear only once, and offer
a new idea for the research of intrusion detection. Also, we found that contin-
uous sequences reflect a clean occurred sequences, while discontinuous patterns
represent the sequences mixed with undesirable noisy data.
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Abstract. This paper presents conceptual model, architecture and software pro-
totype of a multi-agent intrusion detection system (IDS) operating on the basis 
of heterogeneous alert correlation. The latter term denotes IDS provided with a 
structure of anomaly detection–like classifiers designed for detection of intru-
sions in cooperative mode. An idea is to use a structure of classifiers operating 
on the basis of various data sources and trained for detection of attacks of par-
ticular classes. Alerts in regard to particular attack classes produced by multiple 
classifiers are correlated at the upper layer. The top-layer classifier solves intru-
sion detection task: it combines decisions of specialized alert correlation classi-
fiers of the lower layer and produces combined decision in order to more relia-
bly detect an attack class. IDS software prototype operating on the basis of in-
put traffic is implemented as multi-agent system trained to detect attacks of 
classes DoS, Probe and U2R. The paper describes structure of such multi-
layered intrusion detection, outlines preprocessing procedures and `data 
sources, specifies the IDS multi-agent architecture and presents briefly the ex-
perimental results received on the basis of DARPA-98 data, which generally 
confirm the feasibility of the approach and it's certain advantages.  

1   Introduction 

Currently, intrusion detection task is of great concerns and the subject of intensive re-
search ([2], [4], [10], [11], [12], [13], [14], etc.). The contemporary studies show that ad-
vanced approaches to Intrusion Detection Systems (IDS) design are focused on data 
fusion ideas assuming use of multiple data sources and multiple classifiers operating 
in various feature representation spaces with the subsequent combining of their deci-
sions [1]. Unfortunately, several specific properties of the intrusion detection system 
input make the above mentioned decision combining task very difficult. Among these 
properties, temporal nature, high-frequency dynamics and asynchronous character of 
input are of the primary importance. Other important issue of IDS input that is ig-
nored in the most of research is information ageing resulting from the temporal nature 
and variety of frequencies of input data streams arriving from various sources. 

The paper is devoted to the heterogeneous alert correlation approach to intrusion 
detection. The introduced term denotes an approach assuming that IDS is composed 
of a structure of classifiers and each classifier of this structure is trained for detection 
of attacks of a particular class, e.g. an attack of the class either DoS, or Probe, or 
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U2R. The second assumption of the approach is that several classifiers are trained for 
detection of the same attack class while operating with data of various sources and/or 
various feature representation spaces. Each of such specialized classifiers may pro-
duce decisions of two classes: "Alert" regarding to "its own" attack class (e.g. "DoS 
alert", "U2R alert", etc.) or "Normal" (without producing an alert). In the second 
layer, alerts of the same type (if any) produced by source-based classifiers are corre-
lated and the results are sent to the top layer. The top-layer classifier solves intrusion 
detection task: it combines decisions of specialized alert correlation classifiers and 
produces combined decision in terms of particular attack class if any.  
    In the rest of the paper, section 2 outlines the IDS input data model and preprocess-
ing procedures forming various data sources (representation spaces). It describes the 
structure of the interacting classifiers designed for heterogeneous alert correlation and 
event dynamics of the IDS operation. Section 3 describes a model of data ageing used 
in the developed IDS software prototype while Section 4 gives detailed specification 
of its architecture based on multi-agent framework. This architecture is specified in 
the style assumed by Gaia methodology [15] that is used in development of the IDS 
software prototype. Section 5 outlines experimental results received through testing of 
the developed prototype using DARPA data [3]. Conclusion summarizes the paper 
contributions and intentions for future research.  

2   Conceptual Model of Multi-alert Correlation for Intrusion  
     Detection  

2.1   Input Data  

The major peculiarity of IDS input data is their temporal nature. Indeed, input data 
perceived by sensors of IDS or produced by preprocessing procedures are mapped 
time stamp, which is considered as an important data attribute. Events of various data 
streams arrive into IDS classifiers asynchronously. Since averaged frequencies of 
various data streams are different, the data incoming to meta-level responsible for 
alert correlation possess finite life time, i.e. after elapsing certain time from the mo-
ment they are produced the data become of less relevance with regard to the current 
status of user activity and therefore less useful or useless for its assessment.  

It is assumed that the input data model accounts the data streams resulting from 
the preprocessing of the network traffic represented in TCP dump. This traffic per-
ceived by "Data Sensor" is further preprocessed according to the scheme presented in 
Fig.1. Traffic preprocessing procedures are aimed at extraction of various features re-
sulting in creation of "secondary" data sources (feature representation spaces forming 
input for several source-based classifiers).  

The developed traffic preprocessing procedures operate in the following order. 
First, events corresponding to new packets and new connections are identified. The 
information contained in the identified packets and connections is further processed in 
order to extract features and form secondary data sources. Network feature extraction 
procedure identifies events that indicate availability of newly arrived following data: 
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Legend: 

 

Fig. 1. Raw data streams and preprocessing procedures forming secondary data sources consti-
tuting input data streams of IDS 

(1) Connection–related data that are used for extraction of connection-related fea-
tures forming two data sources, i.e. ConnectionBased and ContentBased data sources.  

(2) Time window-related data representing certain statistics averaged within sliding 
time window of the predetermined length and shift (in our case, length= 5 sec. and 
shift=2 sec.). These data are used for extraction of the features forming two secondary 
data sources, TimeWindowFeatures, and TimeWindowTrafficFeatures.  

(3) Connection window-related data representing certain statistics averaged within 
sliding time window containing a user-assigned number of connections (in our case, 
this number is equal to 20 connections and shift is equal to 1 connection). These data 
are used for extraction of the features forming two more secondary data sources, 
ConnectionWindowFeatures, and ConnectionWindowTrafficFeatures.  

Traffic preprocessing procedures were developed by authors. As the input of these 
procedures, the DARPA data [3] are used.  

2.2   Heterogeneous Alert Correlation Structure 

The primary factor influencing on the IDS architecture is the structure of interaction 
of the source-based classifiers and meta–classifiers. Let us comment it by example of 
the structure used in the developed case study illustrated in Fig. 2.  

Each data source is attached several source-based classifiers. A peculiarity of 
these classifiers is that each of them is trained for detection of a fixed class of attacks 
and produces alerts regarding corresponding attack class. That is why the alerts pro-
duced are heterogeneous, i.e. correspond to different classes of attacks. Actually, 
each source-based classifier solves an anomaly detection task, but each "anomaly" 
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alert corresponds to particular class of attacks. Thus, the IDS system in question 
solves intrusion detection task.  

Connection–based data source is attached three specialized classifiers intended for 
detection DNS CB, R2U CB and Probe CB classes of attacks, i.e. these classifiers are 
trained to detect attacks of the classes "Denial of Service", R2U and Probe respec-
tively. Each of the above connection-based data source classifiers transmit the pro-
duced decision to particular meta–classifier (see Fig.2).  

ConnectionWindowFeatures data source forms input of two specialized classifi-
ers, R2U CW and Probe CW, trained for detection of attacks of the classes R2U and 
Probe respectively. They also send their decisions to particular classifiers of the 
meta–level.  

ConnectionWindowTrafficFeatures data source is attached three specialized clas-
sifiers, R2U CWT, Probe CWT and NormalCWT trained for detection of attacks of the 
classes of R2U, Probe and Normal activity (no attacks) respectively. They send their 
decisions to various classifiers of meta–level.  

Time WindowFeatures data source forms input of three specialized classifiers, 
DNS TW, R2U TW, and NormalTW trained for detection of attacks of the classes De-
nial of Service, R2U and Normal activity (no attacks) respectively.  

Time WindowTrafficFeatures data source is attached three classifiers, DNS TWT, 
R2U TWT, and ProbeTWT trained for detection of attack classes Denial of Service, 
R2U and Probe respectively.  

At the meta–level, three specialized meta-classifiers are introduced. Each of them 
is responsible for combining decisions from source-based classifiers trained for detec-
tion of particular type of attack or Normal situation. They operate in asynchronous 
mode while making decision every time when an event and data from at least one 
source–based classifier arrives. A peculiarity of the decision making structure in ques-
tion (Fig.2) is that, in it, one more decision combining layer, top layer, is used. It 
combines the inputs arriving from the specialized meta–classifiers thus solving the in-
trusion detection task.  

2.3   Dynamics of IDS Operation 

The data and event streams in the implemented IDS prototype are presented in Fig.1. 
Let us describe the dynamics of these streams in the process of IDS operation.  

Dump of the network traffic is captured by sensor, Raw Data Sensor. It produces 
primary events of two types: (1) PacketEvent – receiving of an IP packet and Packet 
data, and (2) ConnectionEvent – completion of the connection and Connection data. 
Events and data input to the component NetworkFeatureExtractor intended for extrac-
tion of the features from raw data and generation of the secondary events, that are (1) 
ConnectionEvent and associated arrays of the features, ConnectionBased and Con-
tentBased; (2) ConnectionWindowEvent indicating completion of a time window con-
taining given number of connections and associated arrays of the features, Connec-
tionWindowFeatures and ConnectonWindowTrafficFeatures; (3) TimeWindowEvent 
indicating completion of the time window of a predefined duration and associated ar-
rays of the features, TimeWindowFeatures and TimeWindowTraficFeatures. 
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All classifiers of the source–based layer 
as well as meta–classifiers of the first and 
top layers were trained and tested based on 
DARPA data [3]1. Generalized information 
about these data that are used for training 
and testing of the classifiers composing the 
decision structure depicted in Fig.2 is pre-
sented in Table 1. 

3   Models of Data Ageing 

According to the used alert correlation 
strategy, decisions of meta–classifiers are 
updated at any time when new input 
("event") produced by some source–based 
classifier incomes. Let us recall that while 
receiving an updated decision from a 
source-based classifier, the meta-classifier 
updates its decision using the newly re-
ceived decision and also on the decisions 
produced previously by other source-based 
classifiers at various time instants. The lat-
ter decisions have different "ages" and 
therefore different relevancies to the current 
computer security status. Thus, potential 
data ageing is one of the important peculi-

arities of the alert correlation system in question. Let us consider the models of data 
ageing.  

Two data ageing models were explored. The first of them assumes that each data 
incoming to the alert correlation layer is assigned certain "age" at the moment of the 
computer security status update and if this "age" is less than a fixed threshold (it is in-
dividual for each data source) then the corresponding data are used in the alert corre-
lation "as is". Otherwise, these data are assumed missing: 
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⎪
⎨
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∅
+≤≤

= +
+ .,
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))( 1

1 otherwise

TtttiftD
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where )(tDi –stands for the decision of a base classifier associated with the i-th data 

source produced at time instant t; kt  stands for the time instant at which the decision 

income into meta–classifier; Ag
iT  stands for the threshold value of life time of the de-

cision iD  produced by the source # i; and ∅ stands for the missing value.  

This model was experimentally investigated and the results were in full described 
in [5, 8]. The advantages of this model are twofold. On the other hand, this model is 
simple enough. On the other hand, if some sensors or data sources fail, i.e. do not 
                                                           
1  Training and testing procedures used in design of classifiers are not considered in the paper. 

Table 1. Distribution of attack classes 
against types of operating systems 

 Type of OS: Redhat 

Attack Class Attack name 
Number 
of cases 

back 4 

land 22 

pod 35 

smurf 11 

Denial of 
Service (DoS) 

Attacks 

teardrop 7 

(DoS) attacks in total 79 

ipsweep 7 

portsweep 5 Probes attacks 

satan 5 

Probes attacks in total 17 

dict 1 

guest 1 

imap 3 
Remote to User 
(R2U) attacks 

phf 5 

R2U attacks in total 10 

User to Root 
attacks (U2R 

perl 5 
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produce decision in required time instant then, nevertheless, the combined decision is 
produced because meta-layer classifier is capable to process data with missing values. 
The sound algorithm solving such task is described in [6]. A drawback of this model 
is that it is approximate and in some cases may be too rough.  

The second model of data ageing assumes that the learning mechanism has to 
automatically determine dependence of informative power of the decision produced 
by a source classifier depending on "age". More strictly, this model assumes that each 
input of the alert correlation classifier is assigned an additional numerical attribute 

),( 21 ttiΔ , where ),( 21 ttiΔ  is the "age" of input of i-th source-based classifier pro-

duced at the time instant 
1t  if it is used in alert correlation procedure of meta-layer at 

the time instant 2t . Thus, when i-th source-based classifier produces and sends its de-

cision to meta–level at a time instant itβ  the age of this decision is equal to zero, 

0)( =Δ i
i tβ . If decision of the alert correlation classifier is produced later, at the time 

instant αt  then the attribute )( i
i tαΔ  takes value )()( i

i ttt βαα −=Λ .  

The last model of data ageing is used in the intrusion detection system considered 
in this paper. It is important to note that for the model in question, no specific tech-
nique for learning of decision combining algorithm is necessary. Indeed, for this 
model, training and testing is a routine (but not trivial) procedure of learning based on 
dataset containing both binary and numerical attributes.  

4   Architecture of Multi-agent IDS Software Prototype:  
     An Outline 

The architecture mentioned in the section title is described below in the style assumed 
by Gaia methodology implemented and extended within MASDK 3.0 software tool.  

4.1   Basic Components of the Architecture  

1. Roles 
• DataSensor–source of the raw data; performs raw data preprocessing, compu-

tation of the features, translation of the primary events and generation of the 
secondary events associated with the data source.  

• ObjectDataReceiver–acceptor of the network level features;  
• DecisionProvider–source of decisions regarding the computer security status;  
• DecisionReceiver–acceptor of the decisions produced by DecisionProviders;  
• ObjectMonitor–acceptor of information presenting the host security status.  

2. Protocols 
• DataTransmission–the protocol transmitting features–related information;  
• DecisionTransmission–the protocol transmitting decisions produced;  
• UpdateObjectInformation–the protocol responsible for updating of the com-

puter security status related information;  
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The aforementioned protocols are basic ones. The auxiliary ones are as follows:  

• AttackLogTransmission–the protocol performing transmission of the attack log 
(the true labels of the attacks needed for the designed system testing);  

• OptionsProtocol–the protocol performing adjusting of initial options determin-
ing the regime of the system operation. 

3. Agent classes and roles to perform 
The agent classes introduced in the IDS architecture and allocated the roles they 

have to perform are as follows: 

NetLevelAgent–an agent class performing the DataSensor role intended for raw data 
preprocessing and extraction of the events and secondary features;  

BaseClassifiers–an agent class assigned the DecisionProvider role performing source-
based classification; it produces decisions when it receives an event from "its" source. 
This class is inherited by several subclasse that are as follows:  

• DOS_CB: produces decisions when it receives the event ConnectionEvent us-
ing ConnectionBased features; it is trained to detect the DoS attack class;  

• DOS_TW: produces decisions when it receives the event TimeWindowEvent 
and TimeWindowFeatures features; it is trained to detect DoS attack class; 

• DOS_TWT: produces decisions after receiving TimeWindowEvent event and 
TimeWindowTraficFeatures features; it is trained to detect DoS attack class; 

• Prob_CB: produces decisions after receiving ConnectionEvent event and Con-
nectionBased features; it is trained to detect attacks of the class Probes; 

• Prob_CW: produces decisions after receiving the ConnectionWindowEvent 
event and ConnectionWindowFeatures features; it is trained to detect attacks 
of the class Probes; 

• Prob_TWTr: produces decisions after receiving TimeWindowEvent event and 
TimeWindowTraficFeatures features; it is trained to detect attacks of the class 
Probes; 

• R2U_CB: produces decisions after receiving tConnectionEvent event and Con-
nectionBased features; it is trained to detect the attacks of the class R2U; 

• R2U_CW: produces decisions after receiving the ConnectionWindowEvent 
event and ConnectionWindowFeatures features; it is trained to detect attacks 
of the class R2U; 

• R2U_CWT: produces decisions after receiving the ConnectionWindowEvent 
event and ConnectionWindowTraficFeatures features; it is trained to detect the 
attacks of the class R2U; 

• R2U_TWT: produces decisions after receiving the TimeWindowEvent event 
and TimeWindowTraficFeatures features; it is trained to detect attacks of the 
class R2U. 

Metaclassifiers:–an agent class performing the roles DecisionReceiver and Decision-
Provider; it is responsible for combining decisions produced by its child classifiers 
(Fig.2). It is replicated into the following instances:  

• DOS_MC: an agent instance of the Metaclassifier class correlating alerts of the 
source-based classifiers trained for detection of DoS attack class;  

• Prob_MC: an agent instance of the class Metaclassifier correlating alerts of the 
source-based classifiers trained for detection of Probes attack class; 
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• R2U_MC: an agent instance of the class Metaclassifier correlating alerts of the 
source-based classifiers trained for detection of R2U attack class; 

• Normal MC: an agent instance of the Metaclassifier class combining alerts ar-
riving from the meta–classifiers correlating alerts of particular attack classes; 

SystemMontor–an agent class assigned the role ObjectMonitor; it provides visualiza-
tion of the information about security status of the host depending on time.  

The instances of the above agents are structured according to the conceptual het-
erogeneous alert correlation structure depicted in Fig.2. The above mentioned compo-
nents represented graphically in Fig.3 determine configuration of the agents of the 
implemented multi-agent IDS.  

Fig. 3. IDS MAS agency configuration 

 

Fig. 4. Model of behavior of the agent class NetLevelAgent 
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4.2   Agent Classes Behavior Specification  

Behavior of each agent class is specified in two layers. At the upper layer, the struc-
ture of the interaction of the state machines representing particular variants of the 
agent class behavior, which correspond to different agent services2, is specified. At 
the lower layer, each such state machine is specified in details. Correspondingly, let 
us describe some of the agent class services distinguishing upper and lower layers. 

4.2.1   NetLevelAgent Agent Class 
The basic services of this agent class are the followings (Fig.4):  

• NetworkSensor–provides monitoring of the network traffic and generation of 
the primary events associated with this data source. In other words, it is re-
sponsible for dispatching of input events and sequencing of its preprocessing;  

• NetworkLevelF–provides computation of the connection-based features and 
generation of the secondary events;  

• Spam – provides forwarding of the events and feature values to the source-
based classifiers.  

Interface of the options of the adjustment of the NetworkSensor service is shown in 
Fig.5.  

Let us describe state machines implementing the services of the NetLevelAgent 
agent class. An example of the state machine corresponding to the NetworkLevelF 
service is presented in Fig.6. In the state Get_Input_Data the newly arrived data are 
analyzed. After detection of the type of the data arrived, the latter are processed ac-
cording to their type: the packet data are processed in Process_Packet state, while 
connection–associated data are processed in the Process_Connection state. After this, 

                                                           
2  Term "agent service" is used in multi-agent technology to denote an agent's functionality. 

Fig. 5. Options of the service NetworkSensor adjusting 
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the list of all events, both primary and secondary, is formed (in the state RecalcList-
Creation). Then, for each event stored in the aforementioned list, computation and 
updating of the features with the subsequent call of the service SpamState is carried 
out. This is done in the state RecalcList. In turn, the service SpamState performs for-
warding the computed feature values to the source-based classifiers associated with 
the respective events in the above mentioned list. 

4.2.2   Alert Correlation Agent Classes 
In general, the agent classes mentioned in the subsection title are the same; they only 
differ (1) in their rule bases used for alert correlation, (2) in the lists of the source-
based classifiers forming their inputs and also (3) in the lists of the receivers of the 

Fig. 6. State machine-based specification of the NetworkLevelF service 

 

Fig. 7. Services of the agent classes responsible for meta–classification 
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decisions produced by alert correlation agents. The basic services of these agent 
classes structured as it is depicted in Fig.7 are the followings: 

• IncomingDecision–service responsible for processing of the incoming deci-
sions of the child classifiers of the lower layer;  

• IncomingOption – service responsible for adjusting of the agent class options;  
• DecisionQueueParser – service responsible for processing of the incoming de-

cisions stored in the queue;  
• QM–service implementing alert correlation (meta-classification functionality). 

Detailed specification of the state machines implementing the aforementioned ser-
vices is omitted due to the lack of the paper space.  

4.2.3   Source-Based Classifier Agent Class 
The basic services of the Source–based classifier agent class are as follows:  

• IncomingData–service implementing the incoming events and data processing;  
• IncomingOption–service responsible for adjusting of the agent class options;  
• ConnQueueParser–service responsible for processing of the incoming deci-

sions stored in queue (Connection-based, Windows-based);  
• QConn – service responsible for producing decisions (Alert or Normal).  

Like all the services, the aforementioned ones are specifies and implemented in 
terms of state machines, whose description is omitted. due to lack of the paper space.  

5   Experimental Results 

The multi-alert correlation IDS MAS designed according to the above described prin-
ciples and architecture was implemented using MASDK 3.0 platform providing sup-
port of the MAS technology [7]. All the classifiers composing the proposed homoge-
neous alert correlation structure were trained using VAM [9] and GK2 [6] algorithms. 
The resulting system as a whole was tested using DARPA data [3].  

Some testing results are illustrated in Fig.8. These figures present information 
about performance quality (probabilities of correct classifications and probabilities of 
false alarms and signal missing) of the alert correlation classifiers dealing with inputs 
produced by the source-based classifiers trained for detection of attacks of particular 
classes. At that, data used in training procedures as "counter class" include basically 
normal traffic. But, if, for a source-based classifier, the difference between the sums 
of the weights of rules voting in favor of Alert and Normal decision is less than a se-
lected threshold (it is computed for each particular classifier experimentally in testing 
procedure) then the classifier refuses to classify input data. Analysis proved that as a 
rule, such kind of situation actually corresponds to some other class of attacks. Fig.8 
illustrates the performance quality of the alert correlation meta-classifier destined for 
detection of the DoS class of attacks. It illustrates graphically the probability distribu-
tions of correct alert detection and various types of errors. An important observation 
is that even if the source-based classifiers operate not very precise, at the meta–layer, 
where the decisions of the particular source-based classifiers are combined, the  
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quality of the DoS attack detection 
is increased. The same is valid for 
other alert correlation classifiers.  

6   Conclusion 

Though intrusion detection task is 
being a subject of intensive re-
search during at least the last dec-
ade, it remains to be a problem; 
many important issues and peculi-
arities of this task have not been 
investigated in depth. One of the 
remarkable drawbacks of the ex-
isting approaches is simplified 
modeling of input data used in de-
velopment of IDS. Indeed, along 

with multiplicity and heterogeneity of data sources to be taken into account, several 
other specific features of the intrusion detection system input are critical to fill in the 
gap between existing models used in IDS and reality. Among these features, temporal 
nature, high-frequency dynamics and asynchronous nature of input are of the primary 
importance. These factors result in the necessity to account such an important issue as 
information ageing caused by the fact that input data streams arrive in IDS with vari-
ous averaged frequencies and asynchronously.  

The input data model considered in this paper takes into account the aforemen-
tioned factors. For such model of IDS input, the paper proposes an approach called 
heterogeneous alert correlation. The major idea of the approach is to organize IDS 
system as a structured set of interacting classifiers dealing with data received from 
various data sources. The first layer of this structure is composed of classifiers operat-
ing with inputs of particular data sources. Each of them is trained for detection of at-
tacks of a fixed class (in the developed IDS software prototype, the attack classes 
DoS, Probe, and U2R are considered). Each of such specialized classifiers produces 
decisions of two types: "Alert" in regard to the particular class of attacks (e.g. "DoS 
alert", "U2R alert", etc.) or "Normal". A peculiarity of such classifiers operation is 
that they produce decisions in different time instants. These decisions asynchronously 
arrive at the second layer responsible for correlation of the alerts produced by the first 
layer classifiers trained for detection of the attacks of the same class. In turn, the re-
sults of the alert correlations produced by the specialized classifiers of the second 
layer are asynchronously forwarded to the top layer. The top-layer classifier solves in-
trusion detection task: it combines heterogeneous alerts of specialized alert correlation 
classifiers and combines them producing decision it terms of particular attack class.  

Two theoretical problems should be solved to implement the described approach: 
(1) development of data ageing model; and (2) development of specific techniques to 
train alert correlation classifiers to make decisions based on asynchronous input. In 
the developed IDS prototype the solutions proposed by the authors in previous re-
search are used [5, 8]. This approach was implemented within multi-agent IDS  

Fig. 8. Evaluation of the performance quality of the 
DOS_MC meta– classifier 
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dealing with three classes of attacks, DoS, Probe and U2R, and operating with input 
traffic. Architecture of the prototype and some experimental results are outlined.  

The intended directions for future research will concern enrichment of the devel-
oped structure of interacting classifiers by the learning capabilities.  
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Abstract. The paper describes a new intrusion detection and prevention model, 
which is based on state machine-based formal grammar. This behavior-based 
model allows to detect computer attacks by means of normal network traffic 
modeling. The parameters of such normal network traffic are presented in a 
formal grammar. Each data packet that violates these parameters is considered 
as a part of intrusion and blocked by network filters. The described model was 
implemented in Intrusion Detection and Prevention System “Forpost” and 
successfully tested in a complex network environment. 

1   Introduction 

During last decade the number of successful network attacks has increased in many 
times [9]. The damage caused by these attacks is estimated in hundreds millions of 
dollars. At the same time current intrusion detection models seem incapable of 
dealing with many types of modern attacks. These factors lead to the necessity of 
development of new methods for the intrusion detection and prevention. 

This paper describes a new approach for intrusion detection and prevention 
modeling, which uses state machine-based formal grammars. The rest of the paper is 
structured as follows. Section 2 describes the advantages and disadvantages of 
existing intrusion detection models. Section 3 presents new behavior-based intrusion 
detection model developed by the author. Section 4 describes practical 
implementation of developed model, which was integrated in Intrusion Detection and 
Prevention System “Forpost”. Section 5 summarizes the main results of the paper. 

2   Overview of Existing Intrusion Detection Models 

Intrusion detection models formally describe the process of computer attacks 
detection. At present there are two complementary types of intrusion detection 
models — signature-based models and behavior-based models. The first type of 
models provides the search for evidence of intrusions based on knowledge 
accumulated from known attacks [2, 4]. Signature-based models present an attack in a 
form of so-called signature, which can be presented as a regular expression, semantic 
expression of specialized language, formal mathematical structure, etc. Behavior-
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based models search for deviations from usual computer system behavior based on 
the observations of the system during a known normal state. Such deviations are 
considered as computer attacks.  

2.1   Signature-Based Intrusion Detection Models  

One of the most popular signature-based intrusion detection models is an expression 
matching model [7]. This model provides searching the source data (e.g. log entries, 
network traffic, etc.) for occurrence of specific patterns. These patterns are usually 
specified by means of regular expression syntax. For example, the pattern like 
“.*[Cc][Mm][Dd]\.[Ee][Xx][Ee].*” specifies the signature of an attack, aimed at the 
unauthorized execution of file “cmd.exe”. Sometimes signatures are built on the basis 
of expression matching models, complemented by specialized programming 
languages like C/C++, Java, Perl, etc. In this case signatures are presented as a set of 
language operators. The example of attack “Land” signature, which is written in a 
specialized scripting language is cited below [3]. 

The example of attack “Land” signature, written in N-code programming language 

filter pptp ip () 
{ 
  # If sender address is equal to receiver address then  
  # the information about attack is written to log 
  if (ip.src == ip.dest) 
  { 
     system.time,eth.src,ip.src,sth.dst to land_recrdr; 
  } 
} 

Specialized languages like N-code allow to define more complex signatures, which 
can’t be created by means of simple expression matching models. At present 
specialized languages is the most popular method for attack signature development. 

Another type of signature-based intrusion detection model is a state-transition 
analysis model. This type of model presents attack as a finite state machine, which 
describes the transition of computer system from one state to another. The initial state 
of computer system in such machine corresponds to pre-attack state, the final state is 
associated with the last stage of the attack, which leads to the violation of 
confidentiality, integrity or availability of the system. The transition of computer 
system from one state to another is related to certain events like application execution, 
TCP connection establishment, shell-code transmission, etc. State-transition analysis 
model can be visualized by means of graphs or more complex mathematical structures 
like Petri-nets. The main disadvantage of described model is that it can represent only 
those attacks that are related to some visible changes in computer system. 

Intrusion detection models, based on expert systems, allow to describe attack 
signatures on natural language with high level of abstraction. The expert system, 
which underlies this type of model, consists of a set of rules that describe attacks. 
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Usually all rules of such expert system are written in the following format: “if 
<certain conditions> then <certain actions>”. The model also allows to create 
interdependent rules, in which the execution of one rule is possible only in the case of 
second rule execution. This model can be implemented on the basis of specialized 
program languages, such as Prolog. The disadvantage of intrusion detection models, 
based on expert systems, is in high complexity of initial rule set development.  

The current state of signature-based intrusion detection models allows to make up a 
conclusion that existing models can rather effectively provide the detection of existing 
type of attacks. The detection of new types of attacks is achieved by means of 
behavior-based models, that are described below. 

2.2   Behavior-Based Intrusion Detection Models 

As was already mentioned above behavior-based models are used for the detection of 
deviations from normal computer system state. One of the most widely used models 
of this type are statistical models [3, 6]. According to the statistical models the 
computer system behavior is measured by a number of variables sampled over time. 
Examples of these variables include the user login and logout time, the amount of 
processor-memory-disk resources consumed during the session, etc. If current 
characteristics of the computer system deviate from the given statistical measures, 
then the attack is registered. Intrusion detection models, based on statistical models, 
can detect several types of attacks, that use extremely unusual commands. But in most 
cases statistical models can detect only the consequences of computer attacks, which 
lead to changes in statistical measures. Moreover the practical usage of these models 
is characterized by large number of false positives, because in many cases the 
deviations of statistical measures are caused by normal system work. 

Another type of behavior-based intrusion detection models uses neural networks 
for detection of attacks. A neural network is a network of computational units that 
jointly implement complex mapping functions. Initially the neural network is trained 
with normal computer system behavior traces. After such training the network 
becomes capable of determining normal and anomalous system behavior on the basis 
of observed events analysis. Each detected anomaly in system behavior is considered 
as attack. At present the models, based on neural network, have a low level of 
efficiency because of long duration of network training, large number of false 
positives and high computational complexity. 

Intrusion detection models, based on expert systems, are usually used for detection 
of anomalies in network packets during protocol verification. Such verification 
implies the check of data packet fields against established standards. All packets that 
violate the requirements of corresponding standards are considered as potentially 
dangerous. This type of models is implemented in number of commercial Intrusion 
Detection Systems. One of the main disadvantages of this model is the inability of 
protection against attacks, that use data packets which don’t violate any standards. 

Taking into consideration the disadvantages of existing behavior-based intrusion 
detection models a new model was developed. The description of this model is cited 
in Section 3. 
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3   Behavioral Intrusion Detection Model, Which Uses State  
     Machine-Based Formal Grammars 

As a result of conducted researches in the field of protection against network attacks a 
new behavioral intrusion detection model was developed. This model combines the 
functional capabilities of other models, based on expert systems and state transition 
analysis. The model is designed for the detection of anomalous network traffic that is 
used for informational attack realization. The developed model allows to detect the 
following types of potentially dangerous network packets: 

− packets with syntax and semantics, that doesn’t correspond to RFC-standards, 
− packets, that addressed to non-existent informational resources, 
− packets, which length exceeds the specified restrictions, 
− packets with commands, which are not supported by computer system applications, 
− other types of packets that violate the template of normal computer system traffic. 

    The developed model is based on finite state language L which describes the 
template of normal network traffic that is transmitted in computer system. Language L 
consists of strings, each string corresponds to normal network packet that can be 
correctly processed by computer system applications. Language L is specified by 
means of state machine-based grammar of the following type: A = < S, X, Y, s0, ft, fs, 
F, sa>, where S – the set of states, X – the set of input symbols, Y – the set of semantic 
operators that analyze the semantics of input data, s0∈S – the initial state, ft: S x X → 
S – the state transition function, fs: S x X → Y – the semantic operator choice function, 
F ⊆ S – the set of terminal states which indicate the correct recognition of input string 
as a element of language L, sa∈S – the terminal state which indicate that the input 
string is not the element of language L. 

The algorithm of work of state machine A, that specifies language L, can be 
presented as follows. The state machine A processes the input string, which 
corresponds to an incoming data packet that must be processed by the protected 
computer system. If the state machine will reach one of the terminal states of set F it 
will mean that analyzed data packet doesn’t pose any danger to the computer system 
and can be passed through. Otherwise, reaching the state sa corresponds to the 
detection of network attack. In this case the data packet, which corresponds to the 
analyzed input string, should be blocked. 

The practical usage of behavioral model can be illustrated with the example of state 
machine-based grammar AHTTP, which was developed according to the described 
approach. This state machine is designed for the detection of network attacks on Web-
servers, that interact with users by means of Hypertext Transfer Protocol (HTTP). The 
state-machine AHTTP specifies the language LHTTP which consists of strings, where 
each string corresponds to a normal HTTP-request, that can be correctly processed by 
the application software of Web-server. The state machine AHTTP consists of the 
following modules (Fig. 1): the module of HTTP-method analysis, the module of 
Uniform Resource Locator (URL) analysis, the module of HTTP query analysis, the 
module of HTTP version analysis and the module of HTTP-headers analysis. Each of 
these modules provides the processing of a particular part of the HTTP-request. 
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Fig. 1. The structure of finite state machine AHTTP, designed for the detection of network attacks 
on Web-servers 

During the analysis of HTTP-requests state machine AHTTP uses the following 
auxiliary variables: 

− Smethods – one-dimensional string array with the list of allowed HTTP-methods, 
− LURL – numeric variable, that specifies the maximum allowed length of the URL 

(for example “www.mati.ru/scripts/example.exe” is an URL in the following 
HTTP-request “http://www.mati.ru/scripts/example.exe”), 

− SURL – one-dimensional string array with list of resources, stored on Web-server 
(this array can represent both static and dynamic Web-environment because of the 
ability to use regular expressions), 

− LNQuery – numeric variable, that specifies the maximum allowed  number of 
parameters in a HTTP-query (for example “?var1=test1&var2=test2” is query in 
the following request “http://www.mati.ru/scripts/example.exe?var1=test1& 
var2=test2”), 

− LVarLength – numeric variable, that specifies the maximum length of a variable name 
being passed via a HTTP-query (for example “var1” and “var2” are variable names 
in the following request “http://www.mati.ru/scripts/example.exe?var1=test1& 
var2=test2”), 

− LValLength – numeric variable, that specifies the maximum length of the data being 
supplied for a specific variable (for example “test1” and “test2” are variable data 
entries in the following request “http://www.mati.ru/scripts/example.exe? 
var1=test1&var2=test2”), 

− LNHeaders – numeric variable, that specifies the maximum allowed number of 
headers in HTTP-request, 

− SVersions – one-dimensional string array, that contains the list of HTTP protocol 
versions, supported by the protected Web-server, 

− SHeaders – one-dimensional string array with the list of allowed HTTP-headers, 
− Z – temporary string variable, which is used for the storage of HTTP-request 

fragments, 
− i, j, k – temporary numeric variables, that are used as counters. 

The variables Z, i, j and k are initialized automatically during the work of state 
machine AHTTP, whereas all other variables should be initialized by the operator before 
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the start of state machine AHTTP according to the RFC requirements and specific 
characteristics of the protected Web-server. 

For the sake of simple graphical representations of state-machine modules we will 
use the following symbolic notations:  

− A – set of English alphabet letters,  
− N – set of numbers (0 - 9), symbols «.», «#», «?», «/», «%» and underline symbol,  
− NOP – semantic operator, which doesn’t perform any actions,  
− “_” – space symbol,  
− “CRLF” – symbol, which denotes carriage return and line feed. 

The description of modules of state machine AHTTP is cited below. 

3.1   Module of HTTP-Method Analysis 

The module of HTTP-method analysis starts the processing of input symbols of state 
machine AHTTP. The module checks that the analyzed HTTP-request is based on one 
of the allowed HTTP-methods, which are defined in variable Smethod. The graph model 
of this module is depicted in Fig. 2. 

The first module consists of three states s0, s1, s2∈S and three semantic operators y0, 
y1, y2∈Y, that are executed during the transition of the machine from one state to 
another. The description of these states and semantic operators of the module is cited in 
Table 1. 

 

Fig. 2. The graph model of HTTP-method analysis module of finite state machine AHTTP 

Table 1. The description of states and semantic operators of HTTP-method analysis module 

State 
transition 

Transition 
condition 

Semantic operator, which is 
executed during the transition 

Transition 
from s0 to s1 

The first input 
symbol is a letter of 

English alphabet a∈A

The semantic operator y1 is executed. Operator y1 

clears the value of Z (Z=“”) and initializes it with 
the first input symbol a∈A (Z=a) 

Transition 
from s1 to s1 

The input symbol is a 
letter of English 
alphabet a∈A 

The semantic operator y2 is executed. This operator 
concatenates the value of Z with the input symbol a 
(Z = Z + a) 
 

Transition 
from s1 to s2 

The input symbol is a 
space symbol “_” 

The semantic operator y2 is executed. Operator 
performs the following check. If the value of Z 
corresponds to one of elements of Smethods then the 
subsequent processing of input string is 
implemented by the module of URL analysis. 
Otherwise the processing of input strings is stopped 
because the analyzed HTTP-request contains the 
unsupported HTTP-method 
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3.2   Module of Uniform Resource Locator analysis 

The module of URL analysis checks the length of the URL and verifies that the 
HTTP-request is addressed to one of the existing resources of the Web-server. The 
module uses two variables during the URL analysis – LURL and SURL. The graph model 
of the URL analysis module is presented in Fig. 3. 

 

Fig. 3. The graph model of Uniform Resource Locator analysis module of state machine AHTTP 

Table 2. The description of states, transitions and semantic operators of URL analysis module 

State 
transition 

Transition condition Semantic operator, which is 
executed during the transition 

Transition 
from s2 to s3 

The first input symbol 
is a letter of English 

alphabet a∈A 

The semantic operator y4 is executed. Operator y4 
performs the following actions: 
− clears the value of variable Z (Z=“”) and 

initializes it with the input symbol a (Z = a), 
− initializes variable i with “1” (i = 1) 

The input symbol is a 
letter of English 
alphabet a∈A 

The semantic operator y6 is executed. Operator y6 
performs the following actions: 
− concatenates Z with input symbol a (Z=Z+a), 
− increments the value of variable i (i = i+1), 
− performs the following check – if i > LURL, then 

subsequent processing of input strings is stopped 
because the length of analyzed URL violates the 
specified restrictions Transition 

from s3 to s3 

The input symbol is a 
symbol n∈N 

The semantic operator y5 is executed. Operator y5 
performs the following actions: 
− concatenates Z with input symbol n (Z = Z + n) 

and increments the value of i (i = i+1), 
− performs the following check – if i > LURL, then 

subsequent processing of input strings is stopped 
because the length of analyzed URL violates the 
specified restrictions 

Transition 
from s3 to s7 

The input symbol is a 
space symbol “_” 

Transition 
from s3 to s4 

The input symbol is 
a symbol “?” 

The state machine executes semantic operator y7, 
which performs the following check. If Z is not 
equal to one of the elements of array SURL then 
subsequent processing of input strings is stopped 
because the analyzed URL is addressed to non-
existent resource of Web-server  
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The description of state transitions, transition conditions and semantic operators of 
the module is cited in Table 2. 

If the URL analysis module reaches state s4 it means that HTTP-request contains 
query parameters that must be processed by the module of HTTP query analysis. The 
transition to state s7 means that URL is followed by the HTTP version field, which 
must be processed by the module of HTTP version analysis. In any other case the 
state machine AHTTP is transferred to final state sa. 

3.3   Module of HTTP Query Analysis 

The module of HTTP query analysis performs the following functions: 

− checks the string length of the variable name being passed via a HTTP-query. The 
maximum length shouldn’t exceed the value, specified in variable LVarLength, 

− checks the data value of a specific variable. The maximum length shouldn’t exceed 
the value, specified in variable LValLength, 

− checks the number of parameters in HTTP-query. The maximum number of 
parameters shouldn’t exceed the value, specified in variable LNQuery. 

The graph model of HTTP query analysis module is shown in Fig. 4. 

 

Fig. 4. The graph model of HTTP query analysis module of finite state machine AHTTP 

The description of state transitions, transition conditions and semantic operators of 
the HTTP query analysis module is cited in Table 3. 

In the case of transition to state s7 the state machine starts the processing of HTTP 
version number. In any other case the state machine AHTTP is transferred final state sa. 

3.4   Module of HTTP Version Analysis 

The module of HTTP version analysis checks that the version number equals to one 
of the elements of string array SVersions. The graph model of this module is depicted in 
Fig. 5. 

The first module consists of three states s7, s8, s9∈S and three semantic operators 
y14, y15, y16∈Y, that are executed during the transition of the machine from one state to 
another. The description of state transitions, transition conditions and semantic 
operators of the HTTP version analysis module is cited in Table 4. 
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Table 3. The description of state transitions, transition conditions and semantic operators of the 
HTTP query analysis module 

State 
transition 

Transition  
condition 

Semantic operator, which is  
executed during the transition 

Transition 
from s4 to s5 

The first input 
symbol is a letter of 

English alphabet 
a∈A 

The semantic operator y4 is executed. Operator y4 
initializes the variables i, j, and k with zero values 
(i = 0, j = 0, k = 0). Variable i is used for query 
variable length calculation, j is used for the 
calculation of length of query variable data, k is 
used for the calculation of number of query 
variables. 

The input symbol is 
a letter of English 

alphabet a∈A Transition 
from s5 to s5 The input symbol is 

a symbol n∈N 

The semantic operator y9 is executed. Operator y9 
performs the following actions: 
− increments the value of variable i (i = i+1), 
− performs the following check – if i>LVarLength, 

then subsequent processing of input strings is 
stopped because the length of analyzed query 
variable violates the specified restrictions 

Transition 
from s5 to s6 

The input symbol is 
a symbol “=” 

The semantic operator y10 is executed. Operator y10 
reinitialize the variable i with zero value (i=0) 

The input symbol is 
a letter of English 

alphabet a∈A Transition 
from s6 to s6 The input symbol is 

a symbol n∈N 

The semantic operator y12 is executed. Operator y12 
performs the following actions: 
− increments the value of variable j (j = j+1), 
− performs the following check – if j>LValLength, 

then subsequent processing of input strings is 
stopped because the length of analyzed data 
violates the specified restrictions 

Transition 
from s6 to s5 

The input symbol is 
a symbol “&” 

The semantic operator y11 is executed. Operator y11 
performs the following actions: 
− initializes the variable j with zero value (j=0), 
− increments the value of variable k (k=k+1), 
− performs the following check – if k>LNQuery, then 

subsequent processing of input strings is 
stopped because the number of query 
parameters violates the specified restrictions 

Transition 
from s6 to s7 

The input symbol is 
a space symbol “_”

The semantic operator y13 is executed. Operator y13 
performs the following actions: 
− increments the value of variable k (k=k+1), 
− performs the following check – if k>LNQuery, then 

subsequent processing of input strings is 
stopped because the number of query 
parameters violates the specified restrictions 
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Fig. 5. The graph model of HTTP version analysis module of finite state machine AHTTP 

Table 4. The description of state transitions, transition conditions and semantic operators of the 
HTTP version analysis module 

State 
transition 

Transition  
condition 

Semantic operator, which is 
executed during the transition 

Transition 
from s7 to s7 

The first input 
symbol is a letter of 

English alphabet 
a∈A 

No semantic operators are executed 

Transition 
from s7 to s8 

The input symbol is 
a symbol “/” 

The semantic operator y14 is executed. 
Operator y14 clears the value of variable Z 
(Z=“”) 

Transition 
from s8 to s8 

The input symbol is 
a symbol n∈N 

The semantic operator y15 is executed. 
Operator y15 concatenates the value of variable 
Z with input symbol n (Z = Z + n) 

Transition 
from s8 to s9 

The input symbol is 
a symbol “CRLF” 

The semantic operator y16 is executed. 
Operator y16 performs the following check – if 
the value of Z is not equal to any of the 
elements of array SVersions, then subsequent 
processing of input strings is stopped because 
the version of analyzed HTTP-request can’t be 
correctly processed by the Web-server. In this 
case state machine AHTTP is transferred final 
state sa 

3.5   Module of HTTP-Headers Analysis 

The module of HTTP-headers analysis checks the length of query variables and 
values according to the restrictions, specified in variables LVarLength and LValLength. This 
module also checks that HTTP-request contains only allowed headers, that are 
specified in array SHeaders. The graph model of the module is depicted in Fig. 6. 

The description of these states and semantic operators of the HTTP-headers 
analysis module is cited in Table 5. 

The transition to state s12 means that the analyzed HTTP-request doesn’t pose any 
danger to the computer system and can be passed through. In any other case the state 
machine AHTTP is transferred to final state sa and the packet must be blocked. 
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Fig. 6. The graph model of HTTP-headers analysis module of finite state machine AHTTP 

The described intrusion detection model can be used for the protection other 
network protocols such as SMTP, FTP, SNMP, SOAP, etc. This model can detect 
both known and new types of network attacks on computer systems. The model can 
also be easily extended by means addition of new parameters.  

The developed model belongs to the class of specification or policy based intrusion 
detection techniques. In contrast to the existing models of this class, the behavioral 
intrusion detection model uses state machine-based formal grammars as a basic 
mathematical tool for attack detection. Such formal grammars allow more precise 
definition of parameters, that can be used for intrusion detection. 

4   Practical Implementation of Developed Behavior-Based  
     Intrusion Detection Model 

The developed behavior-based intrusion detection model was implemented in 
Intrusion Detection and Prevention System (IPS) named “Forpost”. IPS “Forpost” 
consists of the following components: 

− network and server sensors, designed for the collection and analysis of information 
about network packets, transmitted in computer system, 

− response module, that perform different types of responses depending on the types 
of detected attacks and administrator settings, 

− informational database, designed for centralized storage of configurational data and 
results of IPS work, 

− management module, which provides centralized remote management of IPS 
components over the network, 

− coordination center, which provides the interaction between all other components 
of the IPS, 

− software agents, that provide the transmission of data between sensors and 
coordination center. 

Network sensors of IPS “Forpost” are implemented as appliances that can detect 
informational attacks in particular network segments. Network sensors can be 
installed in computer system by means of connecting sensors to hubs or SPAN-ports 
of switches. For security purposes network sensors are equipped with two network 
adapters, one of which is used as a management interface, and the other provides the 
collection of information about data packets [8, 1].  
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Table 5. The description of states and semantic operators of HTTP-headers analysis module 

State 
transition 

Transition 
condition 

Semantic operator, which is  
executed during the transition 

Transition 
from s9 to s10 

The first input 
symbol is a letter of 
English alphabet 
a∈A 

The semantic operator y17 is executed. Operator y17 

performs the following actions: 
− initializes variables i, j, and k with zero values (i = 

0, j = 0, k = 0). Variable i is used for header length 
calculation, j is used for the calculation of length of 
header variable data, k is used for the calculation of 
number of headers in HTTP-request, 

− clears the value of variable Z (Z = “”) and 
initializes it with input symbol a. 

The input symbol 
is a letter of 

English alphabet 
a∈A 

Transition 
from s10 to s10 

The input symbol 
is a symbol n∈N 

The semantic operator y18 is executed. Operator y18 
performs the following actions: 
− increments the value of variable i (i = i+1), 
− concatenates the value of Z with input symbol a or 

n (Z = Z + a or Z = Z + n), 
− performs the following check – if i>LVarLength, then 

subsequent processing of input strings is stopped 
because the length of analyzed header violates the 
specified restrictions 

Transition 
from s10 to s11 

The input symbol 
is a symbol “=” 

The semantic operator y19 is executed. Operator y19 
performs the following actions: 
− reinitializes the variable i with zero value (i=0), 
− performs the following check – if the value of Z 

doesn’t correspond to any of the elements of array 
SHeaders then subsequent processing of input strings 
is stopped because the analyzed HTTP-request 
contains forbidden header, 

− reinitializes Z with zero value (Z=0) 

The input symbol 
is a letter of 

English alphabet 
a∈A 

Transition 
from s11 to s11 

The input symbol 
is a symbol n∈N 

The semantic operator y20 is executed. Operator y20 
performs the following actions: 
− increments the value of variable j (j = j+1), 
− performs the following check – if j>LValLength, then 

subsequent processing of input strings is stopped 
because the length of analyzed data violates the 
specified restrictions 

Transition 
from s11 to s10 

The input symbol 
is a symbol 

“CRLF” 

The semantic operator y21 is executed. Operator y21 
performs the following actions: 
− initializes the value of j with zero value (j = 0), 
− increments the value of variable k (k = k+1), 
− performs the following check – if k>LNHeaders, then 

subsequent processing of input strings is stopped 
because the number of headers in HTTP-requests 
violates the specified restrictions 

Transition 
from s10 to s12 

Transition 
from s9 to s12 

The input symbol 
is a symbol 

“CRLF” 
No semantic operators are executed 
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Server sensors are installed on protected servers and provide protection of certain 
network services like HTTP, SMTP, POP3, etc. Several server sensors can be 
installed on one host. In contrast to network sensors, server sensors can prevent 
network attacks by means of filtering potentially dangerous data packets. Server 
sensors implement of intrusion detection model, which was described in Section 3 of 
the paper. The common structure of IPS “Forpost” is depicted in Fig. 7. 

 

Fig. 7. Common structure of Intrusion Detection and Prevention System “Forpost” 

The testing of IPS “Forpost” demonstrated that the developed intrusion detection 
model can effectively detect network attacks with low number of false negatives and 
false positives. The IPS was tested be means of specialized attack simulation tools [5] 
in heterogeneous network environment. At present IPS “Forpost” is successfully 
introduced in a number of computer systems of commercial and state enterprises  such 
as Central Election Committee of Russia, Ministry of Justice, Committee of Financial 
Monitoring of Russian Federation, etc. 

5   Conclusion 

The development of intrusion detection models is currently one of the most rapidly 
evolving fields of information security. The main types of signature- and behavior-
based models were considered in this paper. On the basis of existing models 
disadvantages a new intrusion detection model was developed. This model uses state 
machine-based formal grammars and allows to detect and prevent anomalous network 
traffic, related to informational attacks. Developed model can detect both known and 
new types of network attacks. The described approach was illustrated by an example 
of model, designed for the detection of attacks on Web-servers. The developed model 
was implemented in an Intrusion Detection and Prevention system “Forpost”, which 
was successfully introduced in a number of computer systems. 
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Abstract. This paper presents a mathematical model of immune network 
specified for real-time intrusion detection. A software implementation of the 
model has been tested on data simulating a typical US Air Force local area 
network (LAN). The obtained results suggest that the performance of the model 
is unachievable for other approaches of computational intelligence. A hardware 
implementation of the model is proposed based on digital signal processor 
(DSP) of super Harvard architecture (SHARC). 

1   Introduction 

Immunological approach [2], [12], [13] looks rather constructive for information 
security assurance (ISA). For example, it is worth mentioning a mathematical notion 
of correlation immunity in cryptography [15], self-nonself discrimination in computer 
security [8], artificial immune systems as a new computational intelligence approach 
[4], [6], and immunocomputing (IC), which is based on mathematical models of 
information processing by proteins and immune networks [19].  

An IC approach to ISA has been proposed in our previous papers [14], [16]. The 
present paper reports a mathematical model of spatial formal immune network (SFIN) 
specified for intrusion detection in LAN. The model has been implemented as a 
software emulator of the immunochip [17] and tested on data of the UCI KDD 
archive [1], which includes a wide variety of intrusions simulated in a military 
network environment. 

2   Mathematical Model 

2.1   Formal Immune Network 

Definition 1. Cell is a pair V = (c, P), where class c is natural number Nc ∈ , whereas 

),...,( 1 qppP =  is a point of the q-dimensional Euclidian space: qRP ∈ . 

Fix some finite set of cells ("innate immunity"): ),...,( 10 mVVW = . 

 
Definition 2. Spatial formal immune network (SFIN) is a set of cells: 0WW ⊆ .  
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Let 
Ejiij PPd −=  be Euclidean distance between cells Vi and Vj. Let h be given 

threshold. 
 
Definition 3. Cell Vi recognizes cell Vk if the following conditions are satisfied: 

ki cc = , hdik < , ijik dd < , WV j ∈∀ , ij ≠ , jk ≠ . 

 
Let us define the behavior of SFIN by the following two rules. 

 
Rule 1 (Apoptosis). If cell WVi ∈ recognizes cell WVk ∈ then remove Vi from 

SFIN.  
 

Rule 2 (Immunization). If cell WVk ∈ is nearest to cell WWVi \0∈ among all cells 

of SFIN: ijik dd < , WV j ∈∀ , whereas ki cc ≠ , then add Vi to SFIN.  

2.2   Pattern Recognition 

Definition 4. Pattern is any n-dimensional column-vector ]',...,[ 1 nzzZ = , where 

nzz ,...,1 are real values and (') is symbol of matrix transposing. 

 

Definition 5. Pattern recognition is mapping qRZ → and assigning to Z a class c of 
nearest cell of SFIN. 

2.3   Training 

Let mAA ,...,1 be n-dimensional training patterns with known classes mcc ,...,1 . 

 
Definition 6. Training is mapping of training patterns to cells of SFIN 0W : 

mm VAVA →→ ,...,11 , and application of the rules of Apoptosis and Immunization to 

all cells of 0W . 

Let ]',...,[ 1 mAAA =  be training matrix of dimension nm × . Consider singular 

value decomposition (SVD: see, e.g., [11]) of this matrix: 

''
333

'
222

'
111 ... rrr XYsXYsXYsXYsA ++++= ,                          (1) 

where r is the rank of matrix A, ks are singular values and kk XY , are left and right 

singular vectors with the following properties: 1' =kkYY , 1' =kk XX , 0' =ikYY , 

0' =ik XX , ki ≠ , rk ,...,1= . 

Consider the following mapping qRPZ ∈→ of any n-dimensional pattern Z: 

k
k

k XZ
s

p '
1= , qk ,...,1= .                                         (2) 
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According to [19], formulas (2) can be treated as "binding energies" between 
"formal proteins" Z ("antigen") and Xk ("antibodies"). 

2.4   Mathematical Properties of SFIN 

Proposition 1. SFIN's projection ),...,( 1 qppP =  of any training pattern iAZ = , 

mi ,...,1= , lies within unit cube: 1|}||,...,max{| 1 ≤qpp . 

 

Let ''
iAZ = , },...,1{ mi = . Then, according to SVD (1): 

''
333

'
222

'
111

' ][...][][][ rirriii XYsXYsXYsXYsZ ++++= , 

where ikY ][ is i-th coordinate of left singular vector kY . Multiply both parts of this 

equation by kX : ikkk YsXZ ][' = , because 0' =ik XX , ki ≠ . Substitution of this 

result to (2) leads to ikk Yp ][= . Thus, 1' =kkYY  proves the proposition. 

 
Proposition 2. SFIN 0W  without Apoptosis and Immunization recognizes any 

training pattern by zero Euclidian distance. 
 
Let ),...,( 10 mVVW =  be SFIN corresponded to training patterns mAA ,...,1 . Let 

),...,( 1 qiii ppP = . Let ''
iAZ = , },...,1{ mi = . Then, according to the proof of 

Proposition 1, kiikk pYp == ][ , qk ,...,1= . Thus, 0=iid , which proves given 

Proposition 2. 

3   Software Implementation 

Based on the above mathematical model of SFIN, consider a description (in a 
pseudocode) of the IC algorithm of pattern recognition: 

 
Training 
{ 

1st stage training // map data to SFIN 
{ 

  Get training patterns; 
  Form training matrix; 
  Compute SVD of the training matrix; 
  Store q singular values // "binding energies" 

Store q right singular vectors; // "antibody-probes" 
  Store left singular vectors; // cells of SFIN 

} 
2nd stage training // compress data by SFIN 
{ // compute for all cells of SFIN:  

  Apoptosis; 
  Immunization; 

} 
} 
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Recognition 
{ 
 Get pattern; // "antigen" 
 Map the pattern to SFIN; 
 Find nearest cell of SFIN; 
 Assign class of the nearest cell to the pattern; 
} 

 
This IC algorithm has been implemented in a version of the immunochip emulator 

using the following standard tools:  

- MS Windows XP Operating System; 
- MS Visual C++ 6.0 Developer Studio; 
- OpenGL for three-dimensional (3D) visualization. 

Screenshot of the emulator is shown in Fig. 1.  

4   Test Data  

The known UCI KDD archive has been used for testing the emulator. This is the data 
set used for The Third International Knowledge Discovery and Data Mining Tools 
Competition, which was held in conjunction with KDD-99 The Fifth International 
Conference on Knowledge Discovery and Data Mining. The competition task was to 
build a network intrusion detector, a predictive model capable of distinguishing 
between "bad" connections, called intrusions or attacks, and "good" normal 
connections. 

The 1998 DARPA Intrusion Detection Evaluation Program was prepared and 
managed by MIT Lincoln Labs. The objective was to survey and evaluate research in 
intrusion detection. A standard set of data to be audited, which includes a wide variety 
of intrusions simulated in a military network environment, was provided. The 1999 
KDD intrusion detection contest uses a version of this dataset.  

Lincoln Labs set up an environment to acquire nine weeks of raw transmission 
control protocol (TCP) dump data for a LAN simulating a typical US Air Force LAN. 
They operated the LAN as if it were a true Air Force environment, but peppered it 
with multiple attacks.  

The raw training data was about four gigabytes of compressed binary TCP dump 
data from seven weeks of network traffic. This was processed into about five million 
connection records. Similarly, the two weeks of test data yielded around two million 
connection records.  

A connection is a sequence of TCP packets starting and ending at some well 
defined times, between which data flows to and from a source IP address to a target IP 
address under some well defined protocol. Each connection is labeled as either 
normal, or as an attack, with exactly one specific attack type. Each connection record 
consists of about 100 bytes.  

Attacks fall into 4 main categories:  

- DOS: denial-of-service (e.g. "syn flood");  
- R2L: unauthorized access from a remote machine (e.g. "guessing password");  
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- U2R: unauthorized access to local superuser (root) privileges (e.g., various  
   "buffer overflow"' attacks);  
- probing: surveillance and other probing (e.g., "port scanning").  

It is important to note that the test data is not from the same probability distribution 
as the training data, and it includes specific attack types not in the training data. This 
makes the task more realistic. Some intrusion experts believe that most novel attacks 
are variants of known attacks and the "signature" of known attacks can be sufficient to 
catch novel variants. The datasets contain a total of 24 training attack types, with an 
additional 14 types in the test data only.  

Two data files from UCI KDD archive has been used for testing the emulator: 

- File 1: kddcup_data_10_percent_gz.htm (7.7 MB); 
- File 2: kddcup_newtestdata_10_percent_unlabeled_gz.htm (44 MB). 

File 1 is the training data file. It contains 51608 network connection records. Any 
record (file string) has the following format, where parameters 2, 3, 4, 42 are 
symbolic, while other 38 parameters are numerical (real values): 

 
1) duration, 2) protocol_type, 3) service, 4) flag, 5) src_bytes,  
6) dst_bytes, 7) land, 8) wrong_fragment, 9) urgent, 10) hot,  
11) num_failed_logins, 12) logged_in, 13) num_compromised,  
14) root_shell, 15) su_attempted, 16) num_root, 17) num_file_creations, 
18) num_shells, 19) num_access_files, 20) num_outbound_cmds,  
21) is_host_login, 22) is_guest_login, 23) count, 24) srv_count,  
25) serror_rate, 26) srv_serror_rate, 27) rerror_rate,  
28) srv_rerror_rate, 29) same_srv_rate, 30) diff_srv_rate,  
31) srv_diff_host_rate, 32) dst_host_count, 33) dst_host_srv_count,  
34) dst_host_same_srv_rate, 35) dst_host_diff_srv_rate,  
36) dst_host_same_src_port_rate, 37) dst_host_srv_diff_host_rate,  
38) dst_host_serror_rate, 39) dst_host_srv_serror_rate,  
40) dst_host_rerror_rate, 41) dst_host_srv_rerror_rate, 42) attack_type. 

 
For example, two records (# 1 and # 745) of File 1 are as follows: 
 

0,tcp,http,SF,181,5450,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,8,8,0.00,0.00, 
0.00,0.00,1.00,0.00,0.00,9,9,1.00,0.00,0.11,0.00,0.00,0.00,0.00,0.00, 
normal. 
184,tcp,telnet,SF,1511,2957,0,0,0,3,0,1,2,1,0,0,1,0,0,0,0,0,1,1,0.00, 
0.00,0.00,0.00,1.00,0.00,0.00,1,3,1.00,0.00,1.00,0.67,0.00,0.00,0.00, 
0.00, buffer_overflow. 

 
File 1.1 has also been prepared with the same 51608 records of the same format 

just without the last parameter 42) attack_type.  
File 2 contains 311079 records of the same format as in File 1.1. 
File 1.1 and File 2 are the test data files.  
Note that KDD archive does not indicate the correct types of attack for none of the 

records of File 2. The only available information on possible attacks is gathered in 
Tab. 1 (column 'Code' is the emulator's code of attack). Nevertheless, we have used 
File 2 to test whether the emulator is able to detect unknown intrusions, which had not 
been presented in the training data of File 1.  
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Table 1. Attack types 

Code Attack type File 1 File 2 Code Attack type File 1 File 2 
0 normal + +     
1  apache2  + 16 pod  + + 
2 back +  17 portsweep + + 
3 buffer_overflow + + 18 rootkit +  
4 ftp_write   19 saint  + 
5 guess_passwd  + 20 satan +  
6 imap   21 sendmail  + 
7 ipsweep + + 22 smurf +  
8 land +  23 snmpgetattack  + 
9 loadmodule   24 spy   
10 multihop  + 25 teardrop +  
11 named  + 26 udpstorm  + 
12 neptune +  27 warezclient   
13 nmap   28 warezmaster   
14 perl   29 xlock  + 
15 phf + + 30 xsnoop  + 

5   Test Results 

The results of training the emulator by File 1 are shown in Fig.1, where right-hand 

screen represents the initial population of SFIN in 3D space ( 3RZ → ) after SVD 
(start cells = 51608), while left-hand screen shows the population of SFIN after  
 

 

Fig. 1. Immunochip emulator for intrusion detection 
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Apoptosis and Immunization (h=0.001, end cells = 811). Total training time (for 
AMD Athlon 1.53 GHz) is 98.7 seconds including 8.03 s for the 1st stage (SVD) and 
90.64 s for the 2nd stage (Apoptosis and Immunization). 

During the recognition of the records of File 1.1 and File 2, the emulator writes test 
results into the output file in the format: Record # - attack_type. For example, four 
records (## 744-747) with test results for File 1.1 are as follows (see also Tab. 2): 

744 - normal. 
745 - buffer_overflow. !!! 
746 - buffer_overflow. !!! 
747 - normal. 

The emulator also shows the on-line projection of any pattern to 3D SFIN (see bold 
skew cross in both screens) and write the recognition result on the bottom panel (see 
"Class: back !!!"). 

Test results in Tab. 2 correspond completely to the correct attack types (parameter 
42) of File 1.  

Table 2. Test results for File 1.1 

Records ## attack_type Records ## attack_type 
745-746  buffer_overflow 38036-38051 ipsweep 
3095-7373  smurf 38052-38151 back 
9520-9523 buffer_overflow 38302-38311 ipsweep 
9590-9591 rootkit 42498-42519 ipsweep 
9928-10007 neptune 42548-42567 ipsweep 
10072 satan 42593-42594 ipsweep 
10320 phf 42706-42708 ipsweep 
13340-13519 portsweep 42730-42761 ipsweep 
13569 land 42762-42770 buffer_overflow 
13845-13864 pod 42771-42772 land 
16326-16327 pod 42773-43385 neptune 
17446-37902 neptune 44451-44470 neptune 
37929-37939 ipsweep 44800-48452 smurf 
37959-37963 ipsweep 48453-48552 teadrop 
38005-38012 ipsweep All other normal 

 

Another test has been performed over File 2 to check whether the emulator is able 
to detect unknown intrusions, which had not been presented in the training data of 
File 1. The intrusion is treated as unknown if the projection of corresponding pattern 
to SFIN lies outside of the unit cube, according to Proposition 1. The emulator has 
recognized 13 unknown intrusions as the following records ## of File 2: 

 
417, 12674, 97891, 139795, 170498, 176201, 177958, 232570, 236975, 
296561, 296657, 96796, 297658. 

 
According to Tab. 1, any unknown intrusion can correspond to one of the 

following types of attack that had not been presented in the training data: 
 

apache2, guess_passwd, multihop, named, saint, sendmail, snmpgetattack, 
udpstorm, xlock, xsnoop. 
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The recognition time per record is 15.7 ms for both tests of File 1.1 and File 2. This 
time includes not only computations but mainly reading the record from test file, 
visualization of the recognition result (projection of the pattern to 3D SFIN) in both 
screens of the emulator, and writing the result into output file. 

6   Comparison with Neural Network 

There is no possibility of direct comparison between immune and neural networks on 
the same data of File 1 and File 2, since none publication has been found on the 
training and testing any neural network on these data. Nevertheless, a comparison 
between SFIN and neural network has been performed using the sonar benchmark 
data available in the same KDD archive [1]. This is the data set used by [9] in their 
study of the classification of sonar signals using a neural network. The task is to train 
a network to discriminate between sonar signals bounced off a metal cylinder (i.e. 
submarine) and those bounced off a roughly cylindrical rock.  

The KDD file "sonar.mines" contains 111 patterns obtained by bouncing sonar 
signals off a metal cylinder at various angles and under various conditions. The file 
"sonar.rocks" contains 97 patterns obtained from rocks under similar conditions. The 
transmitted sonar signal is a frequency-modulated chirp, rising in frequency. The data 
set contains signals obtained from a variety of different aspect angles, spanning 90 
degrees for the cylinder and 180 degrees for the rock.  

Each pattern is a set of 60 numbers in the range 0.0 to 1.0. Each number represents 
the energy within a particular frequency band, integrated over a certain period of time. 
The integration aperture for higher frequencies occurs later in time, since these 
frequencies are transmitted later during the chirp.  

The label associated with each record contains the letter "R" if the object is a rock 
and "M" if it is a mine (metal cylinder). The numbers in the labels are in increasing 
order of aspect angle, but they do not encode the angle directly. 

Two series of experiments have been reported in [9]: 1) an "aspect-angle 
independent" series, in which the whole data set is used without controlling for aspect 
angle, and 2) an "aspect-angle dependent" series in which the training and testing sets 
were carefully controlled to ensure that each set contained cases from each aspect 
angle in appropriate proportions.  

A standard back-propagation network was used for all experiments in [9]. The 
network had 60 inputs and 2 output units, one indicating a cylinder and the other a 
rock. Experiments were run with no hidden units (direct connections from each input 
to each output) and with a single hidden layer with 2, 3, 6, 12, or 24 units. Each 
network was trained by 300 epochs over the entire training set.  

Not surprisingly, the neural network's performance on the test set is somewhat 
better when the aspect angles in the training and test sets are balanced. These 
classification results of the neural network for "aspect-angle dependent" series are 
shown in Tab. 3.  

It has been also reported that three trained human subjects were each tested on 100 
signals, chosen at random from the set of 208 returns used to create this data set. 
Their responses ranged between 88% and 97% correct. However, they may have been 
using information from the raw sonar signal that is not preserved in the processed data 
sets presented here (according to [9]). 
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Table 3. Classification of sonar targets by neural network 

Hidden units % Right on Training Set % Right on Test Set 
0 79.3 73.1 
2 96.2 85.7 
3 98.1 87.6 
6 99.4 89.3 

12 99.8 90.4 
24 100.0 89.2 

 

According to [1], the authors of this work [9] further report that a nearest neighbor 
classifier on the same data gave an 82.7% probability of correct classification.  

The immunochip emulator for intrusion detection has also been trained and tested 
by the "aspect-angle dependent" sets. Classification results of the immunochip 
emulator using only the 1st stage training (see Section 3) are shown in Tab. 4.  

Table 4. Classification of sonar targets by immunochip emulator 

Dimension of SFIN 
(q) 

Training time 
(s) 

% Right on 
Training Set 

% Right on 
Test Set 

Total  
Errors 

3 0.02 100.0 76.9 24 
5 0.03 100.0 84.6 16 
7 0.03 100.0 89.4 11 
8 0.06 100.0 90.3 10 
9 0.08 100.0 93.2 7 

10 0.08 100.0 92.3 8 

 

Brief comparison between Tab. 3 and Tab. 4 shows that the best classification of 
the immunochip emulator (93.2%) is better than that of the neural network (90.4%). 
Besides, the emulator does not make mistakes on the training set (this is guaranteed 
by Proposition 2). 

Note very low training time of the emulator in Tab. 4 (for AMD Athlon 1.53 GHz). 
Unfortunately, the training time of neural network in Tab.3 is unavailable from [1] or 
[9]. However, it can be estimated indirectly by the work [22], which uses the same 
sonar benchmark.  

The authors of this work [22] report 58 s or 72 s (for Pentium 350 MHz) for their 
genetic algorithm applied to the neural networks with 3 or 4 hidden units respective 
and note that "This method is efficient because the time cost for evolution is about 2 
or 3 orders less than that spent in training the networks." Such estimation confirms 
that the training time of the immunochip emulator is far lower than that of neural 
networks. 

7   Hardware Implementation 

A perspective way of hardware implementation of the immunochip can be provided 
by DSP of new TigerSHARC family. Such DSP is compatible with the standard PC, 
where it can be connected via PCI bus. Therefore, a hardware emulator of the 
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immunochip can be implemented as a small standalone electronic board. A PC or PC 
compatible mobile computer (Notebook) can be used as a host workstation for user-
friendly visualization of the results of processing, for debugging of algorithms, etc.  

DSP provides, essentially, the application of mathematical operations to a series of 
digital samples representing physical world signals such as audio waves, or complex 
radar or sensor samples. DSP technology is nowadays common place in devices such 
as mobile phones, multimedia computers, video recorders, CD players, hard disc drive 
controllers and modems, and will soon replace analog circuitry in commercial TV sets 
and telephones. An important application of DSP is also in signal compression and 
decompression as well as encryption in the field of ISA [10]. 

The architecture of DSP allows overcome main drawbacks of general-purpose 
microprocessors. The program bus and the data bus are separate from each other, as 
are the program and data memories. These parallel buses allow instruction and data to 
be fetched at the same time. This separation of data and program busses characterizes 
the so-called Harvard architecture. 

Analog Devices has introduced so-called super Harvard architecture (SHARC). 
The TigerSHARC 128-bit DSP is a high performance next generation version of 
SHARC. The TigerSHARC combines multiple computation units for floating-point 
and fixed-point processing.  

Typically, real-time DSP systems require fast, deterministic input/output (I/O) and 
number crunching capability. Applications may range from basic processing of a 
small image with a single channel of incoming data (e.g. filtering or averaging) to a 
sonar system with hundreds of incoming data channels and a massive parallel 
processing requirement. The TigerSHARC has been designed to operate in the 
demanding world of telecommunications, but facilities that make it equally suitable 
for a wide range of applications, including aerial and maritime equipment (radar, 
avionics, sonar, etc.) and professional audio (mixers, digital effects, etc.). 

Apparently, the TigerSHARC is the most effective fixed/floating-point device to 
date. The TigerSHARC is well suited to high-speed, low-power applications, 
involving large numbers of calculation and data I/O. The built-in link ports can 
transfer data between processors and provide fast interfaces to external hardware, 
yielding true system flexibility. Similarly, the dual compute blocks can handle mixed 
floating-point and fixed-point algorithms simultaneously, leading to very efficient and 
simplified software implementation. Overall, high-performance processing coupled 
with low power consumption (<1.5W) make the TigerSHARC DSP unbeatable for 
many applications. Since DSP algorithms permit a very high degree of parallelism, 
DSP chips can be used for super-computing with strong requirements like high 
performance and flexibility at very low power dissipation. 

On the other hand, one of the main concerns when moving to a new chip is the 
effort involved in porting existing code to the new device. This can have a larger 
effect on the timescale of a project than the new hardware design, especially when 
software engineers have to learn a new development environment and a new assembly 
language. The TigerSHARC addresses both of these issues by keeping the same 
Visual DSP++ environment for all its processor families and maintaining a similar 
style of algebraic assembly programming.  

Therefore, the choice of TigerSHARC architecture as a basis for the hardware 
implementation of the immunochip is caused by the following main reasons: 1) the 
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highest achievable performance for a large class of real-time floating-point 
applications and 2) the availability of rather advanced software tools for 
implementation of the developed algorithms.  

According to our preliminary experiments, the TigerSHARC evaluation board EZ-
KIT (ADSP-TS101S 250 MHz) works by 35 times faster than PC (Intel Celeron 400 
MHz) while implementing an IC algorithm of recognition of results in immunoassay-
based diagnostic arrays [18]. However, main advantage of the TigerSHARC 
implementation of the immunochip for on-line intrusion detection can be previewed 
in extracting of the recognizing pattern (network connection record) from the input 
flow (network traffic). 

8   Conclusion 

According to test results, SFIN reduces the storing patterns by 63.6 times using 
Apoptosis and Immunization without any loss of accuracy of recognition. Although 
this increases the training time (from 8 seconds to 1.5 minutes for AMD Athlon 1.53 
GHz), nevertheless, more important is the decrease of the recognition time at least by 
60 times per pattern (by decreasing number of the stored cells of SFIN to be 
compared with recognizing pattern).  

It is also worth noting that so good performance of SFIN (error-free recognition 
with rather low training time) on the data of real-life dimension looks unobtainable 
for main competitors in the field of computational intelligence [7] like artificial neural 
networks (ANN) [5] and genetic algorithms (GA) [3]. According to our comparison in 
[20] and [21], SFIN trains by at least 40 times faster and recognizes by at least 2 times 
correctly than ANN and GA on the tasks of environmental monitoring and laser 
physics. These tasks have rather low dimension: 17×23×6 for ecological atlas and 
19×5 for laser diode. However, the drawbacks of ANN and GA seem especially 
inadmissible for the task of intrusion detection with rather high dimension: 51608×41 
and more. 

The obtained results also show that the developing approach can successfully be 
applied to on-line intrusion detection in a typical US Air Force LAN (as simulated by 
the data of UCI KDD archive). 
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Abstract. A new model for representing temporal access control policies is 
introduced. In this model, temporal authorizations are represented by time 
attributes associated with both subjects and objects, and a “time interval access 
graph.” The time interval access graph is used to define constraints on the 
temporal relations between subjects and objects. Interval algebra is used to 
define and analyze the time interval access graph. 

1 Introduction 

In many commercial and military environments, time is often a critical factor for 
making decisions regarding authorization or access to information. The value or 
sensitivity of data and processes has become more dependent upon time attributes. 
Thus, future information systems will need to support system-wide security policies 
that incorporate time as a decision factor. To this end, a Time Interval Access Control 
(TIAC) model has been developed. 

A significant contribution of the TIAC model is that it provides formal semantics 
to express temporal authorization policies, in which temporal attributes of subjects 
and objects are used to determine authorized accesses. The TIAC model differs from 
previously proposed models such as the Temporal Authorization Model by Bertino et 
al. [5, 6] and the Temporal Data Authorization Model by Gal and Atluri [4, 7], 
primarily in its ability to specify temporal relations between subjects and objects. 

Another contribution of the TIAC model is that it is the first use of interval algebra 
[3] to express a temporal access control policy. This algebra provides the necessary 
expressive power to logically describe a temporal access control policy, and a precise 
and efficient way to computationally reason about the temporal relation between 
subjects and objects and associated access constraints. Policy enforcement 
mechanisms and the modeling of the effectiveness of those mechanisms with respect 
to the type of temporal authorizations describable in TIAC are outside of the scope of 
this paper (see [1]). 

A brief discussion of interval algebra is presented in Section 2. Section 3 provides 
a description of the TIAC model, where we establish the definition of time intervals 
and discuss the formal semantics used for representing temporal authorizations and 
access requests. Finally, future work and conclusions are presented in Section 4. 
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2 Background 

Interval algebra [3] provides a means to represent time intervals associated with 
actions and entities and to computationally reason about their relationships. It defines 
the possible relations that can hold between two time intervals (see Table 1). These 
relations are mutually exclusive, in that only one is needed to describe the relative 
temporal placement of any two time intervals. Interval algebra assumes that the 
beginning and ending points (signified with “−” and “+” respectively) of an interval 
do not coincide. For each entry in Table 1, the first line shows the basic relation and 
the second line shows its inverse relation. 

Table 1. Basic temporal relationships 

RELATION 
PREDICATE 

FORM 
SYMBOL RELATION ON 

ENDPOINTS 
PICTORIAL MEANING 

x before y 
y after x 

BEFORE(x,y) 
AFTER(y,x) 

< 
> (x+ < y−) 

 

x                          y 

x equals y 
y equals x 

EQUALS(x,y) 
EQUALS(y,x) 

= 
= 

(x− = y−) ∧ 
(x+ = y+) 

x 

 

y 

x meets y 
y met by x 

MEETS(x,y) 
MET_BY(y,x) 

m 
mi x+ = y− 

               

               x                               y 

x overlaps y 
y overlapped by 

x 

OVERLAPS(x,y) 
OVERLAPPED_BY(y,x) 

o 
oi 

(x− < y−) ∧ 
(x+ > y−) ∧ 
(x+ < y+) 

               x                     

 

                                 y 

x during y 
y includes x 

DURING(x,y) 
INCLUDES(y,x) 

d 
di 

(x− > y−) ∧ 
(x+ < y+) 

x 

 

y 

x starts y 
y started by x 

STARTS(x,y) 
STARTED_BY(y,x) 

s 
si 

(x− = y−) ∧ 
(x+ < y+) 

               x 

 

y 

x finishes y 
y finished by x 

FINISHES(x,y) 
FINISHED_BY(y,x) 

f 
fi 

(x− > y−) ∧ 
(x+ = y+) 

                                      x 

 

y 

 
 

A set of time intervals and their required or allowed interrelationships can be 
represented using a directed graph (also known as an interval algebra network, or IA 
network), in which each vertex represents an individual time interval and each 
directed edge represents the relationship(s) between a pair of vertices. 
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3 TIAC Model 

The TIAC model provides a formal semantic framework to extend existing 
authorization models with policies (e.g., restrictions) regarding the temporal 
relationships between subjects (e.g., user), objects (e.g., data) and the time of access.  

In this section, a discussion of time and intervals provides a foundation for the 
TIAC model. Then the elements that make up the TIAC model are described. These 
elements are: 1) temporal entities, 2) the time interval access graph, 3) temporal 
authorizations, 4) access requests, and 5) the evaluation of access requests. 

3.1 Time and Intervals 

Time is assumed to be a set of discrete points, T, which is isomorphic to the natural 
numbers and is linearly ordered with respect to the < relation. Points in T are used in 
representing time intervals. 

Time intervals are represented using half-open intervals denoted as τ = [t-, t+) 
where t- < t+. Half-open intervals are used so that there are no semantic ambiguities 
about the point where two time intervals meet. A unit time interval is the smallest 
expressible interval. It has a duration of one where t+ = t- + 1. When referring to the 
current time a unit time interval is used. For discussion purposes, the current time will 
be referred to as now.τ where now.τ = [now-, now+). 

Time intervals are associated with subjects and objects, and temporal access 
control policies (restrictions regarding the relationships between intervals) are 
reasoned about using interval algebra. 

3.2 Temporal Entities 

Temporal entities are represented using the concept of subjects and objects similar to 
those discussed by Graham et al., Lampson, and Weissman [8, 9, 10]. Subjects and 
objects each have an associated time interval (attribute), which is used for making 
access control decisions. 

In the following definitions, Sτ={s1, s2,…sn} is the set of temporal subjects, and 
Oτ={o1,o2,…on} is the set of temporal objects (i.e., the passive entities that hold data 
or information and are accessed by temporal subjects). 

 

Definition 1 (Temporal Object, Temporal Subject). A temporal entity α is an 
object o ∈ Oτ , or a subject s ∈ Sτ , with which is associated a time interval τ = [t-, t+) 
where: 
 

 α.τ  designates the time interval associated with α  
 α.t- designates the time point at the beginning of interval α.τ 
 α.t+  designates the time point at the end of interval α.τ 
 

The time interval associated with a subject or object may be used to describe 
access constraints based on a temporal policy. For example, a time interval could be 
used to represent when a subject is valid or when an object may be accessed. Using 
interval algebra, it is possible to express policies regarding the temporal relations 
between a subject, an object, and a reference time interval such as now.τ. 
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3.3 Time Interval Access Graph ϕ 

The TIAC model introduces the time interval access graph, ϕ. ϕ is a consistent 
instantiation of a three-vertex IA network that defines access constraints on the temporal 
relations between subjects and objects, and a reference time interval (τref). A consistent 
version of any three-node access graph can be efficiently determined [1, 2, 3].  
 

Definition 2 (Time Interval Access Graph ϕ). The time interval access graph ϕ is a 
consistent instantiation of a three-vertex IA network G = (V, E) where: 

 

 V  {s.τ, o.τ, τref} 
 E  {(s.τ, o.τ), (τref, s.τ), (τref, o.τ)} 
 R  {<, >, d, di, o, oi, m, mi, s, si, f, fi, =} ∪ ∅ 
 γ: E→℘(R) a disjunctive set function that specifies the temporal  
   relations allowed between a pair of vertices 

 

For example, ϕ could be instantiated with the following: 
 

s.τ = [5, 20), o.τ = [10, 15), and τref = [11, 12) 
γ(s.τ, o.τ) = {includes}, γ(τref, s.τ) = {starts ∨ during}, and γ(τref, o.τ) = {during} 

3.4 Temporal Authorizations 

Policies often distinguish between different “modes” in which a subject may access 
an object (e.g., observe, modify, execute, append). A temporal authorization Aτ, is a 
mapping of a subject-object pair to a set of mode-ϕ pairs, which completely defines 
the temporal authorization policy for the subject with respect to that object. For 
simplicity of presentation, it is assumed herein that there is only one mode-ϕ pair per 
subject-object pair. 
 

Definition 3 (Temporal Authorization). A temporal authorization Aτ is defined as a 
4-tuple (s, o, m, ϕ) where: 
 

 s ∈ Sτ  temporal subject 
 o ∈ Oτ temporal object 
 m ⊂ M allowed mode(s) of access  
 ϕ time interval access graph that describes the temporal restrictions 
  on the use of o 
 

A temporal authorization Aτ = (s, o, m, ϕ) states that a subject s is allowed m access 
to object o as restricted by the time interval access graph ϕ. For a given policy 
instantiation, Ωτ is the set of temporal authorizations. 

3.5 Access Requests 

A temporal subject, to gain access to a temporal object, initiates an access request for 
a given mode of access to occur at a particular time. In the most general form, 
temporal requests would specify an arbitrary time in the past, present and future. For  
simplicity in this discussion, requests will be characterized relative to now.τ . There 



410 F.B. Afinidad et al. 

 

are two types of access requests: general access requests and duration access 
requests. 
 

Definition 4 (General Access Request). A general access request Rgτ is a 4-tuple (s, 
o, m, now.τ) where: 

 

 s ∈ Sτ  is a temporal subject 
 o ∈ Oτ is a temporal object 

 m ⊂ M is a mode(s) of access 
 now.τ is the time of access request 
 

A general access request Rgτ(s, o, m, now.τ) states that a subject s requests m access 
to object o at time now.τ. Implicit in this form of request is that the subject would be 
granted access for the maximum duration allowed by the access graph ϕ associated 
with s and o (if any exists). 
 

Definition 5 (Duration Access Request). A duration access request Rdτ is a 5-tuple 
(s, o, m, now.τ, δ) where: 

 

 s ∈ Sτ is a temporal subject 
 o ∈ Oτ is a temporal object 
 m ⊂ M is the mode(s) of access 
 now.τ is the time of the access request 

 δ is the requested duration of access 
 

A duration access request Rdτ(s, o, m, now.τ, δ) states that a subject s requests m 
access to object o for a duration δ. 

3.6 Evaluation of Access Requests 

An access request is evaluated as follows: the set of temporal authorizations Ωτ is 
searched for a matching subject-object pair. If no match is found, access is denied. If 
a match is found, the requested mode is compared to the allowed mode, and then the 
time interval access graph ϕ is interpreted relative to the requested interval, to grant or 
deny access. This process is specified in the boolean functions Eval_g and Eval_d. 
 

Eval_g(Rgτ(s, o, m, now.τ))  ∃ (s′, o′, m′, ϕ) ∈ Ωτ(s = s′ ∧ o = o′ ∧ m ⊂ m′ ∧ ϕ = 
true when evaluated using s.τ, o.τ, and now.τ) 
 

Eval_d(Rdτ(s, o, m, now.τ, δ))  ∃ (s′, o′, m′, ϕ) ∈ Ωτ(s = s′ ∧ o = o′ ∧ m ⊂ m′ ∧ ϕ = 
true when evaluated using s.τ, o.τ, and now.τ +δ) 
 

Note: now.τ +δ = [now-, now- + ϕ) 

4 Conclusion and Future Research 

In this short paper, we have presented the TIAC model as a novel way to specify 
temporal access control policies. This model is able to formally specify temporal 
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constraints on time attributes associated with subjects and objects, and a reference 
time interval such as time of access. 

Several areas related to TIAC are still being investigated. We are considering the 
formal semantics for creating and deleting temporal authorizations as well as the 
policy implications of the tranquility of temporal attributes associated with subjects 
and objects. In general, a set of mode-ϕ pairs can be associated with each subject-
object pair in order to be able to express a different policy for each mode of access, 
but that extension to the TIAC model is left for future work. 

We also plan to generalize this model so that it could specify an access request that 
uses a different reference time interval other than current time, which would allow the 
model to check for previous, current, and future authorizations. This research is also 
being extended to determine a set of useful temporal access control policies that can 
be expressed using the TIAC model. Finally, we are considering other enhancements 
to the TIAC model that involve extending the TIAC model concept to support the 
specification of event-based security policies. 
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Abstract. Addressing the insider threat using a systematic and for-
mulated methodology is an inherently difficult process. This is because
the problem is typically viewed in an abstract manner and a sufficient
method for defining a way to categorically represent the threat has not
been developed. The solution requires a security model that clearly iden-
tifies a process for classifying malicious insider activities. To be effective
the model must compartmentalize the threat and attack it consistently.
The purpose of this paper is to present a methodology for accurately
defining the malicious insider and describe a process for addressing the
threat in a systematic manner. Our model presents a definable taxonomy
of the malicious insider and demonstrates a method for decomposing the
abstract threat into a solvable and analyzable process.

1 Overview

The development of an insider threat model continues to be an elusive task. In
August, 2000 an insider threat workshop of leading security professionals met
to discuss the malicious insider and determined there is a specific need for a
well-defined taxonomy and a comprehensive insider threat model [1]. To date,
there has been little advancement by the security community in achieving these
requirements. It is the goal of our research to address these issues by effectively
defining the malicious insider and providing a model for determining the security
of a system against this threat.

There has been relatively little work done in developing a model that encom-
passes the full spectrum of malicious insider activities. Previous work has focused
on certain aspects of the problem but has not lead to a systematic method for
defining the characteristics of an attack. To mitigate the malicious insider, it is
necessary to have a comprehensive model that can be used to define the threat
in a consistent and collaborated manner.

� The views expressed in this article are those of the authors and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the U.S. Government.
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2 Related Work

When examining how to develop a model that can encompass the insider threat,
one research area analyzed was attack tree methodologies [7]. Researchers have
proposed that the attack tree is a sufficient tool for addressing the outside threat
and assessing the security of a system against a compromise [4,5,8]. In the attack
tree structure the goal of the attacker is the root node with the different ways
to obtain the goals depicted as the leaf nodes.

Traditional attack trees are not capable of capturing the insider threat in an
effective manner [2]. As shown by [3] they do not provide a comprehensive model
for analysis of vulnerabilities. One of the more significant problems is that the
insider may already have the required rights to perform their malicious actions.
Additionally, the focus of the attack tree is on obtaining the goal represented by
the root node. It is inherently difficult to quantify the motives or goals of the
malicious insider in a truly analyzable manner because individual attributes are
not measurable and may vary drastically from person to person.

In this paper, we propose a hierarchical tree approach capable of providing a
complete malicious insider taxonomy by using a systems engineering approach
rather than the goal oriented objectives associated with attack trees. The premise
of our model is that it focuses on activities of the malicious insider and not their
traits or attributes. Randazzo et al. demonstrates that malicious insiders do not
share a common profile, so there must be a different tangible way to produce
a taxonomy if measurable results are to be obtained [6]. The solution that we
have chosen to implement is to methodically investigate possible actions through
functional decomposition, which addresses the problems associated with mod-
eling the insider threat using traditional attack trees. By exploring actions and
not the individual or motives, no user is excluded from our model. Additionally,
an action either occurs or it doesn’t so the methodology is measurable and an-
alyzable. This systematic approach produces a viable solution to the differences
inherent with individuals and can effectively model their malicious behavior.

3 Methodology

To ensure the model adequately addresses the insider threat, it is necessary to
clearly define the aspects that are being captured. In this context, an insider is
any individual who has been granted any level of trust in an information system.
This description does not limit the insider to specific borders such as Firewalls,
Routers, or a Local Area Network. The system itself could be a conglomeration of
networks. What is important is that once users have been granted any authorized
explicit right to the information system, they are now considered an insider and
are part of the system Protection State.

The Protection State is the manifestation of all trust rights for all users
and objects in the information system. The Protection State encompasses all
activities that are allowed according to organization policy or system access
controls. Any change in privileges will transition it to a new state. The core
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basis of our model is capturing any unauthorized change in the Protection State.
The malicious insider is any authorized user that utilizes inherent insider trusts
to intentionally harm or alter the Protection State of the information system.
Because the action must be intentional, this model does not view a user that
accidently opens an attachment and launches a virus to be a malicious insider.
Conversely, an individual who gains administrative rights and purposely deletes
files is a malicious insider.

3.1 Model Implementation

The malicious insider is therefore someone who violates the Protection State of
the system and is depicted as the root node of the tree representation, as shown
in Fig.1. The four subordinate nodes are the specific types of actions a malicious
insider may perform. It is possible to categorize any event into one of the four
distinct actions through analysis of the Protection State. Because the Protection
State is composed of system rights and we are focusing on the insider, we are
interested in how a user can cause a change in the state. By definition of the
Protection State, the possible ways this can occur can be defined as:

1. Change another user or object’s rights (Alteration)
2. Leak user or object information to an unauthorized entity (Distribution)
3. Obtain protected information about another user or object (Snooping)
4. Change the rights on themselves (Elevation)

Each activity is considered unauthorized if it violates organization policy or
system access controls. These actions capture the possible malicious events that
can produce a transition in the Protection State.

Malicious
Insider

Alteration Distribution Snooping Elevation

ACTIONS

Fig. 1. The four actions represented in the first hierarchy of the tree

Alteration. Alteration encompasses modifying the information system struc-
ture in any unauthorized manner. The system structure is the collection of re-
sources that comprise an information system, which includes computers, files, a
user’s rights or any other asset on the system that supports system functional-
ity. The action of Alteration occurs when a malicious insider changes a user or
object from one state to another in an unauthorized way. A case to represent
this could be a user deleting a file from the system to purposely deny access or
intentionally launching a virus that corrupts entities on the system.
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Distribution. Distribution captures the transfer of protected information to
an unauthorized entity. This occurs when a user has appropriate system rights
and a need to know, such as access a file. The violation of the Protection State
in Distribution occurs when a right or entity is transferred to someone or some-
thing that is not supposed to have them. The case of a user emailing a file to
an unauthorized individual is an example of Distribution. This action can be
the most difficult to detect because it typically mirrors normal activities. The
malicious insider can be very evasive using this action because they may or may
not be bound to a specific time constraint.

Snooping. Snooping addresses obtaining unauthorized information on a user
or object. This action is similar to Distribution except the user has appropri-
ate system rights without a need to know. This takes place when a user has
permissions by the system access controls but the event should not take place
because it violates organization policy. An example of this is an individual with
administrative privileges who opens and reads another user’s email in an at-
tempt to gain information. Because they have accessed something their rights
permit but organization policy states should be disallowed, they have violated
the Protection State through Snooping.

Elevation. Elevation takes place when a user obtains unauthorized rights in
the system. A classic example of this is someone trying to acquire administra-
tive privileges. There are many different ways a malicious insider may try to ac-
complish this, from automated attacks to social engineering. Elevation addresses
the notion of the malicious insider changing their permissions and encompasses
the attempt to garner any rights that are not already allowed as defined by the
Protection State.

3.2 Example

This model ensures every activity of the malicious insider can be specifically
categorized in the context of the Protection State. This principle establishes the
underlying framework that is necessary for identifying the malicious insider in a
deterministic fashion. The distinction that each activity can be captured by one
specific action is an important and definitive concept.

It is perhaps best to explore this notion through a practical example. If
Mallory compromises an administrative password and then deletes Alice’s email
account, transitions to the Protection State take place. Mallory is a malicious in-
sider because her activities were intentional and deliberate. In this scenario there
are two distinct actions that occur to violate the Protection State and subse-
quently there are two transitions of the Protection State. The initial violation is
through Elevation by gaining access to the administrator account. The second vi-
olation is by Alteration in destroying an email account and changing the system
structure. Additionally, if Mallory then accesses a secure document another vio-
lation has occurred. Initially, when she captures the password through Elevation
the Protection State has changed to allow her permission to the file. Although
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she now has these permissions in the context of the Protection State, Snooping
has occurred because she still does not have an authorized reason (need to know)
to view the file. Finally, if Mallory shares the document with Bob, Distribution
has occurred because Bob has obtained rights to an object he shouldn’t have.
This example demonstrates the ability to compartmentalize the problem into
distinct events. This concept will be built on in the next section.

3.3 Model Decomposition

Beginning with each action, the threats can be decomposed step by step down to
the leaf nodes. This process is accomplished using a “how it can be performed”
relationship between a parent and child node. The leaf node is the lowest level of
abstraction and depicts the tool the malicious insider has used to accomplish the
activity. A path from the malicious insider (root node) to a tool (leaf node) forms
a completely decomposed activity. The model is developed in an hierarchical
acyclic fashion, meaning a malicious activity can only follow one specific path
from the root node to a leaf node. This indicates that each possible activity is
capable of being explicitly defined.

The following is a simple example using this methodology for one Distribu-
tion action and is depicted in Fig.2. The Distribution action can be performed
through file sharing, which can be accomplished through email, copying the file
to storage media, online chat, or an electronic drop box. The email can be ex-
ecuted through a local account or web based account. In addition, copying the
file to storage can be performed by floppy disk, CD-ROM or USB drive. An
important concept in the configuration is the actions are limited to four distinct
possibilities (Distribution, Snooping, Elevation, Alteration). The interim nodes,
however, can use any number of children to expressively describe its parent. This
notion allows for flexibility in the model to tailor it to the policies and specifics
of the individual organization, while still providing an analyzable and decidable
model.

File
Sharing

Email Electronic
Drop Box

FTP
to File
Server

Internet
Local

Account

Web
Based
Account

Post to
News
Group

Post to
Website

Online
Chat

Copy
To

Media

Floppy
Disk

CD-ROM
USB
Drive

Fig. 2. An example decomposing the Distribution: file sharing
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4 Summary of Model Attributes and Future Work

The fundamental concept underlying this model is expressing the malicious in-
sider through distinct actions that are capable of being decomposed and ana-
lyzed. It presents a complete and well-defined taxonomy of the insider because
the interest is in definable actions and not attempted categorization of individ-
ual attributes. Organizations can use this methodology to perform a cost/threat
analysis to determine what acceptable risks exist and implement or develop
countermeasures as appropriate. The model is scalable and has built-in flexi-
bility for adapting to different organizations and information systems. These
concepts present a process for effectively defining the malicious insider and pro-
viding the security community an effective tool for addressing the insider threat
in a coordinated effort.

Further research for this methodology involves developing a fully decomposed
baseline tree that addresses the majority of possible insider actions. This process
should then lead to the automation of model development for the security profes-
sional and allow organizations to tailor the baseline tree for their specific system
structure and policies.
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Abstract. The great variety of policy representation forms currently existing 
(e.g., LDAP schemas, PIBs, MIBs, plain text, etc.) is leading to interoperability 
and manageability problems, mainly in inter-domain management environ-
ments, but also between the elements (i.e., PMTs, PDPs, and PEPs) dealing 
with and exchanging policies inside one particular management domain. The 
use of XML technologies provides a solution to this important limitation. This 
paper describes the seamless integration of XML technologies in a policy-based 
management framework. It includes a proposal for an XML-based management 
architecture, the definition of an XML PIB (Policy Information Base) and a new 
Java COPS (Common Open Policy Service) implementation supporting both 
XML-encoding and BER-encoding of the policy data exchanged between PDP 
servers and PEP clients. It also analyses the main techniques used to ensure the 
provision of security services to the management of policies. 

1   Introduction and Motivation 

Policies that are exchanged between the components of a PBNM (Policy-Based Net-
work Management) system may assume different forms as they travel from a defini-
tion server to a repository or from a decision point to an enforcement point. At each 
step, policies are usually represented in a way that is convenient for the current task. It 
could be the case of policies defined as a text file by the administrator, stored in a di-
rectory according to a LDAP schema, distributed from a Policy Decision Point (PDP) 
to a Policy Enforcement Point (PEP) using a PIB (Policy Information Base) [1]. 

As this variety of forms could lead to important problems when trying to define in-
teroperable and extensible multi-domain PBNM architectures, there is a clear need to 
consolidate a common technology to define policy languages and establish a common 
method for encoding policy data. XML technologies are a solution to this problem. 

XML has also the advantage that it is widely accepted, which means that there are 
many tools available supporting the implementation of some of the management func-
tionalities. In addition, XML facilitates the easy integration of different applications, 
something that is particularly important for the cooperation of different policy-based 
network and service management architectures in a multi-domain environment. 

This paper describes in section 2 the design of an XML-seamless PBNM frame-
work using XML technologies along the whole policy life cycle. XML technologies 
are used by all the components of the architecture to manage and monitor policies. 
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Moreover, the XML-seamless PBNM framework facilitates the integration of ex-
isting network nodes supporting the IETF protocols COPS (Common Open Policy 
Service) [2] and COPS-PR (COPS Usage for Policy Provisioning) [3]. We also pre-
sent in section 3 one implementation of COPS and COPS-PR protocols in Java 
(named UMU-jCOPS) allowing the exchange of policy data using either XML- or 
BER-encoding (i.e., binary codification of the information). A preliminary implemen-
tation of this framework using UMU-jCOPS has been used in [4] and [5] to allow the 
dynamic provision of virtual private networks (VPNs) in different scenarios. 

2   XML-Seamless Policy Based Management Framework 

The PBNM framework presented here is based on the definition work undertaken by 
the IETF/DMTF, although in our case both the elements of the architecture and the 
policies themselves are based on the use of XML and its related technologies.  

2.1   XML-Seamless Architecture 

A general overview of the proposed elements of the architecture is provided in next 
sections. In them we will state the modules that need to be added for integrating XML 
technologies in a policy-based management architecture, paying special attention to 
the security measures applied in the design and implementation phases. 

Policy Management Tool (PMT) 
The PMT provides the administrator the mechanisms to create, modify or delete se-
curely policy documents. It is done by means of a high-level language and a graphical 
interface. It is composed of two main XML-related components: a policy GUI, which 
is an editor that can generate or edit XML-based policy documents and an XML pol-
icy validator that validates every policy specification before it is stored in the XML 
policy database. This validation process is done using an XML Schema (XSD), which 
defines the high-level syntax of every network service or application being managed. 
This validation process also includes the verification of the digital signature of the 
administrator defining or modifying every policy. 

XML Policy Database 
The XML policy database is used as policy repository for storing high-level policies 
that are digitally signed. For it we propose the use of an XML native database. The 
benefit of a native solution is that we do not have to worry about mapping XML poli-
cies to some other data structures (as SQL for example). XML native database uses 
XPath notation for its query language and XUpdate for its update language. 

Policy Decision Point (PDP) 
The PDP is the PBNM component that applies the policy documents to the network 
nodes. It retrieves securely the high-level policies from the XML policy database and 
uses them to generate the low-level policy decisions to be sent to network nodes. The 
policy decisions are the response to the policy request sent by PEP clients or are a  
result of a PDP event (e.g., a change in a policy done by the administrator, a time 
condition verified, etc).  
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The PDP evaluates the policy request or the event and determines the policy deci-
sions to be sent to the PEP clients. This is done securely using a TLS-based transport.  

The PDP integrates different XML-based client-type specific modules according to 
the different kind of policies supported (e.g., IPsec, QoS, routing, etc). Each of these 
PDP modules has an XML schema defining its high-level policy representation. 

Policy Enforcement Point (PEP) 
PEP clients enforce the policy decisions taken by the PDP to the policy-managed 
network nodes. When a new PEP is active in the network or some events at the PEP 
occur, the PEP needs to get or update its internal configuration. In this moment the 
PEP will send a policy request to the default PDP server that it has configured. 

PEP clients also integrate different XML-based client-type specific modules ac-
cording to the type of policies supported. Additionally, PEPs can need to transform 
low-level representation to internal configuration that is specific to the vendor, operat-
ing system, and software release, and vice versa. PEP uses a Policy Configuration 
Transformer module to make it; it is based on XSLT (XSL Transformations). 

2.2   XML-Seamless Policy Representation 

The policy representation is defined at two levels. The first one represents high-level 
policies generated by the administrator in a Policy Management Tool (PMT) and 
stored in the XML Policy Database. The second level of representation defines low-
level policies to be exchanged between the Policy Decision Points (PDPs) and the 
Policy Enforcement Points (PEPs) existing in the management architecture. Both pol-
icy representations have the following features in common: 

− Based on the IETF Policy Core Information Model (PCIM) [6] 
− Defined from an XML Schema 
− Encoded in XML 

 For the low-level policy, we have defined an XML scheme from the PIB (Policy    
Information Base) definition that permits the XML-encoding of such structure (XML 
PIB). IETF uses ASN.1 format for the definition of PIB modules. Therefore, we use 
XER [7] to derive an XML scheme from the PIB definition in ASN.1, which is a 
mechanism for converting between ASN.1 encoded data structures and XML encoded 
data structures. When XER is applied to the ASN.1 expressions, data structures are 
encoded as character strings in the form of tag, value, and end-tag, whereas BER en-
codes data structures as octets in the form of tag, length, and value. Figure 1 shows 
how XER-encoded PIBs fit in the proposed management architecture. 

 

PDP

PEP

Policy
Database

PMT

Low-Level
XER-encoded PIB

High-Level
XML Policy

High-Level
XML Policy

 

Fig. 1. XML-seamless policy representation 
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3   COPS and COPS-PR Protocols Supporting XML-Encoded Data 

The proposed representation of low-level policy needs that the COPS and COPS-PR 
protocols support XML-encoded data. These protocols are independent of the type of 
policy carried, but they assume a data model based on the concept of PIB. 

3.1   XML Encoded Data in the COPS and COPS-PR Messages 

The COPS object descriptions use BER as the encoding type. But this encoding type 
is not unique, as additional encodings can be used. This is the case of XML. 

COPS encapsulates data in request messages, decision messages and report mes-
sages. Request messages include the Named ClientSI (Named Client Specific Infor-
mation) object for relaying specific information about the PEP. Decision messages 
made by the PDP send the Named Decision Data object in response to configuration 
requests. And report messages encapsulate Named ClientSI for reporting information 
from the PEP to PDP. The Named ClientSI and Named Decision Data objects are 
composed of one or more bindings. Each binding associates a PRID (Provisioning In-
stance Identifier) object and an EPD (Encoded Provisioning Instance Data) object. 
The PPRID (Prefix PRID) is used in the Remove Decisions and can also compose a 
Named Decision Data. 

Furthermore, the PRID, PPRID and EPD objects encapsulate S-Num and S-Type 
identifier. The S-Num identifies the general purpose of the object, and the S-Type de-
scribes the specific encoding used for the object. The IETF documents usually use the 
BER as the encoding type (S-Type = 1). 

In this context, we have defined an additional encoding to carry XML string-based 
XPath and XER as encoding type; the new value that we have assigned is S-Type = 2. 
We have also take the convention that the PRID and PPRID objects make use of 
XPath, and the EPD objects make use of XER encoding. 

Provisioning Instance Identifier (PRID) 
This object carries the identifier of a Provisioning Class (PRC) Instance. This identi-
fier is encoded following the BER rules as a SNMP Object Identifier (OID). PRID is 
the OID of the Provisioning Class plus the Instance Identifier (InstanceId).  

We propose to use XPath for XML encoding. This path has two parts: the first one 
identifies the PRC and the second one identifies the particular instance of this PRC. 

Prefix PRID (PPRID) 
PPRIDs are only used in the Remove Decisions command to identify a group of in-
stances with the same PRID prefix and to avoid a sequence of individual Remove De-
cisions. PPRID is encoded following the BER rules as a SNMP Object Identifier 
(OID) like the PRID object commented before.  

We also propose to use XPath for encoding PPRID in XML. For example, a PRID 
equal to the following path: //iso/org/dod/internet/pib/frameworkPib/ 
frwkBasePibClasses/frwkPibIncarnationTable/FrwkPibIncarnationEntry/* identifies 
all instances of the PRC called PIB Incarnation Table of the PIB Framework. 
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Encoded Provisioning Data (EPD) 
This object carries the encoded value of a Provisioning Instance. This identifier is en-
coded following the BER rules as a set of TLVs (Tag-Length-Value) with the indi-
vidual values of the attributes that comprise the Provisioning Class. We also propose 
to use XER for encoding in XML this kind of elements of the PIB. 

3.2   Java Implementation: UMU-jCOPS 

The University of Murcia Java COPS (UMU-jCOPS) protocol stack is a COPS-PR 
implementation that is one of the main components of the University of Murcia Pol-
icy-Based Network Management (UMU-PBNM) framework [5] used to perform dy-
namic provision and monitoring of configurations. The XML policy data model that 
we are presenting in this paper is supported by this COPS implementation. Its main 
features are: 

− It is completely developed in Java, allowing the use of any operating system to run 
an implementation of PDP or PEP. 

− It is IPv6 enabled, so any operation can be performed using this network protocol. 
− It allows both BER and XML data encoding. 
− It verifies PIB conformance with XML technologies. 

COPS-PR stack

Core Framework
Methods to handle COPS-PR messsages

IPsec Framework
Classes supporting Framework PIB and IPsec PIB

Policy Transaction Server/Client

PDP/PEP

 

Fig. 2. Architecture of UMU-jCOPS 

The basic architecture and set of layers of UMU-jCOPS are depicted in Figure 2. 
The UMU-jCOPS design presents two different layers: COPS-PR stack and core 
framework. On the one hand, the COPS-PR stack is the base COPS layer; it defines 
all COPS messages and provides the mechanism to exchange COPS messages be-
tween a PEP and PDP. This exchange can be done securely over a TLS channel. On 
the other hand, core framework was designed to be independent of the COPS client 
type and provides the COPS operations that need a PEP or PDP to be implemented. 

4   Conclusions 

There is a need to consolidate a common technology to define policies and establish a 
common encoding for policy data. In this paper we have presented an XML-seamless 



 An XML-Seamless Policy Based Management Framework 423 

 

policy based management framework that uses XML technologies to define and en-
code policies during their whole life cycle (from the definition to the enforcement). 
The resulting XML-seamless policy based management framework shows an im-
provement in manageability, interoperability and extensibility over the PBNM archi-
tecture proposed by the IETF. Also security has been a priority during its design and 
later implementation. 
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Abstract. The paper1 is devoted to creating a covert channel through
a PROXY server. The channel is based upon data permutation in server
buffer using the sequence of packets coming from the router connected to
the PROXY server. The resulting data flow allows to create a statistical
covert channel that transfers information by manipulating expectation
and dispersion of the number of increasing pairs in the sequence of net-
work addresses.

1 Introduction

In [1,2] the problem of building an attack targeted at a secure global network
segment via a covert channel was investigated. The main tool for providing
security was IPSec protocol.

In this paper we consider security provided by a PROXY-server, which is
invulnerable to attacks and provides reliable data encryption. Like in [1,2], we
create a covert channel via modulating the address sequence in packets trans-
mitted by the PROXY-server.

The rest of the paper is organized as follows. Section 2 describes the main
idea of covert channel creation. Section 3 shows how symbols 1, 0 and x can be
extracted from transmitted data with the help of statistical methods. Conclu-
sions are provided in section 4.

2 Covert Channel Trough PROXY Server

Let us consider m + 1 local networks segments S0, S1, ..., Sm containing work-
stations with local addresses and gateways connecting local networks with a
1 This work was supported by the Russian Foundation for Basic Research, grant 04-

01-00089.
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global network (e.g. Internet). Let s0, s1, ..., sm be gateway addresses for seg-
ments S0, S1, ..., Sm. Let workstations interconnect via a virtual private network
(VPN). If some data from a workstation with address a in segment Si needs to
be transferred to a workstation with address b in segment Sj , the transmission
is performed in the following way (fig. 1):

Fig. 1. System model

– the data from workstation a is first transferred to a Local Gateway LG(i) in
Si;

– then data is passed to a Security Gateway SG(i). Security Gateway operates
as a PROXY server – it connects to workstation a, gathers data for work-
station b, and collects data packets from Si segment in a queue according to
their arrival time. Then data is encrypted with a key of SG(j) – the Secu-
rity Gateway of data recipient segment. Then SG(i) connects to SG(j) and
transfers encrypted data:
• SG(i) passes data to a Global Network Host GNH (i), which in turn

passes data to a corresponding host GNH(j) via a global network;
• data is then passed to SG(j). SG(j) collects packets for Sj segment and

stores them in a queue.
– Packets in a queue are decrypted, SG(j) connects to a workstation b and

transmits data via the internal gateway LG(j);
– LG(j) sends data to workstation b in Sj segment.

Every segment S0, S1, ..., Sm contains software and/or hardware adversary
agents. To work properly these agents need to receive some instructions from
an adversary agent in a global network (AGN). Let us consider that AGN is in
total control of GNH(j), j = 0, 1, ..., m, and adversary agents in S0, S1, ..., Sm
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are in control of the corresponding internal gateways GNH(j), j = 0, 1, ..., m.
Security Gateways SG(i) are considered to be totally secure, so they are out of
adversary agent control. Sending instruction from AGN to local agents can be
based on a channel from GNH(j) to LG(j), and information leak can be based
on a channel from LG(j) to GNH(j).

We suppose that the only dependent packet parameters known both to
GNH(j) and LG(j) are source addresses in case of incoming packets and destina-
tion addresses in case of outgoing packets. These dependencies can be expressed
by a function s = f(a) that maps internal addresses within a network segment
to a global network address of the corresponding gateway.

LG(i) can affect the order in which the packets are transmitted in the follow-
ing way. TCP protocol guarantees data recovery. If a packet is lost, TCP sends
a request to retransmit lost data. Let PROXY server have two open connec-
tions with workstations a1 and a2 passing data A1 and A2 correspondingly. It
is obvious that packets that were recovered earlier are put in SG(i) queue prior
to packets that were recovered later. Let an adversary agent in LG(i) want to
make SG(i) queue equal to A1A2. This goal can be achieved by the following
procedure. If packets containing A1 end earlier than packets containing A2 (an
adversary agent can delay packet transmissions to be sure that data transmission
is over), the agent does not do anything. Otherwise the agent in LG(i) delays or
drops one of the packets transmitted by a2 (e.g. the final one). Then the agent
waits till A1 transmission is over and resends the delayed or dropped packet. So
if the assumption that the packet sequence from a1 to a single workstation in
some other segment contained data of a single connection A1, and the packet
sequence from a2 to a single workstation in some other segment contained data
of a single connection A2 is true, the above algorithm will change data order-
ing in SG(i) queue from the natural to the given order. A similar procedure is
applicable to the incoming data flow and GNH(j) agents. Let us note that this
procedure is stochastic because of randomness in packet arrival time — if SG(i)
sent A1 before A2, A2 can still arive earlier, especially if A1 and A2 are small.

It is obvious that the probability of a correct permutation is greater for long
packet sequences transmitting large data segments.

Despite of possible errors we can construct a hidden language based on data
permutation in queue. Let an agent in LG(0) pass data to an agent GNH(0) in
a global network. The agent in LG(0) knows what data is being passed to the
addresses sj , j = 0, 1, ..., m of SG(j). Let sj be linearly ordered. Let A1A2...Ak

be the data queue of length k at LG(0), si1 , si2 , ..., sik
be destination addresses.

The output queue B1B2...B2r at SG(1) is produced in the following way:

– B1B2 is equal to A1A2, if si1 < si2 ;
– B1B2 is equal to A2A1, if si1 > si2 ;
– B1 is equal to (or begins with) A1A2, if si1 = si2 (A1A2 will be probably

transmitted in a single connection). In this case if si3 > si1 , then B2 = A3.
If si3 = si1 , then B1 is equal to (or begins with) A1A2A3 and A1A2A3 will
be probably transmitted in a single connection, etc.
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The resulting sequence B1B2...B2r consists of data such that every pair
B2i−1B2i, i = 1, ..., r, contains increasing addresses. Let us consider B1B2...B2r

to encode 1 in the covert channel. The data in this sequence is split into pack-
ets. Packet sequences are transmitted to the corresponding addresses. These
sequences can contain additional packets, e.g. for establishing other connections,
so GNH(0) agent should not consider the additional packets, though some errors
are possible. The received sequence is 1 of the covert channel. 0 is encoded by
a sequence of decreasing address pairs of data. A sequence of unordered address
pairs encodes a delimiter x. We use an assumption that the PROXY server estab-
lishes connections with other PROXY servers according to the addresses in data
queue buffer, and packet block with the same destination address is transmitted
in a single connection.

There emerge the problems of estimation of the value of r for reliable ex-
traction of 1, 0 and x, and of investigation of transmitter fault tolerance. Due
to the fact that data permutations in a queue are stochastic, and there exists
a possibility of errors in address sequence in GNH(0), there exist the following
errors in covert channels:

– data loss (loosing an address s in address sequence restored in GNH(0));
– data insertion.

3 Mathematical Model

Let s = (s(1), s(2), ..., s(2r)) be the data address sequence determining one bit.
To restore this bit taking into consideration possible errors we count all increas-
ing and decreasing address pairs. The decision about the value of the bit is made
by the means of mathematical statistics. In this paper we consider the problem of
correct bit recognition by the sequence of data addresses. Bit recognition based
upon packet sequence is not considered.

Let input data addresses be random values ξ1, ..., ξk that are produced
independently with equal probabilities P (ξj = si) = 1

m . Due to the fact that
packets with the same source address are transmitted in a single connection,
we delete all sequences with the same source address and replace them by a
single representative. After this transformation we get a sequence η1, ..., η2r.
This sequence is a simple Markov chain with the transition matrix

‖ P (ηi+1 = s/ηi = s′) ‖,
where

P (ηi+1 = s/ηi = s′) is equal to
1

m− 1
, if s �= s′, and 0, if s = s′.

The initial distribution is uniform, and transition matrix is twice stochastic,
hence the Markov chain is stationary, with one acyclic ergodic class without
insignificant states.
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To transmit 1 the sequence η1, ..., η2r is split into a sequence of pairs
(η1, η2),...,(η2r−1, η2r) and every pair is rearranged in ascending order. The num-
ber νr of increasing pairs for sequential count with possible overlaps in the output
sequence ς1, ..., ς2r is equal to

νr = r +
r−1∑
i=1

I(ς2i ≤ ς2i+1).

Let us consider stochastic values

μ(t) is equal to I(ς2i ≤ ς2i+1), if t = 2i + 1, and 0, if t �= 2i + 1.

It is obvious that for any t Eμ2(t) < ∞ and D
∑T

t=1 μ(t) −→ ∞ if T −→ ∞.
So [3] the distribution of ∑T

t=1 μ(t)−∑T
t=1 Eμ(t)√

D
∑T

t=1 μ(t)

converges to Gaussian distribution with parameters 0 and 1 when T −→ ∞.
The situation with transmitting 0 is similar. A sequence η1, ..., η2r is split

into a sequence of pairs (η1, η2), ..., (η2r−1, η2r), and every pair is rearranged in
descending order. The number ωr of decreasing pairs for sequential count with
possible overlaps in the output sequence ς ′1, ..., ς ′2r is equal to

ωr = r +
r−1∑
i=1

I(ς ′2i ≥ ς ′2i+1).

Like in the previous case, the random number ωr − r after being centered
and normed converges to Gaussian distribution with parameters 0 and 1.

If we consider νr calculated on the base of the original sequence η1, ..., η2r,
after being centered and normed it will also converge to Gaussian distribution
with parameters 0 and 1.

Let us find expectations of νr and ωr when we transmit 1, 0 and x.
Let the transmitted value be 1. To evaluate the estimation νr let us consider

stochastic values η2i−1, η2i, η2i+1, η2i+2. In our Markov chain

P (η2i−1 = s, η2i = k, η2i+1 = l, η2i+2 = n) =
1

m(m− 1)3
.

So
Eμ(2i + 1) = P (max(η2i−1, η2i) ≤ min(η2i+1, η2i+2)) =

=
m4 −m3 − 9m2 − 18m− 6

6m(m− 1)3
=

1
6
(1 + O(

1
m

)),

when the value of m is large. Then Eνr = 7
6r + O( r

m ).
Similarly for 0 we have Eωr = 7

6r + O( r
m ), and for x Eνr = r + O( r

m ).
Due to the fact that νr and ωr are asymptotically Gaussian, deviations of

the above expectations are not greater than
√

r ln r with probability converging
to 1. Hence we can recognize 1, 0 and x when r and m are large.
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4 Conclusions

The paper considers the problem of building a covert channel through a PROXY
server. The channel is based upon the permutation of data in PROXY server
buffer using packet sequences coming through a router connected to the PROXY
server. Such a permutation allows to create a statistical covert channel the data
in which is being transmitted by manipulating expectation and dispersion of the
number of increasing pairs in the sequence of data addresses. The paper does not
consider the problem of data encoding by the sequence of packets (this problem
will be addressed in one of the following papers).
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Abstract. Electronic transactions require secure electronic signature techniques, 
which can provide the authentication of the signing individual, non-repudiation 
of the signature and protection of the integrity of the document using strong 
cryptographic methods. The weakest link in the chain in current electronic sig-
nature systems is the correspondence between the person and the secret key. 
The basic idea of our proposed method is to store the secret key encoded in a 
fingerprint in a way that it can only be retrieved using the fingerprint of its 
owner. This way it is much harder to steal the private key, since the creation of 
the signature requires the presence of the owner’s fingerprint instead of the use 
of a PIN code in today’s practice. Our scheme remains fully compatible with 
the existing Public Key Infrastructures (PKI), so it can be easily used in current 
applications that use asymmetric cryptography to verify digital signatures. 

1   Introduction 

The traditional hand-written signature is a simple but adequately effective method of 
proving the authenticity of a document in situations open to dispute, as it is reasona-
bly hard to perfectly copy someone’s handwriting.  

Analogous to traditional signatures, digital signatures were introduced to ensure 
the authenticity of electronic documents. The digital signatures used today are based 
on a key pair, on a public and a private (secret) key. It is assumed that the secret key 
remains hidden from others, so that only the authenticated person can possess it. This 
assumption and the potential expropriation of the private key is the weakest link in 
such systems, so realizing this, several works have been published recently that sug-
gest schemes to solve the convergence of the biometrics and cryptography [1][2]. 

In this paper we introduce a biometric method which fully relies on the public key 
infrastructure, but the biometric identification is embedded so deeply in the process of 
digital signing that the private key cannot be appropriated by stealing and cracking the 
chip-card, which is used to store the secret key in current practice. 

2   Applying Biometrics in the Process of Digital Signing 

The most frequently used identification method in automated identification systems is 
the minutia-based method. Minutia points are the endings, splits and various bifurca-
tions of the ridges on fingerprints. As their positions, types, angles and curvatures are 
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characteristic and unique to a particular finger, minutia-based identification systems 
decide the correspondence of two fingerprint samples by simply matching the posi-
tions of the minutia points. 

There are several ways to involve biometric (e.g. fingerprint data) in document se-
curity. One can place biometric data in the document, and then digitally sign it to 
ensure its integrity [3]. It is also possible to incorporate biometric data in a PKI cer-
tificate [4], but the majority of systems involve biometrics only for controlling access 
to the private keys stored in the chip-card [5]. 

In our solution we also use an RSA private key to digitally sign documents, but in 
the proposed method biometrics is not only involved in controlling access to the 
stored private key, but the private key is encoded in the biometric features of the 
user’s fingerprint. As an addition we can still store a part of the encoded information 
on a permanent storage medium (e.g. a chip-card), but – what is important – the secret 
key cannot be reconstructed in lack of any of these parts. Later on, if the private key is 
needed to sign a document, we can retrieve it by decoding the stored information, 
which is only possible via the fingerprint of the holder of the key. 

In the next section we introduce the method we used to encode binary data using 
the minutia-point features of the user’s fingerprint. 

3   Storing Private Keys in Fingerprints 

To digitally sign a document we need a key pair, the generation of which is based on 
cryptographically strong random binary data. Usually randomness is taken from ran-
dom events like keystrokes and mouse movements, but if we are able to store this 
random data, we can regenerate the same key pair later. Theoretically, we can derive 
this sequence of bits from the fingerprint image itself, but as we need precisely the 
same sequence to be restored bit-by-bit every time, this method appears to be barely 
feasible. Also, we need the key pair to be revocable. 

In light of this, the basic idea of our method is to generate a binary codeword by 
adding error correction parity bits to the random binary data, and to store it in the 
challenge minutia vector by means of data hiding. As for the data hiding scheme: on 
the one hand we construct the challenge minutia vector both from real minutia points 
from the registration sample and from generated fake minutia points, and on the other 
hand we change the minutia angles, depending on the codeword bits’ values. Finally, 
the key pair is generated by feeding the binary codeword into the random pool used 
for key generation. Instead of biometric features or the private key itself, we only 
store the challenge minutia vector on a persistent store, for example a chip-card.  

On the need for a private key, we can restore the binary codeword by matching the 
challenge minutia vector with the minutia points extracted from a sample fingerprint: 
we can determine whether a point is real or fake, and we can calculate the distortion 
of the original angle, thus recalculating the bits of the codeword. After error correc-
tion, we regenerate the key pair by again feeding the key generation random pool with 
the same random data, the binary codeword. 

The method involves two main processes: registration and signing. During registra-
tion starting from a real random seed we generate a public/private RSA key pair, and 
create a certificate using the public key and the personal data of the user. We destroy 
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the private key, but encode the random seed in the given fingerprint by generating a 
so called challenge minutia vector. In the process of document signing, we reconstruct 
the random seed using the challenge minutia vector and the actual fingerprint image, 
and re-executing the RSA key generation algorithm with the same random input we 
retrieve the private (and also the public) key.  

The process of registration involves these steps: (1) Generating the random binary 
data; (2) Calculating a binary codeword by adding parity bits to random binary data4 
(3) Encoding: generating the challenge minutia vector based on the binary codeword 
and the minutia points in the registered fingerprint sample; (4) Generating the RSA 
key pair and deleting the private key, the binary codeword and the random binary data 
afterwards; (5) Requesting a certificate that holds the registered person’s personal 
data and the public key using a public key infrastructure. 

To digitally sign a document, we have to accomplish these steps: (1) Decoding: 
matching of the fingerprint sample with the challenge minutia vector to reconstruct 
the original binary codeword; (2) Error correction of the binary codeword; (3) Re-
trieval of the original RSA key pair using the corrected codeword; (4) Verification of 
the regenerated public key, checking whether it is the same as the public key encapsu-
lated in the certificate. Reporting an error if the public keys do not match, since it 
indicates incorrect decoding; (5) Signature of the document using the retrieved private 
key. 

In the followings we introduce main problems and the given solutions during our 
research and the development of the frame system for the described method. 

4   Encoding, Decoding and Error Correction 

The process of encoding is basically the generation of the challenge minutia vector. In 
this process we generate the successive points of the challenge vector by processing 
the bits of the binary codeword five at a time. 

Table 1. The five-bit runs in the encoding of a minutia point. We add a real or a fake minutia 
point to challenge vector depending on the 0th bit of a five-bit run, and the angle of a thus added 
minutia point is modified depending on the value of the next four bits (1…4) in the codeword. 

0 1 2 3 4 
Real / fake Modification of the angle 

We assume the fake minutia angle to follow the curvature of the underlying 
ridges.  This encoding method and the value with which the angle is modified (the 
added angle dFi modulo 180) is shown in figure 1.  

For error correction, we decided to use the Turbo codes [6] , which are widely used 
in deep-space communication, where there are low signal-to-noise ratios, similar to 
those we met using the fingerprint as communication channel. The basic idea of 
Turbo coding is to use two (or even more) convolutional encoders, where each except 
the first one receives the permutated systematic bits. Turbo coding is easily scalable, 
as we don’t have to transmit all of the bits; we can delete some of them following a 
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deletion pattern, and the receiver can denote erasure errors following the same pattern 
before the encoding occurs. This way we can gain an arbitrary code rate. 

 

 

Bits 1-4 dFi Bits 1-4 dFi 
0000 0,00 1100 90,00 
0001 11,25 1101 101,25 
0011 22,50 1111 112,50 
0010 33,75 1110 123,75 
0110 45,00 1010 135,00 
0111 56,25 1011 146,25 
0101 67,50 1001 157,50 
0100 78,75 1000 168,75  

Fig. 1. The encoding method and the encoding of the values added to angles. This is a Gray-
coding of the angle modification values from 0° to 180° in steps of 11.25°, a feature of this 
coding being that the Hamming distance of the codes for two neighboring values is 1. 

Decoding is done similarly to decoding of the convolutional codes [7]. We esti-
mate the value of the sent bits depending on the received channel codes. 

To make the previously introduced minutia point coding and decoding error-
tolerant, we introduced the Non-symmetric Binary Erasure Channel (NBEC). This 
channel handles both simple and erasure errors, and is not symmetric, which means 
that it has different probabilities for different error types and bit values. Thus, the 
NBEC channel can be described by four parameters: p01 and p10 denote the probability 
that a simple error occurs, while p0x and p1x denote the probability that erasure occurs 
(e.g. the angle value is ambiguous) if the original bit is 0 or 1 respectively. 

As we encode minutia points to five bits, and these bits are derived in different 
ways, we can define different error parameters for each bit position (0-4). Thus we 
modeled the fingerprint as an NBEC5 communication channel, which is actually a set 
of five independent NBEC channels.  

Applying an arbitrary channel model to Turbo coding can be done by isolating and 
modifying the function that returns the transfer probabilities of the channel, as de-
scribed in [8]. The NBEC channel model and the measured transfer probabilities for 
different bits of the NBEC5 channel using the above described minutia point coding 
are shown in figure 2.  

 

 0 1 2 3 4 
p00 0,53 0,46 0,45 0,42 0,36 
p0X 0,00 0,02 0,02 0,03 0,05 
p01 0,01 0,02 0,02 0,04 0,09 
p10 0,13 0,02 0,02 0,04 0,08 
p1X 0,03 0,02 0,02 0,03 0,05 
p11 0,31 0,45 0,46 0,42 0,38  

Fig. 2. The Non-symmetric Binary Erasure Channel (NBEC) and the statistically determined 
transfer probabilities of NBEC5 
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After several trials we selected to add 240 parity bits to 120 systematic bits, which 
meet the requirement for cryptographical strength, of having at least 100 random bits. 
As the distribution of minutiae in our database showed the average minutia point 
number to be 40, this choice satisfied the need for real minutia points from the regis-
tered samples for the coding of the 0th bit, as 120+240 bits encoded 360/5=72 minutia 
points, statistically having half of them, on average 36 chosen from real minutiae.  

5   Finding the Best Fitting Transformation 

When matching two fingerprints, the minutia vectors of one must be overlaid on the 
other to be able to check whether they fit. To find the best transformation, we intro-
duced a goal function that would measure the quality of the fitting of points in the two 
minutia point sets. The domain of this function was the 3-dimensional space defined 
by the translation on the X and the Y axis, and the rotation angle . 

This goal function )Δ,Δ ,Δ ϕyxf(  could be defined as following: 

[ ] [ ]
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where M is the number of challenge minutia points, N is the number of minutia points 
in the fingerprint sample and fij is the function that transforms the distance (d) of two 
minutia points (denoted by x, y and ). After testing several fij functions, we chose one 
that statistically showed the highest correlation between the maximum value of f and 
the restoration of the binary codeword: 
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100
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6   Conclusion 

As in the case of other biometric systems, in a biometric digital signature system the 
most important quality parameters are the false rejection rate (FRR) and the false 
acceptance rate (FAR). Several tests were done on our sample database, having nearly 
6000 fingerprint samples of around 600 fingers to measure the FAR and the FRR. The 
false acceptance rate was within the acceptable limit of 10-6, but the best theoretically 
attainable false rejection rate appeared to be around 15%. The latter figure shows us 
that further improvements should be made in the scheme to lower the FRR.  

From a cryptographical point of view, the information quantity that can be stored 
in a fingerprint using our method appeared to be enough to meet the requirement of 
having a cryptographically strong RSA key pair, as we use 120 randomly chosen bits 
to generate the private key. 

In conclusion, we can state that our scheme to construct biometric digital signa-
tures is feasible, but several further enhancements should be made. We plan to im-
prove the image processing undertaken before minutia extraction to make it more 
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accurate. In a remarkable number of cases false rejection was due to non-linear distor-
tions, so we plan to introduce a new non-linear transformation of the challenge minu-
tia set that fits the usual distortions of the sample fingerprints. Finding the parameters 
of this non-linear transformation will be an inspiring challenge for our further re-
search. 
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Abstract. We propose a new scheme, protecting information about the location 
of a user against attacks from inside the mobile communication, especially the 
network providers. There have already been some proposals about how to 
protect location information in mobile communication environments. Among 
them, Kesdogan et al.[2,3] proposed a new method, using so-called temporary 
pseudonyms and also described protection method against passive and an active 
attacks. However, the protection method against an active attack is not clear. 
Moreover, there is an additional load in that it should append a reachability 
manager[1,6] to the proposed system. In this paper, we introduce a new scheme 
improving the method of Kesdogan et al. and analyze its security and 
effectiveness.  

1   Introduction  

There have already been some proposals[1,2,3,4] about how to protect location 
information in mobile communication environments. Federrath et al.[1] suggested 
firstly the concept of MIXes as introduced by Chaum[5]. However, Kesdogan et al.[2] 
pointed out some serious drawbacks: the encryption for the MIX has to exceed 512 
bits which adds further load on the air interface. They also proposed a new method, 
using so-called temporary pseudonyms (TP). The basic idea of the TP method is 
originally based on the concept of trusted parties where, e.g., a home personal 
computer confidentially stores sensitive data (authentication keys, location 
information etc.) or even handles the complete location management, replacing the 
visited location register (VLR) in GSM network[5]. But, in [2], Kesdogan et al. 
protected location information of a user by saving her identity, instead of actual 
location information, within a home trusted device. To this end, the user is assigned a 
pseudonym, pseudo mobile subscriber identity (PMSI). As long as the user is 
registered under a pseudonym, the network provider may know that a user under a 
certain pseudonym currently is at a certain place, but he is not able to link the users 
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real identity with her present location[2]. In [3], Kesdogan et al. also identified some 
security flaws (including passive attacks and active attacks) of TP method and 
proposed a new method, using the distributed TP (DTP). This method can protect 
against passive attacks. However, the protection method against active attacks is not 
clear. A detailed explanation will be given in Section 2. In this paper we consider 
mainly some problems on an active attack in the TP method of Kesdogan et al.[3]. We 
also propose and analyze a new scheme solving them. Our scheme is more effective 
and secure than the previous ones.  
  We discuss about TP method in Section 2 and propose a new location management 
scheme in Section 3 and analyze it in Section 4. Finally, in Section 5 we describe 
concluding remarks.  

2   Discussion of TP Method 

Kesdogan et al. introduced attacks for the TP method in [3] as follows:  

 Active Attacks: Active attacks of the network provider, i.e. attempts to find out the 
user location by periodically asking her home trust device, may be recognized 
because all requests are logged at the device. Hence, if there are many more requests 
at the device than actual calls, this points towards an active attack.  

As a matter of course, this is able to detect the attempt of an attack by maintaining a 
log-file requested from the network provider in the trust device. However, it is not a 
reasonable proof of an the attack because the network provider may consider the log-
file forged. They introduced only one solution, adding the functionality of a 
reachability manager[7] to the device, i.e. it could decide for each request whether the 
importance of the request justifies revealing the pseudonym. But this method would 
be rather an alternative than a solution. It is not clear about how to decide whether the 
request justifies a response. The problem lies upon the periodic request of network 
provider for the PMSI to the device without a reasonable reason, even though the 
external user did not call a request. In order to prepare for the attack of network 
provider, it is necessary to check the request of real calls from the external user and 
the real connection of the call setup that is received by the network provider to the 
user. In addition, it is surely needed for the function of surveillance for the real 
connection of calls by using the user and trust device. In addition, the existing 
reachability manager is not included in this function so far. Moreover, the attaching of 
the reachability manager system also adds further load. In the next section, we 
propose a new scheme improving on these problems and analyzing its security and 
effectiveness.  

3   New Scheme for the Location Management  

The basic idea of our scheme, protecting an illegal request from a malicious network 
provider, is to verify whether an external user actually has requested by giving an 
acknowledgement message ACK, as a proof that the user received a call request from 
the network provider. A scenario of the scheme is as follows: (1) If an external user 
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requests a call using the initial addressing Message (IAM) and the MSISDN, (2) the 
network provider (especially, the GMSC) requests a current PMSI of user to the trust 
device using the ISDN number of user, MSISDN and (3) the trust device gives it. 
Then, (4) the GMSC stores the current PMSI in its table and sends a call setup 
message to the user. Next, (5) the user verifies the setup message and sends an 
acknowledgment message ACK as a proof to the trust device. (6) The trust device 
checks the ACK. If the trust device does not receive the ACK, then the trust device 
will decide that the network provider has attempted an illegal request to find out the 
user location. The notations to describe the proposed methods are as follows. 

[Notations]  
PMSI_cur : the current value of PMSI periodically produced by the trust device 

according to the synchronization time with the MS  
ACK: an acknowledgment message transmitted to the trustdevice as a response that 

the user has asked to receive a call  from the external user through the network 
provider. This value is a kind of combination message for the encrypted value of r, 
PMSI_cur, and t with the secret key K1 and PMSI_cur. Here r is an arbitrary integer t 
is the time when the user is to send a message (This may become a time stamp signed 
by the user, if the architecture is based on the environments of public key.).  

PMSI_acked :  the value of PMSI_cur is produced at the time when the user sends 
the ACK message, and the trust device stores it in its own table some time later where 
the initial value is null.  

 PMSI_provided: the most recently provided value of PMSI, and it will be stored in 
the GMSC table in the network provider where the initial value is null.  

 VAL: this is a bit of vector. If the trust device receives an ACK message from the 
MS, it will be the value of 1, otherwise it will be 0. At this moment, the value is 
stored in the trust device table where the initial value is null.  

In case of the proposed method, a place, which is differed from the previous TP 
method, is needed for storing the mentioned values, such as PMSI_provided, 
PMSI_acked, and so on. Our proposed scheme assumed that the network provider 
(especially, the GMSC in the network provider) and trust device is maintained as a 
kind of table in its own server (See [Fig. 1]).  

 MS: the mobile user, TD: the trust device, NP: the network provider. 

[Step 1] the step for the call request from the external user (caller):  
The external user sends the IAM and MSISDN message to the GMSC of NP in order 
to call with the MS.  
[Step 2] the step for the current PMSI request from the GMSC:  
The GMSC sends the MSISDN in the case that the value of PMSI_provided is null 
after the check-up on the value of PMSI_provided that is stored in it own table. �

                                                           
1  It is a short term secret key between the MS and the TD and is independently calculated for 

each item. In addition, it is updated by the given period (In case of the real system 
application, it will be adjusted by one week in the short term or one month in the long term 
according to the required security level.) The secret key is defined as K=F(KMT,T), where 
KMT is a long term secret key between the MS and the TD, F is a single directional function 
of encryption, and T is a predefined synchronization time (periodically updated) between the 
MS and the TD.  
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Fig. 1. Diagram of the request method 

Otherwise it sends the value stored in the table to the TD in order to request the 
current PMSI.  �
 [Step 3] the step for notifying the current PMSI after detecting the illegal attempt of 
the NP:  
(1) In case of receiving the MSISDN, the TD checks the value of VAL in its own 
table is 1 at the same time as the fact that the PMSI-acked is null. If the values are 1 
and null, the PMSI_cur will be sent to the GMSC after updating the value of VAL to 
0. Otherwise, the stored value of the current PMSI_acked and VAL is to be 
reinitialized by null and 1 respectively after detecting the illegal attempt, and then 
raises an objection through off-line channels.  
(2) In case of receiving the PMSI_provided from the GMSC, the TD checks the value 
of VAL in its own table is 1 at the same time as the fact that the PMSI_provided is the 
same as the PMSI_acked. If the values are 1 and null, the PMSI_cur will be sent to 
the GMSC after updating the value of VAL to 0. Otherwise the stored value of the 
current PMSI_acked and VAL is to be reinitialized by null and 1 respectively after 
detecting the illegal attempt, and then raises an objection through off-line channels.  
[Step 4] the step for the connection setting to the MS:  
The GMSC updates the value of PMSI_cur, which is received from the TD, to the 
value of PMSI_provided in its own table through the transmission of {call setup 
message} to the MS after setting the connection with the external user. There is a 
possibility that the PMSI, which is notified by the TD as the connection to the MS 
from the side of GMSC, does not exist in its own internal database of HLR and VLR. 
Because the MS has already updated in the process as the new value of PMSI or has 
not updated as the connection from the GMSC to the MS. Therefore, the GMSC is 
able to attempt to connect to the MS by using the updated PMSI with the request of 
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the current PMSI once again to the TD. At this time, the TD notifies the other 
messages produced before or after by checking the synchronized time based on the 
PMSI, which has already been notified by the TD itself.  
[Step 5] the step for the creation and updating for the ACK message of the MS:  
The MS creates the acknowledgement message ACK after checking the {call setup 
message} and sends it to the TD through the GMSC. The value of PMSI_cur is the 
current value of PMSI, but it is a exact calculated value according to the synchronized 
time at the moment when the TD notifies it to the GMSC. In case the MS will renew 
the updating of PMSI just after receiving a call request from the GMSC, the value of 
PMSI_cur included in the ACK is to be used by the previous value of PMSI, that is, 
the value introduced by the synchronize time at the moment when the TD notifies it to 
the GMSC.   
[Step 6] the step for the verification of ACK by the TD:  
The TD updates the value of PMSI_cur after the encryption using the short term 
secret key K from the ACK message, which is encrypted by the MS, in its own table 
as the value of PMSI_acked.  

If there is a normal call receiving request to the same MS from the external user 
after detecting the illegal attempt from the GMSC in [Step 3], the GMSC will also 
start from [Step 1] by reinitializing the value of PMSI_provided by null. 

4   Analysis of the Proposed Scheme  

The results for the comparison between the present method and the proposed method 
are shown in talbe 1 whether the location privacy of the MS is protected.  As shown 
in table 1, the symbol  means that the passive attack is to be protected as the 
collusion between the disinterested party and the NP in the method of TP, but the 
active attack is not to be protected. Also, it is not perfect to protect for the attack by  
 
Table 1. Comparison between the present method and the proposed method whether the 
position and location privacy of the MS is provided 
 

  GSM[7] TP Method[3]
TP Method+ 
Reachability 
Manager[6] 

Proposed 
Method 

Position Privacy 
Protection Method 

Using 
TMSI 

Using PMSI 
and TD 

Using PMSI 
and TD 

Using 
PMSI 

And TD 

The 3rd Party     

Passive 
attack of the NP 

×    

Active attack 
of the NP 

× ×   

Location 
Privacy 

Protection 
Collusion with 

the NP and 
3rd Party 

×    
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the reachability manager, where the NP will forge the personal information and call 
subject at the intermediate position from the external user. It disguises for a call 
request from the external user and is to send the personal information of the caller to 
the MS through the reachability manager.  

5   Conclusions  

In this paper we considered improvements of the TP method and proposed a new 
scheme, protecting an illegal attempt from the malicious network provider to find out 
location information. We also showed that the proposed scheme is secure against the 
active attacks through seven cases. Moreover, our scheme is more efficient than the 
previous schemes and is easily applicable in a current mobile network.  
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Abstract. In this paper we propose the novel concept of a region protec-
tion/restoration, where one backup path protects a certain region of an active 
path. We show that using the region protection/restoration we can keep both 
restoration times and network resource utilization ratio at the reasonable level.  
    Since the optimization problem of finding working and backup paths is 
NP-complete, we developed the heuristic algorithm. We show that in the worst 
case our algorithm gave network resource utilization ratio only about 3.9 per-
cent higher compared to the optimal one returned by the CPLEX program. Re-
sults of the U.S. Long-Distance Network modeling show that region protection 
gives a good compromise between path and link protection.  

1   Introduction 

We define survivability as the capability of a networked information system to fulfill 
its mission, in the presence of attacks, failures, or intrusions. Protection and restora-
tion [4], [5] have emerged as the two main techniques for fault management in sur-
vivable networks. We distinguish two basic approaches: path protection/restoration or 
link protection/restoration against a single link or a single node failure (damage). Any 
path/link protection can be dedicated or shared assuming that backup paths are link- 
or node-disjoint with respective active paths [3], [4], [5].  

In this paper we study various protection techniques and show that shorter restora-
tion times imply greater network resource utilization ratio and vice versa. To find 
a compromise, we propose a novel approach, which we call region protec-
tion/restoration. The key idea of our region protection is to protect a certain region of 
an active path with help of one backup path. This concept offers a good trade-off 
between restoration time and resource utilization ratio. 

We call an individually protected area, the area of an active path that is protected 
by a single backup path. In the path protection model (with backup paths being 
link-disjoint1 or node-disjoint2 with active paths), the whole active path determines 
the individually protected area. On the contrary, a single link of an active path is an 

1  By link-disjoint we mean that the backup path for a connection has no links in common with 
the primary path for that connection. 

2  By node-disjoint we mean that the backup path for a connection has no nodes in common 
with the primary path for that connection, except the source and destination nodes. 
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individually protected area in a link protection technique. In this scheme a given 
backup path protects a single link of an active path (against the failure of a link) or 
two adjacent links of an active path (against the failure of a node). 

In the region protection scheme each backup path protects a certain region of an 
active path. Size of this region is a compromise between appropriate lengths of indi-
vidually protected areas in link and path protection schemes, respectively. Compared 
to the path protection, backup paths are expected to be shorter, which causes the faster 
restoration process. The level of resource utilization remains smaller than for the link 
restoration scheme, since for each connection less backup paths are needed.  

The rest of the paper is organized as follows. Section 2 is devoted to ILP problem 
formulation, while Section 3 to the description of our heuristic algorithm. In Section 4 
we compare our heuristic results of the US National Science Foundation (NSF) net-
work modeling to the exact results of the CPLEX program. The convergence is al-
most ideal. Results of U.S. Long-Distance Network modeling for all three protec-
tion/restoration schemes are discussed in the concluding part of the paper. 

2   ILP Model to Find Node-Disjoint Path Pairs 
(Dedicated Backup) 

We consider a directed network  Γ(N,A), where: N –  set of nodes; |N| = N; A - set of 
directed arcs; |A| = M. Each arc em ∈ A is characterized by length, cost and offers L 
channels, each of a standard capacity. Source-destination pairs of nodes (sk, tk) (de-
mands) are given, where: k = 1, 2,…, K; 1< K ≤ N × (N-1).  

It is to find paths transporting required flows from sources to destinations, protect-
ing them against a single node failure and minimizing the linear cost: 
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 where:  em = (i, n) = arc incident into node n; em = (n, j) = arc incident out of node n;  
 k=1, 2,. ., K; l=1, 2,. ., L; n=1, 2,. ., N; 

 
 
− finite arc capacity constraints: 
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− constraints to ensure that every backup path is node-disjoint with its working path: 
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where:  n ≠ sk ; n ≠ tk; for transit nodes (when both paths consist of at least two arcs); 

n≠ tk; for (4), when the working path consists of one direct arc; 
n≠ sk; for (5), when the working path consists of one direct arc; 

− nonnegativity constraints 
all the variables should obtain nonnegative values 

Unfortunately, the optimization problem (1) – (5) is NP complete [1]. For that rea-
son we developed an efficient heuristic algorithm. 

3   Heuristic SCRP Algorithm 

In Fig. 1 we describe the SCRP algorithm finding survivable connections in the con-
text of region protection. Each backup path is node-disjoint with a certain region of 
the active path. It’s main advantage is the polynomial complexity.  

SCRP ALGORITHM 

Step 1. Find the active path kΠ between nodes ),( kk ts , using Dijkstra’s [2] algorithm. 

Step 2. Set the source node ks  as the starting node b.

Step 3a. Find the shortest path tree kT from kt  to b.

Step 3b. Start computing the backup path from b, using Dijkstra’s algorithm, until the 
current node (say node x) reaches the tree kT .

Step 3c. Determine the next part of the backup path as the fragment of the shortest path 
tree kT from node x to the first node (say node y) that belongs both to the tree 

kT and to the active path kΠ .

Step 3d. Accept the path between nodes b and y (calculated in steps 3b and 3c) as the 
backup path. 

Step 3e. Set b = z where z is a node of an active path, preceding the node y (i.e. placed 
upstream towards the source node). 

Step 4.  If b <> kt  then go to step 3a else return the paths for the connection.

Fig. 1. SCRP algorithm  
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4   Modeling Results 

In this section we evaluate and compare restoration times and network resource utili-
zation ratio obtained by both ILP and heuristic algorithm for the NSF network, shown 
in Fig. 2 We also modeled the U.S. Long-Distance Network [7], shown in Fig. 3, but, 
due to the size of the network, we applied only the heuristic algorithm. 
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Fig. 2. NSF network Fig. 3. U.S. Long-Distance Network 

For each of the examined network, in each experiment, 30 logical topologies were 
generated. Each topology was determined by a graph having a fixed number of ran-
domly chosen source-destination pairs of nodes. After establishing connections in 
each logical topology, single node failures were randomly generated. We assumed 
equal channel capacity and the same number of channels available in each link. For 
each connection we assumed protection against a single node failure, the distance 
metrics and no resource optimization in channel capacity allocation. Each demand of 
resource allocation was equal to the one channel capacity.  

4.1   Accuracy of Heuristic Algorithm  

We modeled the path protection in the NSF network to check the accuracy of our 
heuristic algorithm. Network resource utilization ratio per connection obtained with 
help of CPLEX program and our algorithm for 4-8 channels per link and 8 and 12 
demands is shown in Table 1. Fig. 4 illustrates the rate of additional resource utiliza-
tion ratio, obtained with help of heuristic algorithm, compared to the optimal results 
of CPLEX. Results prove that the heuristic algorithm is nearly as efficient as the op-
timal ILP approach. In particular, when increasing the number of available channels 
per link, the results for the heuristic approach tend to differ very little from the  
analogical ones for the ILP formulations.  

Table 1. Network resource utilization ratio per one connection  

number of demands per logical topology 8  12 

number of channels per link 4 5 6 7 8  4 5 6 7 8 

(CPLEX) 3,62 2,90 2,42 2,07 1,81  3,58 2,88 2,42 2,07 1,82 resource utilization per 
connection [%] (heuristics) 3,70 2,93 2,44 2,09 1,83  3,72 2,97 2,45 2,09 1,83 

(CPLEX) 0,13 0,10 0,08 0,07 0,01  0,11 0,07 0,05 0,04 0,04 
95% confidence interval [%] 

(heuristics) 0,15 0,12 0,09 0,07 0,01  0,14 0,09 0,06 0,05 0,04 



446 W. Molisz and J. Rak 

4.2    Comparison of the Three Protection Schemes  

In this section we evaluate and compare results of our heuristic algorithm for path, 
link and region protection schemes for the U.S. Long-Distance Network. Here each 
link was assumed to have 32 channels; 30 demand pairs formed each scenario. 

4.2.1   Network Resource Utilization Ratio 
Fig. 5 shows the number of links as a function of percentage of link utilization ratio 
for all three protection schemes. Results from Fig. 5 prove that the smaller the indi-
vidually protected area is, more network resources are necessary to protect a connec-
tion. Fig. 6 illustrates the relative network resource utilization ratio per connection. It 
shows that the region protection is almost as good as the path protection, giving about 
60 % of the respective value for link protection. It is because the total number of links 
used by backup paths gets bigger when the size of individually protected area de-
creases. The region protection model leads to only insignificantly worse results re-
garding relative network resource utilization ratio per connection than those obtained 
by using the best model (i.e. path restoration), as shown in Table 2.  
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tion obtained by heuristic algorithm, com-
pared to the optimal results of CPLEX 

Fig. 5. Number of links as a function of 
percentage of link utilization ratio for all 
three protection schemes 

Table 2. Link capacity utilization for three protection schemes 

 path protection region protection link protection 

network resource utilization [%] 18,30 20,01 30,56 

95% confidence interval [%] 1,05 1,54 2,38 

4.2.2   Restoration Times 
Fig. 7 shows the cumulative distribution function of restoration times for all three 
protection schemes while Table 3 the respective average values. 

Results show that the values of restoration times get smaller while decreasing the 
size of individually protected area. They represent values of time needed to restore a 
connection after a failure of a network component, according to the protocol taken 
from [5]. The lower the values of restoration time are, the smaller amount of data is 
lost within the period of restoration. 
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Table 3. Average restoration times for three protection schemes

 path protection region protection link protection 

average restoration times [ms] 47,92 43,79 23,98 

95% confidence interval [ms] 1,54 1,71 1,07 
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Fig. 7. Cumulative distribution function of 
restoration time depending on protection 
model 

5   Conclusions 

Our results prove that region protection approach is the best way of keeping both 
restoration times and network resource utilization at the acceptable level.  

Concluding the paper, we point out that one cannot simultaneously have the short-
est restoration times and the smallest ratio of network resource utilization. One of 
these two factors plays against the second one and vice-versa. If they are of the same 
importance, the best solution is to use a region protection model, which provides the 
medium values of both restoration time values and network resource utilization. 
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Abstract. Driven by the permanent search for reliable anomaly-based
intrusion detection mechanisms, we investigated different statistical
methodologies to deal with the detection of polymorphic shellcode. The
paper intends to give an overview on existing approaches in the litera-
ture as well as a synopsis of our efforts to evaluate the applicability of
data mining techniques such as Neural Networks, Self Organizing Maps,
Markov Models or Genetic Algorithms in the area of polymorphic code
detection. We will then present our achieved results and conclusions.

1 Introduction

This paper is based on a set of known polymorphic shellcode generators (AD-
MMutate [7], CLET [4], JempiScodes [17]) and will discuss the effectiveness of
statistical methods like neural networks (NN) [5], Self Organizing Maps (SOM)
[8] or finite Markov chains (MC) [20] for detecting malicious code. After an-
alyzing existing polymorphic shellcode detection techniques (such as FNORD
[16], APE [19] or Buttercup [12]), we have developed several possible approaches
which have all in common, that they only make use of payload information
without any use of additional information (e. g. header information).

For a good introduction on the concept behind shellcodes and polymorphic
shellcodes we refer to [1] and [4].

2 Data Mining Approaches

2.1 Hybrid Detection Engine Using Neural Networks- HDE

In [13], we proposed a HDE which uses three phases to detect polymorphic
shellcodes:

1. NOP zone detection: This phase searches the network traffic for consec-
utive chains of predefined NOP instructions (taken from ADMMutate and
CLET). Whenever a chain exceeding a threshold length is found, the next
phase is triggered. To overcome the problem with short or no NOP zones,
this phase is scalable and can be turned off completely.

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 448–453, 2005.
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2. Search for execution chains: This phase analyzes the data after the NOP
zone by using a recursive function capable of following different execution
chains in disassembled code. Whenever a controlflow instruction is detected,
the function extracts the destination address and continues disassembling at
this address. Depending on the instruction the function also follows the code
directly after the instruction. For a similar approach we refer to [19].

3. Neural network classification: Whenever a termination criterion is met
(see [13] for details), the recursive function stops to follow the code and
starts neural network classification.

The input for the neural network is the spectrum of encountered in-
structions along an execution path. (Here and in the course of this paper, by
spectrum we mean a representation of the relative frequencies.) If the output
of the neural network is larger than zero, a possible shellcode is reported.

The features of the neural network were chosen by investigating the in-
structions used by the available polymorphic shellcode engines. These in-
structions were then used to create groups of similar instructions. Further
instructions from the X86 set were then added to the groups. The groups
are numbered and represent the features/inputs for the neural network. A
complete list can be found in [13].

Results:
HDE was evaluated with six shellcode engines. There are three public available
engines, that can be used to generate polymorphic shellcodes. These are ADM-
Mutate [7], CLET [4] and JempiScodes [17]. With the knowledge we got from
investigating these engines, we also made up our minds on alternative methods to
generate polymorphism. As a result, we developed three independent shellcode
engines which are based on different concepts.

In what follows, we will call these engines EE1, EE2 and EE3 (Experimental
Engine). The purpose of these engines was to improve our detection mechanism
by experimenting with concepts that could possibly evade HDE. EE1 was based
on inserting junk instructions and XOR encryption. Such a mechanism was also
proposed by the authors of [4]. EE2 uses the Tiny Encryption Algorithm (TEA)
to encrypt the payload. EE3 uses random chains of simple instructions which
are applied to the payload to transform the payload. The inverted instruction
chain serves simultaneously as decryption engine and key.

Evaluation of HDE was made by training six neural networks (one for each
polymorphic shellcode engine) and applying them to test data provided by the
six engines and to real data known to be free of shellcodes. The results can be
seen in table 1. To increase the detection accuracy for unknown engines, a new
network was trained with positive training data used for the two best neural
networks (ADMMutate and EE3) 2. In general, evaluation shows that HDE is
able to detect engines not available during the training process.

2.2 Self-organizing Maps

Since we already applied the theory of Self-Organizing Maps in the context of
traffic classification (cf. [14]), we also wanted to see them perform in anomaly
detection. For the theory of SOMs, we refer to [8].
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Table 1. Neural network performance

ADMMutate CLET JempiScodes EE1 EE2 EE3
ADMMutate 100% 38.8% 100% 79.2% 93% 75.9%

CLET 3.2% 100% 0% 1.7% 0% 3.5%
JempiScodes 26.6% 0% 100% 13% 0.1% 17.7%

EE1 17.4% 91.2% 0.8% 100% 100% 100%
EE2 2.3% 33% 0% 4.7% 100% 1.5%
EE3 20% 98.9% 0.8% 100% 97% 100%

Table 2. ADMMutate-EE3 network performance (30 NOPS)

ADMMutate CLET JempiScodes EE1 EE2 EE3
100% 100% 71.4% 100% 98.3% 100%

Our SOM-based detection engine is virtually identical with the one described
in Section 2.1, except that SOMs are used instead of a neural network. There
are several reasons why choosing a SOM instead of a neural network could make
sense:

– SOMs are based on unsupervised learning, neural networks use supervised
learning

– SOMs can be trained with only positive examples
– SOMs can be used to visualize high dimensional data

This detection engine was not implemented for SnortTM, because we only
wanted to gather experience with SOMs. We made use of the SOMToolbox [6]
for MatlabTM, which we used for training and testing purposes.

Unfortunately, our achieved results lead to the conclusion that SOMs are
incapable of replacing NNs for anomalous code detection, the detection rates
were very poor even in simple test cases.

2.3 Finite Markov Chains

Another very promising approach in the field of abnormal code detection was the
use of Finite Markov Chains (FMC). First, we trained the FMC-transition matrix
by using ”normal” network traffic. Thereafter, this transition matrix was used
to calculate the probability of a dedicated Markov sequence, to find differences
between the trained normal traffic and characteristic parts of a polymorphic
shellcode.

By the knowledge of the intrinsic structure of the investigated engines, we
were able to adjust the transition matrix manually. This lead to much bet-
ter detection results. In addition, we applied some preprocessing functions due
to efficiency and performance reasons (e.g. sequence preprocessing and NOP-
filtering).
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A substantial improvement of performance could be achieved be introducing
the concept of Genetic Algorithms for the automatic training sequence of the
FMC approach. Genetic algorithms are adequate tools if just little knowledge
about the search space is available and the complexity of the problem is very
hard (NP-complete).

The performance of a GA-improved transition matrix is shown in Figure 1.
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Fig. 1. Conditional probability of a 30-byte sequences with a GA-trained transition
matrix

In Figure 1 we can see that the optimized transition matrix is highly qualified
to detect deciphering engines. This is, since just deciphering-engines are used for
the GA-algorithm.

Table 3 was generated by calculating the conditional probability of 37.785.600
30-byte sequences. After setting an empirically determined threshold we tested
real network injected with shellcode examples. What we can see in Table 3 is that
FMC produces no false-negatives. This is due to the fact that the GA-optimized
transition matrix was tested by using the same category of shellcode as we used
for the training process. We know that due to the relatively small number of test-
sequences and the use of a single shellcode generator the presented results are
not very significant. On the other hand, we just want to show that the number
of false-positives can be reduced dramatically by the use of optimized transition
matrices. Table 3 we can also reflects the fact that the GA modification process
is much better than the manual process. (In Table 3, P1 denotes the case of a
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Table 3. Markov model detection performance with different transition matrices

P1 P2 P3
False negatives 0 0 0
False positives 33540 2540 13

learned transition matrix from normal traffic, P2 denotes the case of a manually
manipulated transition matrix and P3 is the GA optimized transition matrix.)

3 Conclusions and Outlook

In this paper we give a short overview about three approaches to apply data
mining techniques in the field of polymorphic code detection. The main idea was
to find the most promising candidates which can be trained automatically. We
think that commercial detection mechanisms can only be successful if they are
based on automatic training mechanisms and do not require human interactions.
We analyzed the concepts of NNs, SOMs, and FMCs by implementing
SNORTTM-plugins or simple MatlabTM simulations - but always in combina-
tion with real network traffic.

The main difference between our approach and other solutions (found in
the literature) is the exclusive use of payload information without any use of
additional information (header information for instance).

In comparison, the NN-based approach showed very good results together
with the most flexibility in detecting unknown shellcode. On the other hand, the
Markov chain approach has the advantage of keeping the sequence information
of the data. Our result can only be seen as a first glimpse on data mining
techniques in malicious code detection. Clearly, the list of remaining tasks seems
to be endless. Complexity-based comparison of proposed mechanisms and the
search for possible new candidates are heading the list.
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Abstract. In this paper we propose a system in which a set of people is
able to confidentially communicate using a common session key. Due to
required governmental surveillance properties, this key will be escrowed
using a multi-party version of the ElGamal cryptosystem. The resulting
shares of the ciphertext are stored over a set of trusted servers to provide
availability and to hamper ciphertext-based attacks. Using a particular
tree-based multi-party decryption, the session key can be reconstructed
by a tree-structured set of escrow agencies without reconstructing the
private ElGamal key and the ciphertext.

1 Introduction

While monitoring people human rights are often neither protected by the govern-
ment nor by other (private) organisations. Focused on this fact, it is very useful
to store the monitored information confidentially. With the help of key escrow
we are able to archive the corresponding key at a trusted third party. In this
simple consideration we quickly find several problems. Firstly, we do not want to
trust one single party that is able to recover the key. As a matter of fact, many
solutions provide well defined access structures to the escrowed key (e.g. secret
splitting/sharing or software solutions). Secondly, the escrow agencies require
the availability of the database in which the key is stored. If we simply build
redundant memories, this problem can be solved, but what happens if the access
structure has been compromised? Another problem arises, if a communication
process, such as a conferencing phone call between several instances, has to be
monitored. For efficiency reasons only one key might have been generated in a
fair way among users, but who is responsible for escrowing it?

The proposed key escrow system fulfils the following requirements:

– Fair distributed (tree-structured) generation of a private key d.
– Fair distributed generation of a session key k.
– Multi-party ElGamal encryption of k to provide its confidentiality.
– Distributed storage of the ciphertext (c1 and shares of c2) to provide avail-

ability, to avoid unauthorized encryption if d has been compromised and to
hamper several ciphertext-based attacks.

– Tree-structured multi-party ElGamal decryption over c1 and shares of c2.

The proposed system consists of a set P of l monitored instances who generate
and encrypt a common session key k for a confidential teleconference using multi-
party ElGamal encryption. Furthermore, a set S of m ciphertext-servers exists

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 454–459, 2005.
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where c1 and shares of c2 are archived. Finally, a possibly tree-structured set
E of escrow agencies exists, where each instance owns a (recursively generated)
share of the private key d.

The tree-based access structure can be achieved by recursively using thresh-
old cryptography. In order to be able to perform encryptions and decryptions
in a distributed way, we need the concepts of secure multi-party computation
(MPC) based on threshold security firstly introduced in [3]. There, any publicly
known mathematical formula with secret inputs can be computed by a qualified
set of instances (so called players) without revealing any information about the
secrets but giving them enough power to compute and reconstruct the output.
Basic solutions in this research field provide addition and multiplication of shared
secrets as well as public constants (scalars). Due to the fact, that multiplication
of two shared secrets is not very practical, we reduce our requirements to the
exclusive usage of addition and multiplication with scalars. To provide a better
understanding of our approach, the given protocols are only resistant against
passive adversaries who always stand to the rules (for considerations with active
adversaries we refer to our technical report [6]). Multi-party computation based
on threshold security requires secret sharing in several stages, which is also re-
quired for availability reasons of the ciphertext. This heads to the output of the
distributed encryption process which remains shared over S. While performing a
distributed decryption, the private key also always remains recursively shared by
using ElGamal threshold decryption (likely proposed in [1]). Different from [1]
we propose d to be tree-shared on the one hand and a very strong requirement
on the other hand: decryptions are only allowed to be performed over shares of
the ciphertext. As far as monitored instances are honest we can hamper several
ciphertext-based attacks up to a particular grade.

2 Fundamentals

Due to the usage of the ElGamal cryptosystem and its system parameters p and
q, every computational step in this paper is either reduced modulo q (within ex-
ponents) or modulo p (within bases). For sake of simplicity we use a multi-pseudo
code that we developed especially for representing multi-party protocols. In order
to run such a protocol in pseudo-code representation the participating input and
output-players with the corresponding input and output-values (within brack-
ets) have to be specified. Every direct successor of the root of the tree is called
first-level-player (FLP). Although we shortly describe the used fundamentals,
we assume the reader to be familiar with the basic ElGamal cryptosystem [2] as
well as the paradigm of secure multi-party computation [4] and secret sharing
[9] respectively.

2.1 Shamir’s Secret Sharing and Reconstruction

A secret value s of group ZZq is shared among a set of n players by using
Shamir’s secret sharing [9] with threshold t (short: s �→ (s1, . . . , sn)). For unique
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reconstruction of s we have to interpolate at least t+1 shares using the formula
of Lagrange: s =

∑n
i=1 si · λs

0,i, where λs
0,i =

∏n
j=1 j · (j − i)−1 is the weight

of si corresponding to s. One big disadvantage of Shamir’s secret sharing is the
fact that incorrect shares head to the reconstruction of a wrong secret. Although
we can never prevent from active misbehaviour of participating instances, it is
possible to detect them up to a particular grade (for more information see [4]).

2.2 ElGamal Cryptosystem

Assuming the discrete-logarithm-based key generation has already taken place
resulting in the public key e and the private key d the encryption of a session
key k can be done by computing c1 = gα and c2 = k · eα, where α ∈R ZZq. The
decryption can be done by computing k = c2 · c−d

1 .

2.3 Fair Tree-Shared Generation of a Private Key

In this paper we need a fair distributed generation of a (secret) value. We use
a simplified version of the key generation protocol based on discrete logarithms
proposed in [5]. The protocol in [5] is useful to generate a private key with-
out reconstructing it. However, we need a fair tree-structured generation of the
private key. Moreover, we need substitutability for every FLP within E in case
of absence which can be realized by recursively sharing computations over the
corresponding sub-trees. For lack of space we are forced to refer to our technical
report [7].

3 Distributed Computation of the ElGamal Cryptosystem

Based on our strict requirement not using multiplication of two shared secrets
we now try to split the ElGamal encryption and decryption function into several
parts respectively so that it can be performed by different sets of players without
revealing information about the session key k, the private key d, the ciphertext-
part c2 and randomness α up to a particular grade. We consider the ElGamal
cryptosystem as one common multi-party computation where the computation-
stage consists of three sub-stages: session key generation, encryption- and de-
cryption. We assume, that d is already shared over E and players in P already
know e.

Input. Each player Pi in P generates and shares two secret random values
k′

i �→ (k′
i1, . . . , k

′
il) and α′

i �→ (α′
i1, . . . , α

′
il) over P .

Computation (Session Key Generation). Each player in Pi combines the
received share-shares to a share of k [5]: ki =

∑l
j=1 k′

ji · λki

0,j .

Computation (Encryption). All players in P and S compute the encryption
over the shares of k, α and the constant eα resulting in c2 that remains shared
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over S. Protocol 1 (see fig. 1) starts with the combination of the received share-
shares of α to a share of it. Then every player computes and broadcasts a share
of eα over P . Now each player Pi is able to compute a share of c2 by multiplying
his share of k by eα. Furthermore, he sends c1 to S. A resharing of c2 results in
c2 shared over S. First we have to proof, that any value z that is shared over x
players can be reshared over a set of y players without reconstructing z:

Proof (of Correctness (xy-Resharing)).

x∑
i=1

zi · λz
0,i =

x∑
i=1

y∑
j=1

zij · λzi

0,j · λz
0,i =

y∑
j=1

x∑
i=1

zji · λz
0,i · λzi

0,j =
y∑

j=1

zj · λzi

0,j (1)

��

input: (S1[c1, c21], . . . , Sm[c1, c2m], E1[d1], . . . , En[dn]) MPC: c2 · c−d
1

output: (E1[k1], . . . , En[kn])
l.1 for all i ∈ {1, . . . , m} do // decryption stage 1 (S & E)+
l.2 Si: c2i �→ (c2i1 , . . . , c2in)
l.3 send(Si[c1, c2i1 , . . . , c2in ]) → (E1[c1, c2i1 ], . . . , En[c1, c2in ])
l.4 for all i ∈ {1, . . . , n} do // decryption stage 2 (E)+
l.5 Ei: c∗1i = cdi

1 , c∗2i =
∑m

j=1
c2ji · λc∗2i

0,j

l.6 send(Ei[c∗1i]) → (E1[c∗1i], . . . , En[c∗1i])
l.7 for all i ∈ {1, . . . , n} do // decryption stage 3 (E)+
l.8 Ei: k∗

i = c∗2i · (
∏n

j=1
c∗1j

λd
0,j )−1, k∗

i �→ (k∗
i1, . . . , k

∗
in)

l.9 send(Ei[k∗
i1, . . . , k

∗
in]) → (E1[k∗

i1], . . . , En[k∗
in])

l.10 for all i ∈ {1, . . . , n} do // decryption stage 4 (E)+
l.11 Ei: ki =

∑n

j=1
k∗

ji · λki
0,j

Fig. 1. Multi-Party Protocol 1: Distributed ElGamal Encryption

A proof of correctness of protocol 1 can be given referring to the proof of xy-
Resharing and the lines of the encryption protocol:

Proof (of Correctness (Multi-Party Protocol 1)).

c1
l.8=

l∏
i=1

c
λα
0,i

1i
l.2= gα, c2 =

m∑
i=1

c2i · λc2
0,i

(1)
=

l∑
i=1

c′2i · λk
0,i

l.5=
l∑

i=1

ki ·
⎛⎝ l∏

j=1

e
λα
0,j

j

⎞⎠ · λk
0,i

l.2=
l∑

i=1

ki · λk
0,i · eα = k · eα

��
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Computation (Decryption). All players in S and E compute the decryption
over c1, the shares of c2 and the shares of d resulting in k that remains shared
among the players of E until reaching the output-stage (see fig. 2). S starts
protocol 2 by resharing c2 over E and sending c1 to E . Then each player Ei

computes and broadcasts a share of cd
1. Furthermore, he combines a share of c2

and computes his part c2i · c−d
1 of the main decryption (multiplication of a share

with a scalar) resulting in a share of k. However, broadcasting this share enables
every Ei to reconstruct c2. Due to this fact, we blind c2 by resharing k over E .

input: (S1[c1, c21], . . . , Sm[c1, c2m], E1[d1], . . . , En[dn]) MPC: c2 · c−d
1

output: (E1[k1], . . . , En[kn])
l.1 for all i ∈ {1, . . . , m} do // decryption stage 1 (S & E)+
l.2 Si: c2i �→ (c2i1 , . . . , c2in)
l.3 send(Si[c1, c2i1 , . . . , c2in ]) → (E1[c1, c2i1 ], . . . , En[c1, c2in ])
l.4 for all i ∈ {1, . . . , n} do // decryption stage 2 (E)+
l.5 Ei: c∗1i = cdi

1 , c∗2i =
∑m

j=1
c2ji · λc∗2i

0,j

l.6 send(Ei[c∗1i]) → (E1[c∗1i], . . . , En[c∗1i])
l.7 for all i ∈ {1, . . . , n} do // decryption stage 3 (E)+
l.8 Ei: k∗

i = c∗2i · (
∏n

j=1
c∗1j

λd
0,j )−1, k∗

i �→ (k∗
i1, . . . , k

∗
in)

l.9 send(Ei[k∗
i1, . . . , k

∗
in]) → (E1[k∗

i1], . . . , En[k∗
in])

l.10 for all i ∈ {1, . . . , n} do // decryption stage 4 (E)+
l.11 Ei: ki =

∑n

j=1
k∗

ji · λki
0,j

Fig. 2. Multi-Party Protocol 2: Distributed ElGamal Decryption

Analogous to protocol 1 a proof of correctness can be given as follows:

Proof (of Correctness (Multi-Party Protocol 2)).

k =
n∑

i=1

ki · λk
0,i

(1)
=

n∑
i=1

k∗
i · λc∗2

0,i
l.8=

n∑
i=1

c∗2i ·
⎛⎝ n∏

j=1

c∗1j
λd
0,j

⎞⎠−1

· λc∗2
0,i

l.5=
n∑

i=1

c∗2i · λc∗2
0,i · c−d

1

(1)
=

m∑
i=1

c2i · λc2
0,i · c−d

1 = c2 · c−d
1

��
Output. Every player Ei ∈ E sends ki to every player Ej ∈ E . Then each Ej

can reconstruct the session key by computing k =
∑n

i=1 ki · λk
0,i.

3.1 Performance and Security Analysis

The performance of the proposed protocols depends on the number of players in
P , S and E . The following table shows the number of sent messages, performed
multiplications and exponentiations of big integer values during the encryption
and decryption-stages for one player (additions are not considered):
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Player Sent Messages Multiplications Exponentiations
Pi(encryption) O(l + m) O(l + m) O(1)
Si(encryption) − O(l) O(1)
Si(decryption) O(n) O(n) O(1)
Ei(decryption) O(n) O(n + m) O(1)

The security of the protocols lies in the difficulty of breaking the discrete log-
arithm problem and threshold multi-party computation with computational se-
curity (see [4]). An external adversary has to compromise at least t + 1 players
in S to reconstruct c2 and at least t + 1 FLP in E to reconstruct d in order to
be able to decrypt k. The distributed storage of c2 has two effects: firstly, the
availability of ciphertext and secondly, the restriction of several ciphertext-based
attacks. However, if an adversary is able to force any player in P to compute
and publish c2 the second advantage disappears. Considering the decryption of
k, it is obvious that internal adversaries (S or E) do not really have more power
than external ones. Performing ciphertext-based attacks is not possible for up
to t players in S and E (if P remains honest).

4 Conclusion

We proposed a key escrow system that fulfils the requirements stated in section 1
by using a particular version of distributed ElGamal to achieve several security-
properties (discussed in section 3.1). For a detailed description of our proposal
including more applications we refer to our technical report [8]. An extended
version considering active adversaries can be found in our technical report [6].
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Abstract. Policy-based management systems are now the object of steadfast 
attention in network security theory and applications. Due to a complex 
structure of subject role hierarchies, target grouping, and action mutual 
dependence the security policy conflicts are complicated to detect and resolve. 
Moreover, an initially consistent policy ruleset may lead to inconsistent or 
unenforceable rules during the system lifecycle. The paper presents the 
architecture of Security Checker module (intended for disclosure and resolution 
of policy conflicts) and illustrates conflict detection based on event calculus.  

1   Introduction and Motivation  

Recently, common standard for policy-based security architecture is the one provided 
by the IETF through several of its working groups, mainly policy framework (policy) 
WG [2]. Policy rules are stored in a repository and policy decision point (PDP) is 
separated from the policy enforcement point (PEP). Centralization of policy rules 
store allows to build separated (passive) software tool for verification of security 
policy as a whole. However, since verification process includes decision making in a 
conflict situations, the verification tool should provide a conflict resolution strategy 
used by PDP. PDP in turn sends decision to PEP which has to be appropriate to PEP 
capabilities. Therefore, the verification tool needs three kind of information: policy 
rules from repository, resolution strategy, and security capabilities of PEP.  

Proposed policy-based framework which is under development in the Positif 
Project [10] contains two input languages: System Description Language (SDL) and 
Security Policy Language (SPL). SDL formally describes the information system. The 
language supports the description of (1) system topology as network elements and 
physical connections, (2) the network services offered and the applications supported 
for each network element, (3) the security functionality of element such as network 
filters, OS intrinsic controls, application-level ACL, etc. SPL specifies a security 
policy. The language is able to describe high-level and low-level security policy rules. 
High-level rules express a composite task that implies a number of actions to 
implement. For example, to enforce the rule “Split the network into two independent 
subnetworks”, the system should perform gateway reconfiguration, change of IP 
addresses and subnet mask, and, possibly, addition of new filtering policies. Low-
level rules are more specific and in most cases could be considered as atomic action. 
For example the rule “block any packet from network 195.19.200” would be 



 Security Checker Architecture for Policy-Based Security Management 461 

 

translated to one ACL item. One more kind of SPL rules defines decision algorithms. 
There might be Deny Take Precedence, Permit Take Precedence, More (Less) 
Specific Take Precedence, or another user-defined algorithm. Thus, policy rules and 
conflict resolution strategies are described in SPL, security capabilities of a network 
node (PEP) are defined in SDL.  

Present-day policy-based security systems also include these three categories of 
information, but not all three at the same time. Extended access control markup 
language (XACML) supports access control policies. Three-level structure of policy 
description (rule – policy as a set of rules – set of policies) allows to build flexible 
resolution system using formalized notion of decision algorithm on the levels of 
policy and policy set. XACML does not support system description language directly, 
as network nodes are represented in rules. Ponder language [9] contains rules for 
positive and negative authorization, obligation and delegation. The authors of Ponder 
suggested several approaches for conflict resolution strategies [7]. Flexible 
Authorization Framework (FAF) [3,4] studies access control policies. The advantage 
of proposed system and reasoning is deep consideration of object, subject, and 
privileges hierarchies. The language allows the specification of positive and negative 
authorization and incorporates notions of authorization derivation, conflict resolution 
and decision strategies.  

The are also several relevant papers devoted to different techniques of conflict 
detection and resolution, including deontic logic (L.Cholvy, et. al.), dynamic conflict 
detection and resolution (N.Dunlop, et. al.), detecting conflict of duty (D.Ferraiolo, 
R.Sandhu, et. al.), policy conflicts specification and resolution (Morris Sloman, et. 
al.), credential-based approach to specification of access control policies, conflict 
resolution in event-based policy management (Jan Chomicki), etc.  

In our approach we try to use a set of different approaches in one common 
framework for conflict detection and resolution in different policies (authentication, 
confidentiality, filtering, etc.). The paper presents the architecture of Security Checker 
intended for disclosure and resolution of policy conflicts and illustrates methods of 
conflict detection based on event calculus. Section 2 describes the architecture of 
policy-based security system proposed, the Security Checker architecture and 
implementation issues. Section 3 characterizes the event calculus-based verification 
module. Section 4 summarizes the results of the paper.  

2   Security Checker Architecture and Implementation  

The general architecture of policy-based security system is presented in fig. 1 [10]. 
Security checker (SEC) checks if the policies are consistent and can be implemented 
with the functionality available in the information system. SEC plays a role of 
SDL/SPL debugger, which interacts with user approving SPL/SDL descriptions or 
pointing to inconsistencies. Configuration Generator produces Generic Security 
Rulesets (GSR) which are the set of rules that do not keep into account the specific 
implementation of security block (e.g. firewall type and manufacturer). Security 
Technology Mapper transforms GSR into a specific configuration for each security 
block in the system. This step will need the help of Block Security Maps provided by 
the manufacturer of the block. Security Deployment Engine transfers configuration to  
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Fig. 1. General architecture of security policy-based system [10] 

the security blocks. Proactive Security Monitor (PSM) is an evolution of the concept 
of Intrusion Detection System. PSM additionally uses two proactive techniques: 
compare network traffic and system behavior against the allowed policy and generate 
deliberate attacks to perform automatic checks of the deployed configuration. The 
fifth section describes main results and directions of future research.  

The SEC architecture is presented in fig. 2. The central box presents SEC, arrows 
define dataflow (input or output).  

System description (on SDL) is firstly validated using software/hardware 
compatibility database. Security policy (on SPL) could be formulated on high or low 
level. High-level rule is usually expanded to two or more low level rules for different 
security properties, such as authentication, authorization, confidentiality, filtering, etc. 
The system stores links between high- and low-level rule formulations. These links 
are used to inform system administrator about contradictory high-level rules when 
policy conflict is found on low-level. After translation of high-level (HL) rules to  
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Fig. 2. Security checker architecture  
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low-level (LL), the verification process is started. Verification has three purposes: (1) 
detect parts of specifications on SPL and SDL that have inconsistencies, (2) detect 
parts of specifications on SPL and SDL that cannot be activated in the current 
configuration (i.e. SPL-SDL compatibility checking), and (3) evaluation of security 
level (SL) that could be achieved with these SPL-SDL descriptions.  

The verification tool architecture is a multi-module one. Currently three modules 
based on different mathematical approaches have been designed. These modules are 
as follows: (1) the model checking module implemented using SPIN; (2) the theorem 
prover that uses Event Calculus [6] and implemented in Jess [5]; and (3) the module 
that implements semi-lattice approach [1]. Two first modules have been implemented.  

The verification tool architecture is an open one: the signature of base Java class 
VerificationModule, that represents a module, is fixed and a developer could provide 
his/her own verification module inherited from VerificationModule. The Verification 
Manager determines the order of modules processing.  

3   Implementation of Event Calculus-Based Module  

One of the modules of verification tool uses Event Calculus (EC) [6]. The 
implementation of this module has been done by Jess rule engine [5]. The input data 
are SDL and SPL descriptions. The module implementation is based on forward 
chaining techniques: initialization rules generate a database of facts, and then the rules 
are fired which conditions satisfy the facts. So an SDL description is transformed into 
initialization rules which place network nodes, users, roles and services into the 
database of facts. SPL rules are translated into operational rules. Inconsistencies are 
determined by using conflict predicates. The example below shows the definition of 
an authorization conflict. When initialization rules are fired, the module tries to derive 
conflicts. This is a static conflict search. When the system is working, any new user 
event is also put in the database of facts, and the conflict search procedure is 
initialized. This use of the module is a dynamic conflict search.  

Formally EC uses multi-sorted first-order language. Additionally to standard 
domain of individual objects, EC defines three sorts: fluents − time-varying properties 
of the world, actions − their instances (events) change state of fluents, time − real or 
integer numbers starting from 0.  

The following predicates define the states of fluents, their initiation and 
termination, and events happening: HoldsAt(f,t) is true iff fluent f holds at timepoint t 
; Happens(a,t) is true iff action a happens at timepoint t ; Initiates(a,f,t) expresses that 
fluent f holds after timepoint t (but not at t) if action a happens at t ; Terminates(a,f,t) 
expresses that fluent f does not hold after time point t (but not at t) if action a happens 
at t ; InitiallyTrue(f) and InitiallyFalse(f) define whether f holds or not at timepoint 0 . 

The auxiliary predicate Clipped(t1,f,t2) expresses whether a fluent f was terminated 
during a time interval [t1,t2). Similarly, the auxiliary predicate Declipped(t1,f,t2) 
expresses if a fluent f was initiated during  a time interval [t1,t2). The domain 
independent EC axioms are as follows:  

• (EC1) Clipped (t1,f,t2)  Happens(a,t1) & t1 t< t2 & Terminates(f,t2)  
• (EC2) Declipped (t1,f,t2)  Happens(a,t1) & t1 t<t2 & Initiates(f,t2)  
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• (EC3) HoldsAt (f,t2)  Happens(a,t1) & Initiates(a,f,t1) &t1<t2 & ¬Clipped (t1,f,t2) 
• (EC4) ¬HoldsAt(f,t2)  Happens(a,t1) & Terminates(a,f,t1) & t1<t2 & 

¬Declipped(t1,f,t2) 
• (EC5) HoldsAt (f, t)  InitiallyTrue(f) & ¬Clipped(0,f,t) 
• (EC6) ¬HoldsAt (f,t)  InitiallyFalse(f) & ¬Declipped(0,f,t) 
• (EC7) InitiallyTrue(f) | InitiallyFalse(f) 

Let us consider a typical example of authorization conflict, which arises when user 
is assigned to two roles that have opposite authorization permissions. 

The following predicates are introduced: (1) User(<name>) denotes a user with a 
name <name>, (2) Action(<name>) defines an action with a name <name> that a user 
(subject) can process on a target, (3) Role(<name>) determines a role with the name 
<name>, (4) ContradictoryRoles (<role1>, <role2>, <time>, <action>) describes that 
roles role1 and role2 have opposite (negative and positive) permissions for processing 
an action <action> at a time point t.  

The following events are used: (1) AssignUserRole(<user>,<role>) denotes a 
request of a user <user> for assignment to a role <role>, (2) 
RolePermitAction(<role>,<action>) specifies a request for permission of an action 
<action> for a role <role>, (3) RoleDenyAction(<role>,<action>) defines a request 
for denial of action <action> for a role <role>.  

The following fluents are assumed: (1) Assigned(<user>,<role>) specifies that user 
<user> is assigned to a role <role>, (2) RoleHavePermission(<role>, <action>) 
defines that a role <role> is permitted to a process action <action>, (3) 
horizationConflict(<role1>,<role2>) denotes that there is an authorization conflict in 
the system, i.e. there exist a user who is assigned to contradictory roles.  

Domain dependent axioms are as follows:  

• The first axiom initiates RoleHavePermission(r,a) fluent when the 
RolePermitAction(r, a) event happens if this fluent is currently not true:  

(AC1) Initiates (RoleHavePermission(r, a), RolePermitAction(r, a), t)  
Happens(RolePermitAction(r, a), t) & (¬ HoldsAt(RoleHavePermission(r, a), t)) ; 
• The second axiom implements deny for role r to process the action a as a 

termination of fluent RoleHavePermission(r, a) when RoleDenyActivity(r, a) event 
happens:  

(AC2) Terminates (RoleHavePermission(r, a), RoleDenyActivity(r, a), t)  
Happens(RoleDenyActivity(r, a), t) & HoldsAt(RoleHavePermission(r, a), t) ; 
• The third axiom assigns user u to the role r when AssignUserRole (u, r) event 

happens if AuthorizationConflict(r, r0) between the role r and some other role r0 
is not presented in the system:  

(AC3) Initiates(Assigned (u, r), AssignUserRole (u, r), t)  Happens(AssignUserRole (u, r), 
t) & (¬ HoldsAt(AuthorizationConflict(r, r0), t)) ; 
• The fourth axiom defines two roles, one of which has and another one does not 

have permission for some action. Here we note that OR-statement allows to not fix 
which role has positive permission and which role has negative permission. Thus, 
ContradictoryRoles is symmetrical regarding r1 and r2.  

(AC4) ContradictoryRoles (r1, r2, t, a)  (HoldsAt (RoleHavePermission (r1, a),t) & (¬ 
HoldsAt (RoleHavePermission (r2, a), t))) | (HoldsAt (RoleHavePermission (r2, a), t) & (¬ 
HoldsAt (RoleHavePermission (r1, a), t))) ; 
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• The fifth axiom defines a notion of authorization conflict: the user requested the 
assignment for the second of two contradictory roles:  

(AC5) Happens(conflictEvent, t); Initiates (AuthorizeConflict (r,r0), conflictEvent,t)  
HoldsAt(Authorized(u, r0), t) & Happens(AuthorizeRequest(r, u), t) &  ContradictoryRoles (r, 
r0, a, t) .  

4   Conclusions  

This paper describes the architecture and implementation of security checker intended 
for consistency verification in policy-based security framework. We have 
implemented two verification modules: (1) the model checking module implemented 
using SPIN; (2) the theorem prover that uses Event Calculus and implemented in Jess 
[5]. The example of authorization conflict detection based on event calculus-based 
module was presented. In the future evolution of security checker we plan to improve 
the possibilities of Event Calculus and model checking modules for detection and 
resolution of security policy conflicts.  
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Abstract. For an efficient role based access control using attribute certificate, 
we use a technique of structuring role specification certificates. It can reduce 
management cost and overhead incurred when changing the specification of the 
role. Especially, the highly distributed computing environments that cannot 
have global or broad control need another attribute certificate management 
technique. In this paper, the roles are grouped and made them into the relation 
tree. In order to be scalable distribution of the role specification certificate, we 
use multicasting packets. Also, performance enhancement of structuring role 
specification certificates is quantified in the sense of taking into account of the 
packet loss. In the experimental section, it is shown that role updating and dis-
tribution are secured and efficient.  

1   Introduction 

American National Standards Institute, International Committee for Information 
Technology Standards (ANSI/INCITS) as ANSI INCITS 359-2004 is the information 
technology industry consensus standard for RBAC[1,2]. It reflects the importance of 
role based access control and shows that it makes the base of information technology. 

 Highly distributed collaborating environments such as ubiquitous network usually 
support the authorization of resources at varying levels of access. Furthermore, a 
significant characteristic of highly distributed environments is the need for interac-
tions of highly collaborating entities to be secure. However, it could not have any 
central or global control. Due to the lack of central control, the autonomous entities 
form trust relations [3]. In the trust model, role based access control through the dele-
gation of privileges to entities trusted via the use of certificates are used. They   can 
be chained to represent recommendations and the propagation of trust. 

For secure communication of highly distributed environments, we distribute the 
role specifications according to the levels of access. It accords with the characteristics 
of the distributed environments and sometimes is inevitable. In this paper, the concept 
of trust model is adopted. Our method is different from the privilege delegation [2] 
and it can be thought of as the distribution of privileges. In addition, we group roles, 
which is different from the typical methods which group subjects only [1,6,7].  The 
property of the role group not only results in reduced network traffic but also reduces 
the overhead on the group manager. For scalability, we use multicast for distribution 
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of role specifications. Our work is related to the technique used for group key man-
agement [8,9]. In the experimental section, it is shown that our method can enhance 
the performance. 

The rest of this paper is organized as follows. In the next Section, we describe the 
secure role group model. In Section 3, the group communication model for updating 
role specification is presented. In Section 4, the performance of our method is shown. 
In Section 5, we conclude. 

2   Secure Role Group Model 

The ITU-T X.509 Recommendation (ISO/IEC 9594-8)[2] and the IETF RFC 3281 [4]  
define AC. Specific privileges are assigned to a role name through role specification 
certificate. The level of indirection enables the privileges assigned to a role to be 
updated, without impacting the certificates that assign roles to individuals. We make a 
chain of role specification certificates.   

 For structuring role specification certificates, we make role groups different to the 
subject groups. The structure of the role groups differs from that of the delegation of 
roles [2]. It gathers common roles and builds the trust structure. It forms the tree 
structure. The chain of role specification certificates can incur the overhead when a 
subject is going to use some privileges. The problem can be solved using coherent 
caching of role specification certificates [5]. Possible increase in increased admini-
stration and key management effort do not exceed the performance gain using attrib-
ute certificate [5]. In highly distributed environment, the distribution of the specifica-
tions of roles is inevitable. In this paper, only the change of the role specification 
certificates is considered when the roles update. For the case that the role groups are 
distributed geographically and the role specifications are changed, the performance 
enhances. If the role group is not used, the role holder should possess all the role 
specifications. In this case, the application of the role can be done directly without 
following the role specification certificates. However, each subject should have all the 
role specification certificates, and the small memory devices commonly used in ubiq-
uitous computing environment cannot afford it.  

3   The Communication Model for Updating of Role Specification  

Updated role specification certificates are delivered by the multicast communication. 
The distribution of updated role specification certificates of our method can be mod-
eled as following: 
 

R : the number of roles 

G: the maximum number of the lowest level role groups, =
R
i iR C1  

S : the maximum number of the lowest level role specification certificates, S=G 

ig : role group i 

is : role specification certificate related to role group ig  
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h : height of the tree structure  

id : degree of role group ig  

If id equals to d for all i then G equals to hd . In general, the roles are included in 

not all of role groups. Thus, an unnecessary role group creation can be avoided for 

determining the proper value of h. If the roles are not grouped, is  needs to be trans-

mitted to lhd −  members. From the viewpoint of the reliable delivery, a role specifica-

tion certificate at level l of the tree structure has to be delivered to lhdlW −=)(  

receivers. If the roles are grouped, is  needs to be transmitted to d members. Thus, it 

has to be delivered to ( )W l d=  receivers. Let M(l) be the frequency of the trans-

mission of a role specification certificate is  in order to be successfully delivered to 

all W(l) receivers.  
The probability that one of these W(l) receivers (say w) will not receive the updated 

role specification if it is transmitted once is equal to the probability of packet loss, p, 

for that receiver. Let wM  be the frequency of role specification transmissions neces-

sary for receiver w to successfully receive the role specification certificate. Since all 
the packet loss events for receiver w, including replicated packet and retransmissions, 

are mutually independent, wM is geometrically distributed as in [14]. Thus,  

[ ] 1 , 1m
wP M m p m≤ = − ≥     (1) 

[ ] 1/(1 )wE M p= −      (2) 

Equation (1) represents the probability that the role specification certificate is deliv-
ered successfully within m packet transmissions. Equation (2) represents the expected 
number of packet transmission. Since lost packet events at different receivers are 
independent each other, the probability [ ( ) ]P M l m≤  that all the W(l) receivers will 

receive the packet within m transmissions is as shown in Equation (3).  
( )

( )

1

[ ( ) ] [ ] (1 )
W l

m W l
w

w

p M l m P M m p
=

≤ = ≤ = −∏   (3) 

The expected frequency of the role specification packet transmission can be computed 
as following: 

1 ( )

1 1

[ ( )] [ ( ) ] (1 (1 ) )m W l

m m

E M l P M l m p
∞ ∞

−

= =
= ≥ = − −  (4) 

We can compute F(l) numerically using Equation (4) by truncating the summation 
when the mth  value falls below the threshold.  

4   Performance Evaluation 

From Equation (1) through (4), we can measure the expected number of role specifi-
cation packet transmission, E[M(l)], for the performance comparison. For each given 
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packet loss p, we can inspect the effects to the average role specification certificate 
transmission by degree.  Fig. 1 shows the difference of the role-grouped case 
(grouped-pd.dat) and the role-ungrouped case (ungrouped-pd.dat). When the packet 
loss is small, the difference is very small. However, as the packet loss gets bigger, the 
role-ungrouped case suffers from steeply increasing packet transmission. The per-
formance enhancement obtained by role grouping is proportional to d. For the follow-
ing comparison, we set d to 50 for the performance analysis. 

 

 

Fig. 1. A comparison of the expected packet transmission as a function of p and d

We examine the average packet transmission, E[F(l)], for the various values of 
threshold m.  In Fig. 2, the E[F(l)] becomes stable when m becomes greater than 10. 
Let’s calculate the impact of p on E[F(l)] when m=20 for two cases; one is when roles 

Fig. 2. A comparison of the expected packet transmission as a function of p and m
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are not grouped (ungrouped-pm.dat), the other is when roles are grouped(grouped-
pm.dat). For the first case, the E[F(l)] results in higher value than the other. When p is 
0.1, E[F(l)] is reduced by 50% and when p=0.16, by 40%.
    Fig. 3 shows the plot of the expected packet transmission E[M(l)] for packet loss p 
and the degree difference (h-l). Fig. 3 shows the great increase in E[M(l)] when the 
roles are not grouped (ungrouped-pl.dat) and shows small increase in E[M(l)]when 
the roles are grouped (grouped-pl.dat). If we take a specific sample case, (h-l )=5, 
when p=0.02, there is 40% reduction of packet transmission, when p=0.1, 30% reduc-
tion, and when p=0.18, 26% reduction. When the quality of network is more inferior 
(so p is greater), the performance obtained through role grouping improves.  

 

Fig. 3. A comparison of the expected packet transmission as a function of p and h-l 

5   Conclusion 

For optimized access control, the use of the established characteristics and trust rela-
tion is efficient and natural. Thus, we adopt the characteristics of highly distributed 
computing environments and the useful trust model. As an efficient access control 
using attribute certificate, we use the technique of structuring role specification cer-
tificates. It can reduce the management cost and overhead incurred when changing the 
specification of the role. Especially, highly distributed computing environments such 
as ubiquitous computing which cannot have global or broad control need another 
attribute certificate management technique. Even though, the role specification cer-
tificate itself reduces management cost, the structuring of role specification is needed 
in order to get better performance. We grouped roles, made the role group relation 
tree, and showed the model description. It provides the secure and efficient role up-
dating and the distribution. For scalable role specification certificate distribution, we 
used multicasting packets. The performance enhancements are quantified with taking 
into account the packet loss, too. Also, we showed that our scalable access control 
technique outperformed the existing access control techniques. 
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Abstract. Recently, Lin-Hwang proposed a password authentication
scheme with secure password updating. The current paper demonstrates
the vulnerability of Lin-Hwang’s scheme to server data eavesdropping
and presents improvements to resolve this problem. In contrast to Lin-
Hwang’s scheme, the proposed scheme can simply update user passwords
without a complicated process and provide explicit key authentication
in the case of a session key agreement.

Keyword: Cryptography, Password authentication, Key agreement.

1 Introduction

User authentication is an important part of security, along with confidentiality
and integrity, for systems that allow remote access over untrustworthy networks,
like the Internet. In 2000, Peyravian and Zunic [1] proposed a protected pass-
word authentication scheme based on a one-way hash function to achieve user
authentication and to arbitrarily change a password. Subsequently, Hwang-Yeh
[2] pointed out that Peyravian-Zunic’s scheme was vulnerable to guessing, server
spoofing, and stolen-verifier attacks and proposed a new protected password au-
thentication scheme by using a public server key to eliminate security flaws.
Thereafter, in 2003, Lin-Hwang [3] pointed out that Hwang-Yeh’s scheme was
vulnerable to a Denial-of-Service attacks and proposed an improved scheme that
could withstand such attacks and could provide forward secrecy property. They
also claimed that if the password-verifier were stolen from a server, it could not
be used to masquerade as a legitimate user in a user authentication execution (a
stolen-verifier attack). Yet, Lin-Hwang’s improved scheme is still susceptible to
server data eavesdropping [4], where obtaining the secret data stored in a server
can allow an illegitimate user to login to the server as a legitimate user.

Accordingly, the current paper demonstrates that Lin-Hwang’s scheme [3]
is vulnerable to server data eavesdropping and improvements to the scheme to
isolate such a problem are presented. In contrast to Lin-Hwang’s protected pass-
word change scheme, the proposed protected password change scheme can simply
update user passwords without the need for a complicated process. Our proposed
protected password change scheme is similar to Yang-Chang-Li’s scheme [4], but
the proposed scheme provides explicit key authentication and perfect forward
secrecy in the case of a session key agreement [5].

V. Gorodetsky, I. Kotenko, and V. Skormin (Eds.): MMM-ACNS 2005, LNCS 3685, pp. 472–477, 2005.
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The remainder of this paper is organized as follows: Section 2 briefly re-
views Lin-Hwang’s protected password change scheme, then Section 3 demon-
strates server data eavesdropping with Lin-Hwang’s scheme and examines some
related problems. The proposed protected password change scheme is presented
in Section 4, while Section 5 discusses the security of the proposed scheme. The
conclusion is presented in Section 6.

2 A Review of Lin-Hwang’s Schemes

This section briefly reviews Lin-Hwang’s protected password change scheme.
Readers are referred to [3] for a complete list of references. The main difference
between Lin-Hwang’s protected password transmission scheme and protected
password change scheme is that in the latter, the client sends a password change
request to the server. Some of the notations used in Lin-Hwang’s scheme and
the proposed scheme are defined as follows:

– id: public user identity of client.
– pw: secret and possibly weak user password.
– KS : public server key.
– {M}KS : public key encryption of message M with public server key KS .
– rc, rs: session-independent random numbers chosen by client and server, re-

spectively.
– p, g: large prime p and generator g in cyclic group Z∗

p , in which the Diffie-
Hellman problem is considered hard.

– x, y: session-independent random exponents chosen by client and server, re-
spectively.

– SK: shared session key computed by client and server.
– H(·): strong one-way hash function.
– ⊕: bit-wise XOR operation.

In Lin-Hwang’s scheme, the server stores vpw = H(pw) for each client in the
database. The protected password change scheme allows a client to change their
old password pw to a new password newpw.

(1) Client→Server: id, {rc, pw}KS

The user submits their id and pw to the client. The client then randomly
chooses an integer rc and encrypts rc and pw, using the server’s public key
KS , and sends it with the id as a login request to the server.

(2) Server→Client: rs⊕ rc, H(rs)
The server decrypts {rc, pw}KS to obtain rc and pw using its private key
K. Then, the server computes the hash value H(pw) and checks whether
H(pw) = vpw holds. If it holds, the server randomly chooses an integer rs,
computes rc ⊕ rs and H(rc), then the server sends rc ⊕ rs, H(rc) to the
client.
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(3) Client→Server: id, H(rc, rs), H(newpw) ⊕H(rc + 1, rs), H(H(newpw), rs)
The client retrieves rs by computing rc⊕rs⊕rc, then verifies the consistency
between the retrieved rs and the received H(rs). If the result is positive,
the client computes ‘one-time’ values as follows:
C auth token = H(rc, rs),
C auth token mask = H(newpw) ⊕H(rc + 1, rs),
C auth token mask verifier = H(H(newpw), rs).
Finally, the client sends these ‘one-time’ values with the id to the server.

(4) Server→Client: Access granted / denied
The server computes the hash value H(rc, rs) using its own copies of rc
and rs, and checks whether H(rc, rs) = C auth token holds or not. If it
holds, the server can obtain H(newpw) by computing C auth token mask⊕
H(rc + 1, rs). Then, the server replaces H(pw) with H(newpw), only if the
hashed result of the obtained H(newpw) and rs is equivalent to the received
C auth token mask verifier.

3 Cryptanalysis of Lin-Hwang’s Schemes

This section demonstrates that Lin-Hwang’s protected password authentication
scheme and protected password change scheme [3] are both vulnerable to server
data eavesdropping [4]. Also, it can be shown that Lin-Hwang’s protected pass-
word change scheme is complex.

Server Data Eavesdropping: The hash value of the user password stored
in the server can be eavesdropped and then used to masquerade as the original
user. Lin-Hwang claimed that their schemes were resistant to security flaws when
secret data vpw = H(pw) is eavesdropped by an attacker, in order to forge the
login request to pass authentication. In practice, a long random string password
is difficult to use and remember, whereas a meaningful string that people can
recognize easily, such as a natural language phrase, is much more user-friendly as
a password. Natural language phrases, however, narrow down the possibilities for
attackers. Thus, if an attacker somehow acquires the secret data vpw = H(pw)
stored in the server, they can verify the guessed password guess pw by checking
whether H(guess pw) = vpw holds. If the password is guessed, the login request
can then be easily forged to pass authentication.

Inefficient Password Change: In Step (3) of Lin-Hwang’s protected password
change scheme, the client sends three ‘one-time’ values with the id to the server
as follows:

C auth token = H(rc, rs),
C auth token mask = H(newpw) ⊕H(rc + 1, rs),
C auth token mask verifier = H(H(newpw), rs).
Then, the server replaces H(pw) with H(newpw) in Step (4). For a password

change and to avoid a Denial-of-Service attack, the scheme requires additional
calculations between the client and the server. This can be solved by the client
sending a new password by using the server’s public key in Step (1). Therefore,
Lin-Hwang’s protected password change scheme is inefficient.



Secure Protected Password Change Scheme 475

4 Proposed Protected Password Change Scheme

This section proposes an improved protected password change scheme so to as
overcome the above mentioned problems. The server stores vpw = H(id, pw, K)
using the server’s secret key K instead of H(pw) for each client in the database,
in order to overcome server data eavesdropping.

(1) Client→Server: id, {gx, pw, newpw}KS

The user submits their id and pw to the client. The client then randomly
chooses an integer x ∈ Z∗

p , computes gx(modp) and encrypts gx, pw, and
newpw using the server’s public key KS. Then, the client sends it with the
id as a login request to the server.

(2) Server→Client: C1 = gy, C2 = H(newpw, gx, SK)
The server decrypts {gx, pw, newpw}KS to obtain gx, pw and newpw us-
ing its private key K. Then, the server computes H(id, pw, K) and checks
whether H(id, pw, K) = vpw holds. If it holds, the server randomly chooses
an integer y ∈ Z∗

p , computes session key SK = gxy(modp), C1 = gy(mod
p), and C2 = H(newpw, gx, SK). Then, the server sends C1 and C2 as the
server’s authentication token to the client.

(3) Client→Server: id, C3 = H(pw, gx, SK ′)
The client computes SK ′ and H(newpw, gx, SK ′) using its new password
newpw and random exponents x, where SK ′ = (C1)x = gxy(modp). Then,
the client verifies the consistency between the computed H(newpw, gx, SK ′)
and the received C2. If the result is positive, the client can ensure the legality
of the server. Finally, the client computes hash value C3 = H(pw, gx, SK ′)
as the client’s authentication token and sends this token with the id to the
server.

(4) Server→Client: Access granted/denied

The server computes the hash value H(pw, gx, SK) using its session key
SK = gxy(modp) computed in Step (2) and user’s password pw received
in Step (2). Then, the server checks whether C3 = H(pw, gx, SK) holds.
If it holds, the server can ensure the legality of the client and replaces
H(id, pw, K) with H(id, newpw, K).

After mutual authentication is ensured by both the client and the server,
gxy(modp) is used as the session key.

5 Security Analysis

In the past, some desired security attributes for password authentication and
change schemes have been identified [3,4,5]. In addition, the following security
properties of session key agreement protocols should be considered, since they are
often desirable in some environments [5,6,7,8,9,10,11,12]. The following analyzes
the security of the proposed scheme:
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(1) Replay attack: The attacker intercepts id, {gx, pw, newpw}KS sent by the
client in Step (1) and uses it to impersonate the client when sending the next
login message. For a random challenge, however, the gx and gy separately
generated by the client and server are different every time, and the replay
of the client’s old login message in Step (1) is encrypted under the server’s
public key KS . Furthermore, obtaining x and y is computationally infeasible,
as it is a discrete logarithm problem [5].

(2) Guessing attack: For a random challenge, the gx generated by the client
is protected by the server’s public key KS . As such, no one can reveal
the gx from the client’s login message {gx, pw, newpw}KS without know-
ing the server’s private key K. Hence, the attacker cannot verify the cor-
rectness of the guessed password by checking {gx, guess pw, newpw}KS =
{gx, pw, newpw}KS without knowing gx and newpw.

(3) Server data eavesdropping: Servers are always the target of attacks. An
attacker may acquire vpw = H(id, pw, K) stored in the server. Without
knowing the server’s secret key K, however, the attacker cannot forge a
login request to pass authentication, as pw is hidden in H(id, pw, K) using
the server’s secret key. Therefore, the correctness of the guessed password
cannot be verified by checking H(id, guess pw, K) = vpw.

(4) Server spoofing attack: The improved scheme uses the server’s public key
KS to ensure that only the real server can decrypt the client’s login message
{gx, pw, newpw}KS . Only the real server can obtain gx, pw and newpw from
the client’s login message. After verifying the identity of the client, the server
then sends C1 and C2 to the client to achieve mutual authentication.

(5) Denial-of-Service attack: In the improved scheme, the client’s new password,
newpw, is also encrypted using the server’s public key in Step (1). Therefore,
an attacker is unable to choose a random number to replace newpw.

(6) Mutual authentication: The improved scheme uses the Diffie-Hellman key
exchange algorithm [5] to provide mutual authentication. As a result, the
key is explicitly authenticated by a mutual confirmation session key.

(7) Perfect forward secrecy: In the improved scheme, since the Diffie-Hellman
key exchange algorithm is used to generate a session key gxy, forward secrecy
is ensured, as an adversary with a compromised server private key K is only
able to obtain the gx and gy from an earlier session. In addition, it is also
computationally infeasible to obtain the session key gxy from gx and gy, as
it is a discrete logarithm problem.

6 Conclusion

The current paper demonstrated that Lin-Hwang’s protected password authen-
tication scheme is vulnerable to server data eavesdropping and improvements
to isolate such a problem were presented. In contrast to Lin-Hwang’s protected
password change scheme, the proposed scheme can simply update user pass-
words without the need of a complicated process, and it also provides explicit
key authentication in the case of a session key agreement.
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